
Fault injection Attacks on IoT devices: Threats &
countermeasures

Vanthanh Khuat

April 2025



Table contents

1. Introduction

2. Experimental setup and methodology

3. Threats
3.1. Clock or Power glitch
3.2. Electromagnetic fault injection
3.3. Laser fault injection
3.4. Fault model at bit level

4. Countermeasures against fault injection

5. Conclusions & future works



1. Introduction
Fault injection: from safety problem

I When operating in the hazard environments, electronic devices
may not function correctly, and accidents may happen.



1. Introduction
Fault injection: to security problem

(a) Electromagnetic wave (b) Laser pulse

I Physical disturbances are used to extract information from
electronic devices.



1. Introduction
Physical attack vs Cyber attack



1. Introduction
Fault injection anatomy



1. Introduction
Fault injection

I Fault Injection (FI) is an active side-channel attack in which
the attacker induces stress to the target, forcing it to produce
a faulted result.

I The faulted result is further used to extract secret information
by differential fault analysis (fault vs no-fault).



1. Introduction
Fault injection techniques

There are several common techniques for FI.
I Clock glitch or Voltage glitch1

I Electromagnetic Fault Injection2

I Laser fault injection3

1barenghi2009low; balasch2011depth.
2riviere2015high; beckers2019characterization.
3skorobogatov2002optical; dutertre2019experimental.



1. Introduction
Fault injection techniques comparison



Table contents

1. Introduction

2. Experimental setup and methodology

3. Threats
3.1. Clock or Power glitch
3.2. Electromagnetic fault injection
3.3. Laser fault injection
3.4. Fault model at bit level

4. Countermeasures against fault injection

5. Conclusions & future works



2. Experimental setup and methodology
Experimental setup Power Glitch

Figure: Voltage glitch experimental setup4

I a DDS signal generator outputs an arbitrary waveform from a
software-defined set of parameters.

4bozzato2019shaping.



2. Experimental setup and methodology
Experimental setup Electromagnetic Fault Injection (EMFI)

Figure: EMFI experimental setup5

I The Micro-controller (MCU) was configured to work at 12
MHz, with zero waitstate.

I The MCU was not depackaged and the Electromagnetic
(EM) pulse was injected from the front side.

5khuat2024software; khuat2021multiple.



2. Experimental setup and methodology
Experimental setup Laser Fault Injection (LFI)

(a) Laser bench (b) Microchip back-side image

I Wavelength: 1064 nm, power: 0 - 3 W, Pulse Width (PW): 5 ns - 1
s (more details can be found in6).

I The MCU was depackaged and the laser pulse was injected from the
back side.

I The MCU was configured to work at 12 MHz, with zero waitstate.

6dutertre2019experimental; khuat2021laser.



2. Experimental setup and methodology
Device under test debugging

Figure: Device under test debugging

I The scheme allows debugging and stopping device to collect
data automatically.



2. Experimental setup and methodology
Test procedures

A test follows three main steps:
I (1) the target is reset and all system registers are initialized;
I (2) the trigger for the pulse generator is set, and the test code

is executed;
I (3) all the registers value are collected as the program reaches

the configured breakpoint, or when an interrupt routine is
performed.

For each injection parameter, 100 tests are performed. At the
beginning, a test without Fault Injection Attacks (FIA) was
performed to make sure the program functions correctly and the
data is used as the reference.



Table contents

1. Introduction

2. Experimental setup and methodology

3. Threats
3.1. Clock or Power glitch
3.2. Electromagnetic fault injection
3.3. Laser fault injection
3.4. Fault model at bit level

4. Countermeasures against fault injection

5. Conclusions & future works



3.1. Clock or power glitch
7

(a) V-FI setup for generating arbitrary glitch
waveforms

(b) Oscilloscope trace of the voltage glitch for
the STM32F373 (a), the TI MSP430F5172 (b)
and the Renesas 78K0R (c).

I Different shapes of voltage glitch were achieved.
I Be able to bypass security protections of several types of MCU.
7bozzato2019shaping.



3.2 EMFI
Faulting cache operation8

(a) EMFI faulting cache
read

(b) Fault model probability depending on
injected power

I The target is ARMv7-M architecture.
I Be able to fault cache read process with success rate up to

96%.

8riviere2015high.



3.2 EMFI
Multiple and reproducible fault9

I (a) EM pulse with pulse width of 1.5 ns -> replay of two
instructions with fault rate up to 100%.

I (b) EM pulse with pulse width of 7.0 ns -> skip of two
instruction with fault rate up to 100%.

9khuat2021multiple.



3.2 EMFI
Multiple and reproducible fault: hypothesis

(a) normal execution instruction buffering process

(b) EMFI-induced replay of two instructions on buffer1

(c) EMFI-induced skip of two instructions on buffer1

(d) EMFI-induced skip of two instructions on buffer2

I There exist two 32-bit buffers at the flash interface, each of them is
updated every four clock cycles.

I Replay fault is caused by EM-induced prevention of buffer updating
process.

I Skip fault is caused by EM-induced instructions corruption.



3.3 Laser fault injection
LFI Faults at six positions

I Laser power: 1.5 W, PW: 50 ns.
I Six positions marked with red circular shapes with different

fault behavior were found.



3.3 Laser fault injection
from The flash interface to the execution pipeline: P1 and P2

I The fault is related to block of
two or four instructions
depending on the cache
operation mode;

I Two fault models: skip and
replay of instruction block are
observed;

I The fault behavior is the same with results obtained in10, in which
we ascribed the fault to impact of EMFI and LFI to the Flash
interface buffer.

10vkhuat_emc_europe_2021; vkhuat_dsd_2021.



3.3 Laser fault injection
from The flash interface to the execution pipeline: P3 and P4

I The fault is related to a block of two instructions for both
cache operation modes;

I Two fault models of skip and replay of a block of two
instructions are observed.



3.3 Laser fault injection
from The flash interface to the execution pipeline: P5 and P6

I The fault is related to a single instruction;
I Single instruction skip was obtained at position P5 and P6.
I There is a phase shift of one clock cycle between the fault at

position 5 and 6.



3.3 Laser fault injection
Fault identification

I Position P1: the replay of a block of instructions due to
laser-induced prevention of the Flash interface buffer updating
process;

I Position P2: the modification of a block instructions (including
skip) due to laser-induced bit corruption of instruction’s opcodes in
the Flash interface buffer;

I Position P3: the replay of two instructions due to laser-induced
prevention of loading data into the AHB bus;

I Position P4: the modification of two instructions (including skip)
due to laser-induced bit(s) corruption of instructions loaded into the
AHB bus;

I Position P5: the modification of a single instruction (including
skip) due to laser-induced fault in the core pipeline fetch stage;

I Position P6: the modification of a single instruction (including
skip) due to laser-induced fault in the core pipeline execution stage.



3.3 Laser fault injection
Proposed core architecture

I (a) cache disabled;
I (b) cache enabled: cache miss;
I (c) cache enabled: cache hit.



3.4. Fault model at bit level
test code

lsl r0,r0, #0x00
lsl r0,r0, #0x00
lsl r0,r0, #0x00
lsl r0,r0, #0x00
(a) bit-set detection

sub r7,r7, #0xff
sub r7,r7, #0xff
sub r7,r7, #0xff
sub r7,r7, #0xff

(b) bit-reset detection

I The opcode of lsl r0,r0,#0x00 is 0x0000 (all bits’ values are 0 )
I The opcode of sub r7,r7,#0xff is 0x3fff (most of the

bits’values are 1)



3.4. Fault model at bit level
fault rate

I Bit set fault detection
I (a) 32-bit buffer1
I (c) 32-bit buffer2
I (e)64-bit buffer

I Bit reset fault detection
I (b) 32-bit buffer1
I (d) 32-bit buffer2
I (f) 64-bit buffer.

I At bit level the fault is
rather bit-reset than
bit-set.



Table contents

1. Introduction

2. Experimental setup and methodology

3. Threats
3.1. Clock or Power glitch
3.2. Electromagnetic fault injection
3.3. Laser fault injection
3.4. Fault model at bit level

4. Countermeasures against fault injection

5. Conclusions & future works



4.CM against fault injection
Introduction

I Hardware countermeasure (CM)
I is implemented by adding or changing one part of the device.
I can be very effective to some specific types of attacks.
I adds more cost to the devices and is hard to update.

I Software CM
I is implemented by changing the software of the device.
I adds no cost to the devices.
I can be updated constantly.
I can be adapted to different types of attacks.
I increases the size of the program and brings down the speed.



4. CMs against fault injection
Redundancy-based CM

Table: Redundancy-based software defense against FI11

Initial code Redundancy-based defense

ldr r1, [r0] ldr r1, [r0]
ldr r2, [r0]
cmp r1, r2
bne <error>

11barenghi2010countermeasures.



4. CMs against fault injection
Based on code transformation and duplication

Table: Duplication-based software defense against the single instruction
skip Fault Model (FM)12

Initial code Idempotent instr. Duplication

add r1, r0, #1 add r1, r0, #1
add r1, r0, #1

add r1,r1,r2 add r3, r1, r2 add r3, r1, r2
mov r1, r3 add r3, r1, r2

mov r1, r3
mov r1, r3

12moro2014formal.



4. CMs against fault injection
Based on code transformation and duplication: limitations

I The existing CMs were designed for single instruction skip only.
I Recently, there are many works demonstrating that multiple

instruction(s) skips can be easily obtained with either EMFI or
LFI.



4. CMs against fault injection
CM : Based on code duplication and dedicated counter13

I The CM is effective to both single and multiple instruction(s)
skip.

I The code size overhead is 293% the execution time overhead
is 201%.

13khuat2024software.



4. CMs against fault injection
CM : using a Sensitive Instruction as a sensor

I The CM is effective to both single and multiple instruction(s)
skip.

I The code size overhead is 200% the execution time overhead
is 149.5%.



Table contents

1. Introduction

2. Experimental setup and methodology

3. Threats
3.1. Clock or Power glitch
3.2. Electromagnetic fault injection
3.3. Laser fault injection
3.4. Fault model at bit level

4. Countermeasures against fault injection

5. Conclusions & future works



5. Conclusions & future works
Conclusions

I FI poses significant threat on MCU.
I Different types of fault models such as: bit flip, instructions skip,

instruction replay were obtained with EMFI and LFI.
I Up to hundreds of instruction skips were achieved with LFI.



5. Conclusions & future works
Future works

I Study the mechanism of the faults at physical level.
I Investigate more on the threat of the fault and design effective

counter-measures against the fault.
I develop tools or software for automation of hardening code at

assembly level.



Thanks for your attention!
&

Questions?


	1. Introduction
	2. Experimental setup and methodology
	3. Threats
	3.1. Clock or Power glitch
	3.2. Electromagnetic fault injection
	3.3. Laser fault injection
	3.4. Fault model at bit level

	4. Countermeasures against fault injection
	5. Conclusions & future works

