

HYDROGEN ENERGY IN VIETNAM, POTENTIAL, OPPORTUNITY AND CHALLENGE UNDER CHEMICAL-ENGINEERING PERSPECTIVE

Dr. Tran, Hoang Phi

Department Of Chemical Engineering Faculty of Physics & Chemical Engineering – K11

phith@lqdtu.edu.vn

AGENDA

ര്

Q

I. CLIMATE CHANGE IN VIETNAM

I. CLIMATE CHANGE IN VIETNAM

Trần Hoàng Phi

Faculty of Physics & Chemical Engineering – K11

5

I. CLIMATE CHANGE IN VIETNAM

Trần Hoàng Phi

Q

I. CLIMATE CHANGE IN VIETNAM

6

Q

announced net-zero target at COP26

I. CLIMATE CHANGE IN VIETNAM

Solar

Hydropower

Electricity

Most renewable energy comes in form of free electrons

Q

II. BENEFIT & DRAWBACK OF UNLIMITED ENERGIES

Vietnam: locate at the equator & tropical climate. ~ 2,500 hours of sunshine per year

 \Rightarrow solar radiation is stable over 4 seasons.

Vietnam showed the greatest potential for solar energy development in Southeast Asia.

World Bank: Vietnam can reach 85 GW of solar power by 2030 and 214 GW by 2050

II. BENEFIT & DRAWBACK OF UNLIMITED ENERGIES

Trần Hoàng Phi

Faculty of Physics & Chemical Engineering – K11

II. BENEFIT & DRAWBACK OF UNLIMITED ENERGIES

Disadvantage of wind and solar energy

Reliability of supply
Long distance between generation & consumption

Renewable energy relies on the weather for its source of power: unpredictable, intermittent

- ➢ Long distance between generation and consumption: power line, pylon, power dissipation
- \succ We need a new energy carrier and storage system

LE OUY

Technical U

versity

III. HYDROGEN, NEW CENTRE OF ENERGY SYSTEM

Q

Faculty of Physics & Chemical Engineering – K11

III. HYDROGEN, NEW CENTRE OF ENERGY SYSTEM

LE OUY DON

Technical University

III. HYDROGEN, NEW CENTRE OF ENERGY SYSTEM

- 4%-5% Hydrogen produced from electrolysis,
- Only 1% of global hydrogen output produced with renewable energy

https://www.sembcorpenergy.co.uk/blog/hydrogen-and-the-path-to-net-zero/

Trần Hoàng Phi

https://www.researchgate.net/publication/321781364

13

LE OUY

versity

Technical U

ſđ.

Energy generation

Conversion to H₂

ſđ,

 Æ Transportation, Storage and distribution

16

Electrochemical Hydrogen Conversion with renewable electricity

RENEWABLE ELECTRICITY GENERATION

Hydrogen Energy

Intermittency challenge: PV power over one day / with and without energy storage

Larger scale, hydrogen can be stored in Salt Caverns, to used in winter

Q

18

Q

Getting hydrogen into homes?

In US, Department of Energy attempts to reduce the cost of hydrogen to \$1 for one kilogram, in one decade.

Hydrogen could be transported through our existing gas network and easily stored with conventional technology

19

IV. ENERGY STORAGE & CARRIER

Lack of Government policy

Applying taxes or other mechanism set the price of carbon high enough to ensure cost competitiveness for green hydrogen. \Rightarrow More investigation, R&D projects, policy-related changes.

Storage and distribution

Low energy density, flammability and low boiling point (-253 $^{\circ}$ C) of H₂, require specified materials for safety use.

Technology and infrastructural limitations

Many of the relevant technologies: compressors, conversion plants, storage tanks, transportation,... are not yet commercially ready.

Final price depends on the efficiency and management of production as well as refueling infrastructure.

 \Rightarrow the need is to invest in building a robust hydrogen infrastructures

High cost

Cost for hydrogen is 5-6 \$/kg. (target 1-2 \$/kg ~ 30 \$/MWh) Caused by membrane/electrode and precious metallic catalysts

Challenges faced by Hydrogen as The Future Fuel

, X

Æ

Nature Energy, 2020, 5, 367-377

Dominating commercial electrolyser technologies:

- Advantage:
 - AEL long investigated technology
 - Mature diaphragm (Zirfon)
 - Non-noble catalyst
- Disadvantage:
 - Low current densities (300 mA cm⁻²)
 - High KOH concentrations (32 wt%)

Emerging electrolyzer technologies:

- Advantage:
 - Mature **p**roton **e**xchange **m**embrane (Nafion)
 - High current densities (2 10 A cm⁻²)
- Disadvantage:
 - Require ultra-purified water
 - Noble metal catalysts

Acid PEM Water electrolyzers – Hydrogen from Electricity and ultraclean water

Cathodic Reaction Hydrogen Evolution Reaction (HER) $2H^+ + 2e^- \rightarrow H_2$ > Pt/C is commercialized

ſQ.

Single PEM cell

Anodic Reaction Oxygen Evolution Reaction (OER)

$2\mathrm{H}_{2}\mathrm{O} \xrightarrow{} \mathrm{O}_{2} + 4\mathrm{H}^{\scriptscriptstyle +} + 4\mathrm{e}^{\scriptscriptstyle -}$

- Replacement of Iridium (0.5g_{Ir}/kW to 0.01 g_{Ir}/kW)
- Increase efficiency (reduce Voltage losses)

LE OUY DON

Technical University

Synthesis of supported catalysts for reducing noble metal loading.

- Catalyst's structure design of supported catalysts
- Stability and activity of the catalysts, in comparison to the commercial materials

ACS Catal. 2023, 13, 23, 15375–15392

Chem. Mater. 2022, 34, 21, 9350–9363

Zeitschrift für Physikalische Chemie, 234(5), 787-812

Nature, 587, 408–413 (2020)

Trần Hoàng Phi

Faculty of Physics & Chemical Engineering – K11

Source: https://upload.wikimedia.org/wikipedia/commons/6/6a/World_oceans_map_mollweide_de.png

Trần Hoàng Phi

Source: https://water.usgs.gov/edu/earthwherewater.html

VI. CONCLUSION

To unlock hydrogen economy:

VI. CONCLUSION

