Fault injection Attacks on loT devices: Threats &
countermeasures

Vanthanh Khuat

April 2025

Table contents

1. Introduction

1. Introduction

Fault injection: from safety problem

la’b
anomalies in electronic problems in space effects of alpha particles

monitoring equipment electronics: soft-fails on semiconductor
electronics

[2L79]

» When operating in the hazard environments, electronic devices
may not function correctly, and accidents may happen.

1. Introduction

Fault injection: to security problem

Fault “ Fault

génération Exploit

able ? Secret

extraction by
DFA

No fault

(a) Electromagnetic wave (b) Laser pulse

» Physical disturbances are used to extract information from
electronic devices.

1. Introduction

Physical attack vs Cyber attack

Cyber Attacks

Network {
Physical attacks

Device

yber
world

<—-[Local network]‘—v
i

Applications

OS or bare metal

Hardware firmware

Crypto
stack

Protocols

Asymmetric

Sym

Hash

cpu_ || mem J| PErR

1. Introduction

Fault injection anatomy

Application
0s
Firmware

Software

Hardware

Micro-Architecture

Level

1 intverify(S,P) J

intr; Fﬂultv\
2 if(S=P) " Control Flow
3 r=1; and/or

dse Data Flow

D R T
5 returnr r r

} & —

Fault Exploitation

t

Fault Observation

T faulty instruction

Instruction Set Architecture —— T

T faulty micro-op

Decode Execute

Datapath

| | Status Regs
Memo

Boot ROM

—
|

I-Fetch

T faulty bits

Logic Gates Memory Cells Flip Flops

FEH

[Yuce et al., JHSS 2018]

Fault Propagation

t

Fault Manifestation

t

Fault Injection

1. Introduction

Fault injection

key
plain text cipher text (no-fault)
cryto device RN
Differential Fault Analysis
(Fault vs no-fault)
key % fault injection //
/’/
)y
plain text cipher text (fault) -
cryto device

» Fault Injection (Fl) is an active side-channel attack in which
the attacker induces stress to the target, forcing it to produce
a faulted result.

» The faulted result is further used to extract secret information
by differential fault analysis (fault vs no-fault).

1. Introduction

Fault injection techniques

There are several common techniques for FI.
» Clock glitch or Voltage glitch?
> Electromagnetic Fault Injection?

» Laser fault injection3

!barenghi2009low; balasch2011depth.
2riviere2015high; beckers2019characterization.
3skorobogatov2002optical; dutertre2019experimental.

1. Introduction

Fault injection techniques comparison

Control on

reproducibility | cost | ease of
injection time localization |# faulted bits use

Clock glitch very

(digital) very good low very good good low good
Power glitch

‘(':nalgg) good low very good good average| good
Overclocking

Underpowering low low good good low good
Temperature

EM pertubation good average | very good good average| good

Table contents

2. Experimental setup and methodology

2. Experimental setup and methodology

Experimental setup Power Glitch

Vee
Current lemng Resistor J
Glitch Trigger @—‘ t:l N-Mosfet Target uC

GND

Figure: Voltage glitch experimental setup*

» a DDS signal generator outputs an arbitrary waveform from a
software-defined set of parameters.

“bozzato2019shaping.

2. Experimental setup and methodology
Experimental setup Electromagnetic Fault Injection (EMFI)

~ amplifier

pulse generator
probe

SAMD21GI8A:

Figure: EMFI experimental setup®

» The Micro-controller (MCU) was configured to work at 12
MHz, with zero waitstate.
» The MCU was not depackaged and the Electromagnetic

(EM) pulse was injected from the front side.
5khuat2024software; khuat2021multiple.

2. Experimental setup and methodology

Experimental setup Laser Fault Injection (LFI)

(a) Laser bench (b) Microchip back-side image

> Wavelength: 1064 nm, power: 0 - 3 W, Pulse Width (PW): 5 ns- 1
s (more details can be found in®).

» The MCU was depackaged and the laser pulse was injected from the
back side.

» The MCU was configured to work at 12 MHz, with zero waitstate.

Sdutertre2019experimental; khuat2021laser.

2. Experimental setup and methodology

Device under test debugging

gdb SWD SAMD21
Openocd | \
Server [b
(Atmel ICE) |
telnet —>

Figure: Device under test debugging

» The scheme allows debugging and stopping device to collect
data automatically.

2. Experimental setup and methodology

Test procedures

A test follows three main steps:
» (1) the target is reset and all system registers are initialized;

» (2) the trigger for the pulse generator is set, and the test code
is executed:;

» (3) all the registers value are collected as the program reaches
the configured breakpoint, or when an interrupt routine is
performed.

For each injection parameter, 100 tests are performed. At the
beginning, a test without Fault Injection Attacks (FIA) was
performed to make sure the program functions correctly and the
data is used as the reference.

Table contents

3. Threats
3.1. Clock or Power glitch
3.2. Electromagnetic fault injection
3.3. Laser fault injection
3.4. Fault model at bit level

3.1. Clock or power glitch

STMRF07 § s

1/0 & Timing

Glieh duraion ()

(a) V-FI setup for generating arbitrary glitch
waveforms

(a) STM32F373 (b) TI MSP430F5172 (c) Renesas T8KOR

(b) Oscilloscope trace of the voltage glitch for
the STM32F373 (a), the TI MSP430F5172 (b)
and the Renesas 78KO0R (c).

» Different shapes of voltage glitch were achieved.

_» Be able to bypass security protections of several types of MCU.

"bozzato2019shaping.

3.2 EMFI

Faulting cache operation®

Tastruction Cache Resulting
Flow Read flow

— | Readizs | —

— | Readi2s | —

- x in—a
x n—

o -3
x in—2
x in-1
intd

— | Readias | = | in4s o

replayed skipped 1 o
? () D-Cache ensbled, I (h) D-Cuche disabled. L Cache enabled. 3 ncp. (i) D-Cache disabled, 1-Cache disabled, 3 5oz,

(a) EMFI faulting cache (b) Fault model probability depending on
read injected power

» The target is ARMv7-M architecture.
» Be able to fault cache read process with success rate up to
96%.

8riviere2015high.

3.2 EMFI

Multiple and reproducible fault®

. replay iii; W skip isie = other = replay i1i; W skip isie . other
100+ 100
1.5ns 7.0 ns
80 80
S S
@ 60 3 60
c e
s 40 £ 40
& &
20 20
0 0
1230 1240 1250 1230 1240 1250
delay time (ns) delay time (ns)
(@) (b)

» (a) EM pulse with pulse width of 1.5 ns -> replay of two
instructions with fault rate up to 100%.

» (b) EM pulse with pulse width of 7.0 ns -> skip of two
instruction with fault rate up to 100%.

9khuat2021multiple.

3.2 EMFI

Multiple and reproducible fault: hypothesis

feycle 1 [2 [3 [a s s | 7 [s
Bufferl (i, i) ‘ (ig i) [(i, i)]
Buffer2 (i, i) [()

(a) normal execution instruction buffering process
leycle 1 [2 [s [a]s e [7]
Butter1 i,i) | (iy i) A
Bufter2 (iy i) [(i, i)

(b) EMFIl-induced replay of two instructions on bufferl
leycle 1 [2 [3] a] s [e [7]
Bufferl (iyi) | (nop, nop) | gy
Buffer2 (iy i) [()

(c) EMFI-induced skip of two instructions on bufferl
lcycle 1 [2 [3] a]s [e[7] s
Buffer1 (i,i) | (iy i) | Gyiy
Buffer2 (iy i) [(nop, nop)

(d) EMFIl-induced skip of two instructions on buffer2

» There exist two 32-bit buffers at the flash interface, each of them is
updated every four clock cycles.

» Replay fault is caused by EM-induced prevention of buffer updating
process.

» Skip fault is caused by EM-induced instructions corruption.

3.3 Laser fault injection

LFI Faults at six positions

» Laser power: 1.5 W, PW: 50 ns.

» Six positions marked with red circular shapes with different
fault behavior were found.

3.3 Laser fault injection

from The flash interface to the execution

fault rate (%)

fault rate (%)

o

(aJ P1: cache disabled

relay bl - oer

delay time (ns)

(c) P2: cache dlsabled

" detay time (h5)

fault rate (%)

fault rate (%)

2

o

(b) P1: cache enabled

(d) P2: cache enabled

delay time (ns)

2007
: H ‘
“h00 1200 1300 1400 1500

pipeline: P1 and P2

» The fault is related to block of
two or four instructions
depending on the cache
operation mode;

» Two fault models: skip and

replay of instruction block are
observed:;

» The fault behavior is the same with results obtained in19, in which

we ascribed the fault to impact of EMFI and LFI to the Flash
interface buffer.

%vkhuat _emc_europe 2021; vkhuat _dsd 2021.

3.3 Laser fault injection
from The flash interface to the execution pipeline: P3 and P4

w
g
| e
L
w
(- I o
oo o0~ 1300 T 1550 o T 1300 T 150
delay time (ns) delay time (ns)
P4: (h) P4: cache enabled
. "
w w
g g
£l 2a
£ ol £ o
e i
2| ‘ | ol | |
1 1
o I 1

SR 11 11— 1
100 1200 1300 1400 1500
delay time (ns) delay time (ns)

» The fault is related to a block of two instructions for both
cache operation modes;

» Two fault models of skip and replay of a block of two
instructions are observed.

3.3 Laser fault injection
from The flash interface to the execution pipeline: P5 and P6

(i) P5: cache disabled

fault rate (%)

1100 1200 1300 1400 1500
d

100 1200 1300 1400 1500
elay time (ns)

delay time (ns)
(1) P6: cache enabled

fault rate (%)
fault rate (%)

o
1000 1200 1300 1400 1500 100 1200 1300 1400 1500
delay time (ns) delay time (ns)

» The fault is related to a single instruction;
» Single instruction skip was obtained at position P5 and P6.

» There is a phase shift of one clock cycle between the fault at
position 5 and 6.

3.3 Laser fault injection

Fault identification

| 2

Position P1: the replay of a block of instructions due to
laser-induced prevention of the Flash interface buffer updating
process;

Position P2: the modification of a block instructions (including
skip) due to laser-induced bit corruption of instruction’s opcodes in
the Flash interface buffer;

Position P3: the replay of two instructions due to laser-induced
prevention of loading data into the AHB bus;

Position P4: the modification of two instructions (including skip)
due to laser-induced bit(s) corruption of instructions loaded into the
AHB bus;

Position P5: the modification of a single instruction (including
skip) due to laser-induced fault in the core pipeline fetch stage;

Position P6: the modification of a single instruction (including
skip) due to laser-induced fault in the core pipeline execution stage.

3.3 Laser fault injection

Proposed core architecture

P1, P2 P3, P4 P3, P6
Flash inlerface AHB bus Core Pipeline
(@) | Flash ——pf p2-bitbufferlll——f 55 1t puffor| F—={[fetch [oxocutd]
32-bit buffer2
P1, P2 P3, P4 D5, D6

Tlash interface "AHE bus Core Pipeline |
by | Flash —=>{ |64-bit buffer| —=>{ [32-bit buffer| —={[fetch |execute]

[

Cache
P3, P4 P5, P6
AHB bus Core Pipeline
© Cache == [32-bit buffer| =4[fetch [execute]

» (a) cache disabled;
» (b) cache enabled: cache miss;
» (c) cache enabled: cache hit.

3.4. Fault model at bit level

test code

Isl r0,r0, #0x00 sub r7,r7, #0xff
Isl r0,r0, #0x00 sub r7,r7, #0xff
Isl r0,r0, #0x00 sub r7,r7, #0xff
Isl r0,r0, #0x00 sub r7,r7, #0xff
(a) bit-set detection (b) bit-reset detection

» The opcode of Isl r0,r0,#0x00 is 0x0000 (all bits’ values are 0)

» The opcode of sub r7,r7,#0xff is 0x3fff (most of the
bits'values are 1)

3.4. Fault model at bit level

fault rate

» Bit set fault detection

, ‘ > (a) 32-bit bufferl
naaue\ay:imlezﬁaos» 1220 123:10ela)(/l;i;nlez(4rg) 12%0 | 4 (C) 32_b|t buffer2

fault rate (%)

N 2 o = B

o 8 & 8 8 8
fault rate (%)

v 2 o @ B

- 8 3 8 8 8

= > (e)64-bit buffer

2, g » Bit reset fault detection
> (b) 32-bit bufferl

“ > (d) 32-bit buffer2

P e e e > (f) 64-bit buffer.

100 C. (d)

% » At bit level the fault is
R g rather bit-reset than
E ZZ bit-set.

1230 1240 1250 1230 1240 1250
delay time (ns) delay time (ns)

(e)

Table contents

4. Countermeasures against fault injection

4.CM against fault injection

Introduction

» Hardware countermeasure (CM)

| 4
>
>

is implemented by adding or changing one part of the device.
can be very effective to some specific types of attacks.
adds more cost to the devices and is hard to update.

» Software CM

>

>
>
>
4

is implemented by changing the software of the device.

adds no cost to the devices.

can be updated constantly.

can be adapted to different types of attacks.

increases the size of the program and brings down the speed.

4. CMs against fault injection
Redundancy-based CM

Table: Redundancy-based software defense against FI'?

Initial code Redundancy-based defense

1dr r1, [rO] 1dr r1, [rO]
ldr r2, [r0]
cmp rl, r2
bne <error>

"harenghi2010countermeasures.

4. CMs against fault injection

Based on code transformation and duplication

Table: Duplication-based software defense against the single instruction
skip Fault Model (FM)2

Initial code Idempotent instr. Duplication
add r1, r0, #1 add r1, r0, #1
add r1, r0, #1
add ril,r1,r2 add r3, ri1, r2 add r3, ril, r2
mov rl, r3 add r3, ri1, r2

mov rl, r3
mov rl, r3

2moro2014formal.

4. CMs against fault injection

Based on code transformation and duplication: limitations

» The existing CMs were designed for single instruction skip only.

» Recently, there are many works demonstrating that multiple

instruction(s) skips can be easily obtained with either EMFI or
LFI.

4. CMs against fault injection

CM : Based on code duplication and dedicated counter'?

Binary

source Instruction Instruction Pre hardware Hardware Instruction code
>

program _ | Frontend & (IR selection & trasformation counter counter Check value scheduling
—— ™| IRoptimizers| | | register &duplication insertion insertion block insertion |&code emission

allocation

» The CM is effective to both single and multiple instruction(s)
skip.

» The code size overhead is 293% the execution time overhead
is 201%.

13khuat2024software.

4. CMs against fault injection

CM : using a Sensitive Instruction as a sensor

source Instruction Pre sensitive Sensitive Instruction CB!&Z'V
program _ | Frontend & |IR » | | Selection & 5| instruction instruction Check value >l i
IR optimizers Register insertion insertion > block insertion &code emission
Allocation

» The CM is effective to both single and multiple instruction(s)
skip.

» The code size overhead is 200% the execution time overhead
is 149.5%.

Table contents

5. Conclusions & future works

5. Conclusions & future works

Conclusions

» Fl poses significant threat on MCU.

» Different types of fault models such as: bit flip, instructions skip,
instruction replay were obtained with EMFI and LFI.

» Up to hundreds of instruction skips were achieved with LFI.

5. Conclusions & future works

Future works

» Study the mechanism of the faults at physical level.

> Investigate more on the threat of the fault and design effective
counter-measures against the fault.

» develop tools or software for automation of hardening code at
assembly level.

Thanks for your attention!
&

Questions”?

	1. Introduction
	2. Experimental setup and methodology
	3. Threats
	3.1. Clock or Power glitch
	3.2. Electromagnetic fault injection
	3.3. Laser fault injection
	3.4. Fault model at bit level

	4. Countermeasures against fault injection
	5. Conclusions & future works

