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1. Introduction

Fault injection: from safety problem

la’b
anomalies in electronic problems in space effects of alpha particles

monitoring equipment electronics: soft-fails on semiconductor
electronics

[2L79]

» When operating in the hazard environments, electronic devices
may not function correctly, and accidents may happen.
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Fault injection: to security problem
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» Physical disturbances are used to extract information from
electronic devices.
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Physical attack vs Cyber attack
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Fault injection anatomy
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Fault injection

key
plain text cipher text (no-fault)
cryto device RN
Differential Fault Analysis
(Fault vs no-fault)
key % fault injection //
/’/
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» Fault Injection (Fl) is an active side-channel attack in which
the attacker induces stress to the target, forcing it to produce
a faulted result.

» The faulted result is further used to extract secret information
by differential fault analysis (fault vs no-fault).
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Fault injection techniques

There are several common techniques for FI.
» Clock glitch or Voltage glitch?
> Electromagnetic Fault Injection?

» Laser fault injection3

!barenghi2009low; balasch2011depth.
2riviere2015high; beckers2019characterization.
3skorobogatov2002optical; dutertre2019experimental.
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Fault injection techniques comparison

Control on

reproducibility | cost | ease of
injection time localization |# faulted bits use

Clock glitch very

(digital) very good low very good good low good
Power glitch

‘(':nalgg) good low very good good average| good
Overclocking

Underpowering low low good good low good
Temperature

EM pertubation good average | very good good average| good
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Experimental setup Power Glitch

Vee
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Figure: Voltage glitch experimental setup*

» a DDS signal generator outputs an arbitrary waveform from a
software-defined set of parameters.

“bozzato2019shaping.
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Experimental setup Electromagnetic Fault Injection (EMFI)

~ amplifier

pulse generator
probe

SAMD21GI8A:

Figure: EMFI experimental setup®

» The Micro-controller (MCU) was configured to work at 12
MHz, with zero waitstate.
» The MCU was not depackaged and the Electromagnetic

(EM) pulse was injected from the front side.
5khuat2024software; khuat2021multiple.
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Experimental setup Laser Fault Injection (LFI)

(a) Laser bench (b) Microchip back-side image

> Wavelength: 1064 nm, power: 0 - 3 W, Pulse Width (PW): 5 ns- 1
s (more details can be found in®).

» The MCU was depackaged and the laser pulse was injected from the
back side.

» The MCU was configured to work at 12 MHz, with zero waitstate.

Sdutertre2019experimental; khuat2021laser.
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Device under test debugging

gdb SWD SAMD21
Openocd | \
Server [ b
(Atmel ICE) |
telnet —>

Figure: Device under test debugging

» The scheme allows debugging and stopping device to collect
data automatically.
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Test procedures

A test follows three main steps:
» (1) the target is reset and all system registers are initialized;

» (2) the trigger for the pulse generator is set, and the test code
is executed:;

» (3) all the registers value are collected as the program reaches
the configured breakpoint, or when an interrupt routine is
performed.

For each injection parameter, 100 tests are performed. At the
beginning, a test without Fault Injection Attacks (FIA) was
performed to make sure the program functions correctly and the
data is used as the reference.
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3.1. Clock or power glitch

STMRF07 § s

1/0 & Timing

Glieh duraion ()

(a) V-FI setup for generating arbitrary glitch
waveforms

(a) STM32F373 (b) TI MSP430F5172 (c) Renesas T8KOR

(b) Oscilloscope trace of the voltage glitch for
the STM32F373 (a), the TI MSP430F5172 (b)
and the Renesas 78KO0R (c).

» Different shapes of voltage glitch were achieved.

_» Be able to bypass security protections of several types of MCU.

"bozzato2019shaping.



3.2 EMFI

Faulting cache operation®
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» The target is ARMv7-M architecture.
» Be able to fault cache read process with success rate up to
96%.

8riviere2015high.




3.2 EMFI

Multiple and reproducible fault®
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» (a) EM pulse with pulse width of 1.5 ns -> replay of two
instructions with fault rate up to 100%.

» (b) EM pulse with pulse width of 7.0 ns -> skip of two
instruction with fault rate up to 100%.

9khuat2021multiple.



3.2 EMFI

Multiple and reproducible fault: hypothesis

feycle 1 [ 2 [ 3 [ a s s | 7 [ s
Bufferl (i, i) ‘ (ig i) [(i, i) ]
Buffer2 (i, i) [ ()

(a) normal execution instruction buffering process
leycle 1 [ 2 [ s [ a]s e [ 7]
Butter1 i,i) | (iy i) A
Bufter2 (iy i) [ (i, i)

(b) EMFIl-induced replay of two instructions on bufferl
leycle 1 [ 2 [ 3] a] s [ e [ 7]
Bufferl (iyi) | (nop, nop) | gy
Buffer2 (iy i) [ ()

(c) EMFI-induced skip of two instructions on bufferl
lcycle 1 [ 2 [ 3] a]s [ e[ 7] s
Buffer1 (i,i) | (iy i) | Gyiy
Buffer2 (iy i) [ (nop, nop)

(d) EMFIl-induced skip of two instructions on buffer2

» There exist two 32-bit buffers at the flash interface, each of them is
updated every four clock cycles.

» Replay fault is caused by EM-induced prevention of buffer updating
process.

» Skip fault is caused by EM-induced instructions corruption.



3.3 Laser fault injection

LFI Faults at six positions

» Laser power: 1.5 W, PW: 50 ns.

» Six positions marked with red circular shapes with different
fault behavior were found.



3.3 Laser fault injection

from The flash interface to the execution
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» The fault is related to block of
two or four instructions
depending on the cache
operation mode;

» Two fault models: skip and

replay of instruction block are
observed:;

» The fault behavior is the same with results obtained in19, in which

we ascribed the fault to impact of EMFI and LFI to the Flash
interface buffer.

%vkhuat _emc_europe 2021; vkhuat _dsd 2021.



3.3 Laser fault injection
from The flash interface to the execution pipeline: P3 and P4
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» The fault is related to a block of two instructions for both
cache operation modes;

» Two fault models of skip and replay of a block of two
instructions are observed.



3.3 Laser fault injection
from The flash interface to the execution pipeline: P5 and P6

(i) P5: cache disabled
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» The fault is related to a single instruction;
» Single instruction skip was obtained at position P5 and P6.

» There is a phase shift of one clock cycle between the fault at
position 5 and 6.



3.3 Laser fault injection

Fault identification

| 2

Position P1: the replay of a block of instructions due to
laser-induced prevention of the Flash interface buffer updating
process;

Position P2: the modification of a block instructions (including
skip) due to laser-induced bit corruption of instruction’s opcodes in
the Flash interface buffer;

Position P3: the replay of two instructions due to laser-induced
prevention of loading data into the AHB bus;

Position P4: the modification of two instructions (including skip)
due to laser-induced bit(s) corruption of instructions loaded into the
AHB bus;

Position P5: the modification of a single instruction (including
skip) due to laser-induced fault in the core pipeline fetch stage;

Position P6: the modification of a single instruction (including
skip) due to laser-induced fault in the core pipeline execution stage.



3.3 Laser fault injection

Proposed core architecture
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» (a) cache disabled;
» (b) cache enabled: cache miss;
» (c) cache enabled: cache hit.



3.4. Fault model at bit level

test code

Isl r0,r0, #0x00 sub r7,r7, #0xff
Isl r0,r0, #0x00 sub r7,r7, #0xff
Isl r0,r0, #0x00 sub r7,r7, #0xff
Isl r0,r0, #0x00 sub r7,r7, #0xff
(a) bit-set detection (b) bit-reset detection

» The opcode of Isl r0,r0,#0x00 is 0x0000 (all bits’ values are 0 )

» The opcode of sub r7,r7,#0xff is 0x3fff (most of the
bits'values are 1)



3.4. Fault model at bit level

fault rate

» Bit set fault detection
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4.CM against fault injection

Introduction

» Hardware countermeasure (CM)

| 4
>
>

is implemented by adding or changing one part of the device.
can be very effective to some specific types of attacks.
adds more cost to the devices and is hard to update.

» Software CM

>

>
>
>
4

is implemented by changing the software of the device.

adds no cost to the devices.

can be updated constantly.

can be adapted to different types of attacks.

increases the size of the program and brings down the speed.



4. CMs against fault injection
Redundancy-based CM

Table: Redundancy-based software defense against FI'?

Initial code Redundancy-based defense

1dr r1, [rO] 1dr r1, [rO]
ldr r2, [r0]
cmp rl, r2
bne <error>

"harenghi2010countermeasures.



4. CMs against fault injection

Based on code transformation and duplication

Table: Duplication-based software defense against the single instruction
skip Fault Model (FM)2

Initial code Idempotent instr. Duplication
add r1, r0, #1 add r1, r0, #1
add r1, r0, #1
add ril,r1,r2 add r3, ri1, r2 add r3, ril, r2
mov rl, r3 add r3, ri1, r2

mov rl, r3
mov rl, r3

2moro2014formal.



4. CMs against fault injection

Based on code transformation and duplication: limitations

» The existing CMs were designed for single instruction skip only.

» Recently, there are many works demonstrating that multiple

instruction(s) skips can be easily obtained with either EMFI or
LFI.



4. CMs against fault injection

CM : Based on code duplication and dedicated counter'?

Binary

source Instruction Instruction Pre hardware Hardware Instruction code
>

program _ | Frontend & (IR selection & trasformation counter counter Check value scheduling
—— ™| IRoptimizers| | | register &duplication insertion insertion block insertion |&code emission

allocation

» The CM is effective to both single and multiple instruction(s)
skip.

» The code size overhead is 293% the execution time overhead
is 201%.

13khuat2024software.



4. CMs against fault injection

CM : using a Sensitive Instruction as a sensor

source Instruction Pre sensitive Sensitive Instruction CB!&Z'V
program _ | Frontend & |IR » | | Selection & 5| instruction instruction Check value >l i
IR optimizers Register insertion insertion > block insertion &code emission
Allocation

» The CM is effective to both single and multiple instruction(s)
skip.

» The code size overhead is 200% the execution time overhead
is 149.5%.
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5. Conclusions & future works

Conclusions

» Fl poses significant threat on MCU.

» Different types of fault models such as: bit flip, instructions skip,
instruction replay were obtained with EMFI and LFI.

» Up to hundreds of instruction skips were achieved with LFI.



5. Conclusions & future works

Future works

» Study the mechanism of the faults at physical level.

> Investigate more on the threat of the fault and design effective
counter-measures against the fault.

» develop tools or software for automation of hardening code at
assembly level.



Thanks for your attention!
&

Questions”?
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