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From IBM: “Edge artificial intelligence refers to the deployment of AI 
algorithms and AI models directly on local edge devices such as 
sensors or Internet of Things (IoT) devices, which enables real-time 
data processing and analysis without constant reliance on cloud 
infrastructure”. (ibm.com)

 Healthcare 
 Smart farm 
 Transportation 
 Manufacturing
 Power grid
 Specialized (military, 

security)

https://www.cdotrends.com/story/16179/ai-edge-enabling-digital-transformation

In 2022, the global edge AI market was valued at
USD 14,787.5 million and is expected to grow to USD 66.47M 
by 2023 Grand View Research, Inc

Growing market for:

Real-time processing/Scalability

Diminished latency 

Reduced bandwidth

Data privacy

Key benefits:

Edge-AI enables digital transformation 

https://www.ibm.com/topics/internet-of-things
https://www.ibm.com/topics/edge-ai
https://www.grandviewresearch.com/industry-analysis/edge-ai-market-report#:~:text=Report%20Overview,21.0%25%20from%202023%20to%202030.
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• Datacenter energy consumption account for only 1% of total electricity energy consumption 
worldwide

ChatGPT is hosted on a Microsoft Azure data center in San 
Antonio, Texas. The service runs on Kubernetes on over 7,500 
virtual machines to handle the prompts and API calls. 
ChatGPT draws on nearly 570 gigabytes of data to answer the 
prompt and provide helpful information for users. Hardware 
accelerator based on FPGA
https://agio.com/where-is-chatgpt-hosted/#gref May 1, 2024

China’s subsea datacenter
https://www.scmp.com/news/china/science/article/3299313/chinas-subsea-data-centre-
could-power-7000-deepseek-conversations-second-report?

The China’s underwater DC is equivalent of 30,000 high-end gaming 
computers operating simultaneously and could support 7,000 conversations per 
second with the Chinese AI chatbot DeepSeek, CCTV reported (19 Feb 
2025)

The Microsoft Aruze DC (used for 
ChatGPT now!) 

INTRODUCTION: WHERE IS DATA CENTER?

https://agio.com/where-is-chatgpt-hosted/#gref
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Current computer-centric architecture limitation:
• Moving data is more expensive than processing it
• AI processing is both computing and memory-intensive 

Edge devices constraints: 
limited in resources, form factor, 
computing capability, power 
budget, etc.
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https://qengineering.eu/deep-learning-with-raspberry-pi-and-alternatives.html

Hardware platforms:
• Raspberry Pi (3, 4, 5): Cortex-A+ generic GPU
• Jetson (Orin) nano: Cortex-A + CUDA cores GPU
• Google Coral (Mini/Micro): Cortex-A + dedicated GPU
• Intel Neural stick: Intel VPU (Vision) 

Ubiquitous Edge AI would need a more revolutionized 
approach
• Lightweight neural network to fit resources-constrained 

edge-devices
• Innovative approaches to solve the memory bottleneck 

These devices are designed for inference, with 
limited network models

NUS scholar bank: Trinh Quang Kien Ph.D thesis

https://scholarbank.nus.edu.sg/handle/10635/141255
https://scholarbank.nus.edu.sg/handle/10635/141255
https://scholarbank.nus.edu.sg/handle/10635/141255
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Optimizing/Simplifying the DNN

● Network pruning (remove redundancy)

● Weight quantization (our work)

● Low-rank parameter factorization (optimizing 

tensor/matrix operation)

● Compact convolutional filter (filter optimization)

● Knowledge distillation (convert to more compact 

networks with the similar performance)

(Conceptual) VGG16 occupied 500MB (140M 32-bit FP 
parameters) and performs 16M FP operations for an inference

• The DNN requires large memory allocation for the 
weight, on-chip memory is too small for such a 
configuration

• Current compute-centric architecture is not suited for 
such heavy floating point tensor operations

Haotong Qin, et all, Binary neural networks: A survey, Elsevier Pattern 
Recognition, Volume 105, 2020
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BNN problems

● Accuracy degradation (inevitable)

● Unconventional training method required

● Conversion method

● Direct training using approximate gradients

[BC] M. Courbariaux, et. al., Binaryconnect: Training deep neural networks with binary weights during propagations, NeurIPS, 2015
[BNN]  I. Hubara et. al., Binarized neural networksNeurIPS, 2016
[XOR-net, BWN] M. Rastegari et. al., Xnor-net: Imagenet classification using binary convolutional neural networks, ECCV, 2016
[ABC-Net]X. Lin et. al., Towards accurate binary convolutional neural network, NeurIPS, 2017
[BNN-DL] R. Ding et. al., Regularizing activation distribution for training binarized deep networks, IEEE CVPR, 2019
[MS-Net] Y. Xu, et. al., A main/subsidiary network framework for simplifying binary neural networks, IEEE CVPR, 2019.
[DSQ] R. Gong, et. al., Differentiable soft quantization: Bridging full-precision and low-bit neural networks, IEEE ICCV, 2019.
[IR-Net] H. Qin et. al., Forward and backward information retention for accurate binary neural networks.

BNN optimization

● Naive (original) BNN [BC, BNN]

● Minimizing quantization error [BWN, ABC-Net]

● Improve Network Loss function [DL-BNN, MD-Net]

● Reduce the gradient error [DSQ, IR-Net]



ARCHITECTURE APPROACH: BNN PERFORMANCE

4/19/2025 8Haotong Qin, et all, Binary neural networks: A survey, Elsevier Pattern Recognition,2020

Method Bit-with
(W/A)

Topology Acc. (%)

Full precision 32/32 ResNet-18 [61] 69.6 

32/32 ResNet-34 [61] 73.3 

32/32 ResNet-50 [61] 76.0 

32/32 
VGG-Variant 

[61] 
72.0 

32/32 AlexNet [61] 57.1 

BinaryConnect [59] 1/32 AlexNet 35.4 

BNN [57] 1/1 AlexNet 27.9 

BWN [58] 1/32 AlexNet 56.8 

XNOR-Net [58] 1/1 AlexNet 44.2 

DoReFa-Net [60] 1/1 AlexNet 43.6 

ABC-Net [71] 1/32 ResNet-18 62.8 

INQ [84] 2/32 ResNet-18 66.0 

BNN-DL [85] 1/1 AlexNet 41.3 

Main/Subsidiary

Network [87]
1/1 ResNet-18 50.1 

DSQ [63] 1/32 ResNet-18 63.7 

IR-Net [96] 1/32 ResNet-18 62.9 

Method Bit-with
(W/A)

Topology Acc. (%)

Full precision 32/32 ResNet-20 [61] 92.1

32/32 ResNet-32 [92] 92.8

32/32 ResNet-44 [92] 93.0

32/32 VGG-11 [87] 83.8

32/32 NIN [87] 84.2

BinaryConnect [59] 1/32 VGG-Small 91.7

BNN [57] 1/1 VGG-Small 89.9

BWN [58] 1/32 VGG-Small 90.1

DoReFa-Net [60] 1/32 ResNet-20 90.0

Main/Subsidiary

Network [87]

1/1 VGG-11 82.0

1/1 ResNet-18 86.4

BNN-DL [85] 1/1 VGG-Small 90.0

DSQ [63] 1/1 VGG-Small 91.7

IR-Net [63] 1/32 ResNet-20 90.2

Image Net benchmark

Cifar-10 benchmark
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Spiking neural network (SNN)

● Third generation

● Data traversal in the format of spike 

● Mimic better the brain function

● Simplify the data structure

W. Maass. "Networks of spiking neurons: the third generation of neural network models." Neural networks 1997

Binary SNN

● The SNN with the weights are binary

● Inherit the advantage of BNN and the 

simplicity of data representation in SNN

● Fault tolerant (allow spike error)

Brain (our) takes 12-25W only
(For the processing scale of 100M GB bytes of 
memory and a computing speed of 10^18 FLOPS. 
This is in the EXAFLOP range)



HARDWARE ARCHITECTURE: IN-MEMORY COMPUTING

4/19/2025 10

In-memory computing 

• Eliminate the expensive data 

movement

• Solve the exponential growth in of 

data in modern applications

Mehonic, Adnan et. al. (2020). Memristors -- from In-memory computing, Deep Learning Acceleration, Spiking Neural Networks, to 

the Future of Neuromorphic and Bio-inspired Computing

Memory Technologies

• DRAM/SRAM

• HBM/HMC

• Emerging resistive memories: 

STT-MRAM, PCM-RAM, ReRAM

In-memory computing techniques

• Processing at the data array (our works)

• Processing at Row-buffer

• Processing at a unit near the memory banks 

(near-memory computing)



HARDWARE ARCHITECTURE: IN-MEMORY COMPUTING
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RERAM -crossbar

• Using simple DAC, ADC to convert between analog & 

digital domain 

• The resulted current at each row represent the MAC

[RRAM] Y. Long, T. Na, S. Mukhopadhyay, ReRAM-based processing-in-memory architecture for recurrent neural network 

acceleration, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26 (12) (2018) 2781–2794

[PIM-DRAM]

PIM-DRAM

• Processing at the row-buffer, not modify 

much the sub-array circuit
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UPMEM

• PIM system with a host CPU, standard DRAM main 

memory, DDR4 DIMM with several PIM chips. Each 

PIM chip consists of 8 DRAM processing units 

(DPUs), and each DPU has access to a 64 MB DRAM 

bank

[PIMCaffe] W. Jeon, et. al.,, PIMCaffe: Functional evaluation of a machine learning framework for in-memory neural 

processing unit, IEEE Access, 2021

[UPMEM J. Gómez-Luna, et. Al., Benchmarking a new paradigm: An experimental analysis of a real processing-in-memory 
architecture, 2021

PIMCaffe

PIM-emulating FPGA platform with SIMD 

and systolic array computing engines that 

can perform vector and matrix multiplication 

on the PIM device



OUR WORK: PROPOSED STT-MRAM IMC CIRCUITS
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• STT-MRAMs: Spin-Transfer Torque Magnetoresistive Memories

• employs Magnetic Tunnel Junction as memory element: high resistance state (1), 

low-resistance state (0)

• the simplest bitcell: 1 transistor + 1 MTJ

• Write (read) bitcell by injecting direct large (small) current

TEM image of 50-nm MTJ 
from TDK Jan et al., 2014
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OUR WORK: BITCELL CIRCUIT CONFIGURATION

𝐼𝑏𝑖𝑡𝑐𝑒𝑙𝑙 =
𝑉𝐵𝐿

𝑅𝑀𝑇𝐽,0 + 𝑅𝑎𝑐𝑐𝑒𝑠𝑠,0 + 𝑅𝑀𝑇𝐽,1 + 𝑅𝑎𝑐𝑐𝑒𝑠𝑠,1
=
𝑉𝐵𝐿
σ𝑅

𝑉𝑆𝐿 = 𝑉𝐵𝐿 − 𝐼𝑏𝑖𝑡𝑐𝑒𝑙𝑙 ∗ 𝑅𝑀𝑇𝐽,0 + 𝑅𝑎𝑐𝑐𝑒𝑠𝑠,0 =
𝑉𝐵𝐿
σ 𝑅

(𝑅𝑀𝑇𝐽,1 + 𝑅𝑎𝑐𝑐𝑒𝑠𝑠,1)

𝑆𝐿𝑚𝑎𝑟𝑔𝑖𝑛~
𝑉𝐵𝐿
σ𝑅

𝑅𝐴𝑃 − 𝑅𝑃 ~𝑇𝑀𝑅
𝑉𝐵𝐿
σ𝑅

𝑅𝑃

BL 0

R MTJ 0

BL 1

R MTJ 1

PSTT-XNOR Bitcell

I bitcell

Weight

 W

Input IN

WL

SLM2M1

● A dual complementary 2T2J bit-cell  a (synapse) weight 

 (+1): (R0,R1)=(RP, RAP)

 (-1): (R0,R1)=(RAP, RP)

● A dual complementary bit-lines (BL0,BL1)  an input neuron 

 (+1): (BL0, BL1)=(𝑉𝐵𝐿, 0)

 (-1): (BL0, BL1)=(0, 𝑉𝐵𝐿)

● SL voltage  Output (XNOR product)

 (+1): high voltage 

 (-1): low voltage 

VBL , 0

 

0 , VBL  

AP , P 

(-1)

P , AP

 

Low High 

Low High 

Voltage generated a
 floating SL is (IN XNOR W) 

(-1)

(-1)(-1)

(+1)

(+1)

(+1)

(+1)

Binary multiplication
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OUR WORK: BINARIZED MAC COMPUTATION

● Considered a row of M bitcells with 

merge SL terminal

𝑉𝑆𝐿

= 𝑉𝐵𝐿
𝑀 −𝐾

𝑀
⋅

𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙
𝑅𝐴𝑃 + 𝑅𝑎𝑐𝑐𝑒𝑠𝑠

+
𝐾

𝑀
⋅

𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙
𝑅𝑃 + 𝑅𝑎𝑐𝑐𝑒𝑠𝑠

~𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝐾

M number of cells in a row
𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙 is the overall resistance seen from the SL,

𝐾 : number of  XNOR outputs (i.e., 𝑠𝑗
𝑡,𝑙−1 ⊕𝑤𝑖𝑗) 

equal to +1 across the entire row of 𝑀 bitcells

● 𝑽𝑺𝑳 linearly dependence on K, i.e., 

binarized MAC operation

WL

RAP RP RAP RP RAP RP
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OUR WORK: ARRAY ORGANIZATION AND COMPUTATION

WL0 

WLi 

WLM-1
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IN0

parallel XNOR 

sub-array

WL1 

Wi,N-1Wi,N-2Wi1Wi0

IN1 INN-2 INN-1

VSL,i

input 
features

XNOR computations within row 
accumulated in OUT

VSL,0

VSL,M-1

SELECT 

LINES

VSL,1

OUTi

OUT0

OUTM-1

OUT1

SENSE

AMPS

weights stored in bitcells

● The logic output equals to the accumulation 

of the XNORs

𝑂𝑈𝑇𝑖 = ෍

𝑗=0

𝑁−1

𝑊𝑖𝑗 ⊕ 𝐼𝑁𝑗

● The logic output is data-dependent 

 (+1): 𝑁1 ≥
𝑁

2

 (-1): 𝑁1 <
𝑁

2

● Activating all WLs simultaneously 

=> independently readout across all rows

● The maximum degree of accumulation-level 

parallelism of 𝑴 => full utilization of the 

array 
𝑁 is the XNOR vector size

𝑁1 is the number of XNOR resutls as (+1)
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OUR WORK: CIRCUIT DESIGN FOR TIME-BASED SENSE AMPLIFIER 
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SAEN
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Din
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CSL

BITCELLS IN ROW i-th TIME-BASED SENSEAMP 

IN ROW 

 delay TREF

i-th
● The 𝑽𝑺𝑳 voltage is converted to time        

domain

 TBS senseamp converts 𝑉𝑆𝐿 into 𝐼𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔

 𝐼𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔 is then converted to time 

 The discharge time at the LOAD node is      

inversely proportional to the discharge        

current 𝐼𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔, hence 𝑉𝑆𝐿
● Time-based comparator is a latch

=> No analog reference needed

● Key-design transistors

 MST: modulates the starving current 𝐼𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔
 MLOAD: adjusting output 𝐶𝐿𝑂𝐴𝐷
● The delay line has negligible variation

● Latency-efficient: sensing time ~10 ns 
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OUR WORK:  BNN-SYSTEM-LEVEL COMPARISON WITH PRIOR ARTS

[JETCAS-BNN] T. N Pham, Q. K. Trinh, Ik-Joon, and Massimo Alioto, “STT-BNN: A Novel STT-MRAM In-Memory Computing Macro for Binary 
Neural Networks”, in IEEE Journal on Emerging and Selected Topics in Circuits and Systems,, June 2022.
[ISCAS-BNN] T. -N. Pham, Q. -K. Trinh, I. -J. Chang and M. Alioto, "STT-MRAM Architecture with Parallel Accumulator for In-Memory Binary 
Neural Networks," 2021 IEEE ISCAS, Daegu, Korea, 2021.
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STT-BSNN: An In-Memory Deep Binary Spiking Neural Network Based on STT-MRAM VT Nguyen, QK Trinh, R Zhang, Y Nakashima - IEEE Access, 
2021
Q-M. Duong, Q-K. Trinh, V-T. Nguyen, Đ-H. Đao, D-M. Luong, V-P. Hoang, J. Deepu, L. Lin, “A Low-Power Charge-Based Integrate-and-Fire Circuit 
for Binarized-Spiking Neural Network”, on International Journal of Circuit Theory and Applications
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OUR WORK#2: BSNN SOLUTION: BSNN BASED ON STT-MRAM
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● Integrated and fire model 

Integration:൞
ො𝑢𝑖
𝑡,𝑙 = ො𝑢𝑖

𝑡−1,𝑙 + σ𝒋=𝟏
𝑴 𝒘𝒊𝒋

𝒖,𝒍 ⊕𝒐𝒋
𝒕,𝒍−𝟏 − 𝜌

෠𝜃𝑖
𝑙 =

𝜎

𝛼
∙ 𝜃𝑖

𝑙

𝐹𝑖𝑟𝑖𝑛𝑔: 𝑜𝑖
𝑡,𝑙 = ൝

1, 𝑖𝑓 ො𝑢𝑖
𝑡,𝑙 > ෠𝜃𝑖

𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑅𝑒𝑠𝑒𝑡𝑡𝑖𝑛𝑔: ො𝑢𝑖
𝑡,𝑙 = 0

STT-BSNN: An In-Memory Deep Binary Spiking Neural Network Based on STT-MRAM VT Nguyen, QK Trinh, R 
Zhang, Y Nakashima - IEEE Access, 2021

● Required binarized MAC operation (based 

on XNOR cell) and constant subtraction 
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OUR WORK#2: DYNAMIC THRESHOLD IF CIRCUIT
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Integration:

ො𝑢𝑥𝑛𝑜𝑟,𝑖
𝑡,𝑙 = ො𝑢𝑥𝑛𝑜𝑟,𝑖
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𝑡,𝑙 = መ𝜃𝑑𝑦𝑛,𝑖

𝑡−1,𝑙 + 𝜌, መ𝜃𝑑𝑦𝑛,𝑖
𝑡=0,𝑙 = መ𝜃𝑖

𝑙

𝐹𝑖𝑟𝑖𝑛𝑔: 𝑜𝑖
𝑡,𝑙 = ൝

1, 𝑖𝑓 ො𝑢𝑥𝑛𝑜𝑟,𝑖
𝑡,𝑙 > መ𝜃𝑑𝑦𝑛,𝑖

𝑡,𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑅𝑒𝑠𝑒𝑡𝑡𝑖𝑛𝑔: ො𝑢𝑥𝑛𝑜𝑟,𝑖
𝑡,𝑙 = 0 𝑎𝑛𝑑 መ𝜃𝑑𝑦𝑛,𝑖

𝑡,𝑙 = መ𝜃𝑖
𝑙

was here
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OUR WORK#2: DYNAMIC THRESHOLD IF: NONIDEALITY IMPACT

● The 𝑽𝑺𝑳 voltage is accumulated every time step 

and is stored in C1

● The constant subtraction is done via C2 by a self 

termination discharging circuit (controled by Ms5)
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OUR WORK#2: MAPPING IMC MACRO TO BSNN MODEL
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● Row size equal to kernel size 

multiplied by  number of input feature 

map

● Spike travels across the network 

continuously

● First and last layer may require full 

precision (rather than binarized) for 

adequate classification accuracy

Example of mapping BSNN circuit macro to a 
convolution layer with M feature map
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MAPPING IN-MEMORY MACRO TO BSNN MODEL
IJCNN’19

[16]
TNNSL’20

[17] 
VLSI’20

[19]
Our wwork

BSNN 
ACCESS’21*

Our work

BSNN*

(Wiley ITC)

synapse MTJ MTJ MTJ MTJ MTJ

neuron MTJ Digital MTJ Analog Analog

technology 45 nm 28 nm N/A 65 nm 65 nm

network type BSNN SNN BSNN BSNN BSNN

structure 3 Conv FC layers 2 Conv 2/7 Conv 7 Conv

neuron sigmoid IF Possion IF IF

weights +1/-1 +1/0c +1/-1 +1/0

spiking rate  (MHz) N/A 83 0.1 166 285

energy/
synapse (fJ)

36b 8.87 N/A 5.48 5.10

area/neuron (F2)a N/A ~15× 105 6× 103 32× 103 19 × 103

accuracy MNIST/
CIFAR-10

N/A/
70.3%

91.5%/
N/A

~97.4%/
N/A

97.92%/
83.85%

N/A/82.01%

(𝜎𝐵𝑆𝑁𝑁 = 0.29%)

aThe area is normalized to F2, with F is the technology feature size.
bThe maximum energy consumption per spiking event for a synapse, as reported in [39], [40].
cThe full-precision weights are converted into stochastic bits (+1/0) in each time step.

STT-BSNN: An In-Memory Deep Binary Spiking Neural Network Based on STT-MRAM VT 
Nguyen, QK Trinh, R Zhang, Y Nakashima - IEEE Access, 2021
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OUR WORK#2: A LOW-POWER CHARGE-BASED IF CIRCUIT FOR BSNN
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● The 𝑽𝑺𝑳 voltage is accumulated every time 

step and is stored in C1

● The constant subtraction is done via C2 by 

a self termination discharging circuit 

(controlled by Ms5)
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SAE
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Ospike

Tspike

Vq +Vprech 

τcharge τdischarge

266.9 mV

229.4 mV

404.5mV
300mV 311 mV
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SAout

subtraction Firing occurs IF circuit and example simulation waveform (65 nm CMOS 
with STT-MRAM (250% TMR)
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OUR WORK#2: SUBTRACTION IF CIRCUIT: NON-IDEALITY AND ERROR 
TOLERANT 

● Similar to the Dynamic IF circuit, this IF is prone 

to process variations and other device non-

ideality effect.
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 SNN with real weights

 FBW-BSNN with binary weights but the 
first layer using the real weights

 NUTS-BSNN: we successful binarize all 

layer of the BSNN without accuracy 

degradation

[FWB-SNN] V. -N. Dinh, et. al., "FBW-SNN: A Fully Binarized Weights-Spiking Neural Networks for 
Edge-AI Applications". ICICDT, 2022
[NUTS-BSNN]. V. -N. Dinh, , et. al., “NUTS-BSNN: A Non-uniform Time-step Binarized Spiking 
Neural Networks with Energy-Efficient In-memory Computing Macro”. Neurocomputing,, 2023

OUR WORK#3: NUTS-BSNN - FULLY BINARIZED SNN
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Mạng nơ-ron Trọng số lớp đầu 

và đầu ra

Phương pháp huấn 

luyện

Time steps Độ chính xác (%)

Fashion-MNIST

BS4NN [73]’ NPL 22 Giá trị nhị phân Huấn luyện trực tiếp 256 87,30

FBW-SNN [CT2] Giá trị nhị phân Huấn luyện trực tiếp 14 91,49

BSNN [This work] Giá trị thực Huấn luyện trực tiếp 14 92,58

NUTS-BSNN (𝐊 = 𝟓) [CT4] Giá trị nhị phân Huấn luyện trực tiếp 14 93,25

CIFAR-10

BSNN [69]’ TCDS 20 Giá trị thực Chuyển đổi 100 90,19

BSNN [70]’ ICSICT 20 Giá trị thực Chuyển đổi 150 80,52

ReStoCNet [72]’ FN 19 Giá trị nhị phân Hybrid-STDP 500 66,23

STT-BSNN [40]’ IA 21 Giá trị thực Huấn luyện trực tiếp 8 83,85

FBW-SNN [CT2]’ ICICDT 22 Giá trị nhị phân Huấn luyện trực tiếp 14 82,86

BSNN [this work] Giá trị thực Huấn luyện trực tiếp 14 84,37

NUTS-BSNN (𝐊 = 𝟔) [CT4] Giá trị nhị phân Huấn luyện trực tiếp 14 88,71

CIFAR-100

B-SNN [71]’ FN 20 Giá trị nhị phân Chuyển đổi 148 62,71

BSNN [69]’ TCDS 20 Giá trị thực Chuyển đổi 300 62,02

B-SNN [91]’ HPBD&IS 21 Giá trị thực Huấn luyện trực tiếp 8 59,11

BSNN [this work] Giá trị thực Huấn luyện trực tiếp 14 61,49

NUTS-BSNN (𝐊 = 𝟔) [CT4] Giá trị nhị phân Huấn luyện trực tiếp 14 70,31



OUR WORK#3: EDGE-AI STT-MRAM IMPLEMENTATION

4/19/2025 29



OUR WORK#4: HYPERDIMENSIONAL COMPUTING

4/19/2025 30

HDC: an alternative 
to neural network 
with straightforward 
and fast training

[FWB-SNN] T.N Pham, Quang-Kien Trinh et. Al, “STT-HDC: An Efficient Time-domain In-memory 
Hyper-dimensional Computing Design Based on STT-MRAM”, IEEE ACCESS, 2025
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The first computers
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BOMBE (1940, Alan Turing): the first 
electro-mechanical computer for decrypting 
the Germany Enigma message. £100,000, 
2.1x1.98x0.61 m3,1 ton. Each bombe 08 
mounted drums, which were in three 
groups of 12 triplets.

https://en.wikipedia.org/wiki/Bombe
https://vi.wikipedia.org/wiki/ENIAC

ENIAC (1945): the first electronic computer 
designed by Pennsylvania scientists using 
vacuum tubes for calculating Artillery firing 
tables.
18,000 Vacuum tubes (24m long x 2x6m 
high), too complex, poor reliable, and supper 
power hungry

How to make 
computer smaller, 
faster, more reliable 
and more energy 
efficient?

Like this?

or this?

Bộ môn Kỹ thuật Vi xử lý, Học viện Kỹ thuật quân sự 31

https://vi.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Bombe
https://vi.wikipedia.org/wiki/ENIAC


Nvidia Hopper H100 

GPU, 80B (monolithic)

The current AI monster

Bộ môn Kỹ thuật Vi xử lý, Học viện Kỹ thuật quân sự 31

2024 Venado Peak : 10 Exa-FLOPS An AI-enable supercomputer 
by Los Alamos National Laboratory 

This AI computer has the size similar to 
the first electronic computer (1948)

Any possibility and when 
the AI computer can be 
miniaturized to be a USB 
stick?

https://interestingengineering.com/innovation/los-alamos-fires-up-10-exaflops-ai-supercomputer-venado-powered-by-nvidia


CONCLUSIONS

• Edge-AI is growing part of the 
future computing system, 
including the military 
applications

• Lightweight network such as 
BNN and BSNN is well suited for 
Edge-devices

• The successful of IMC based on 
emerging technology with 
approximate computing could 
be the key for breaking the 
computing limit, i.e. EXAFLOPS 
(10^18) range
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