
CONCLUSIONS AND SUGGESTIONS FOR

FUTURE STUDIES

A. Conclusions
This thesis focuses on addressing the following two major issues. The first

involves developing algorithms to improve in balancing convergence and diver-
sity in multi-objective optimization problems, and the second is using those
methods to resolve classification issues. Following is a summary of the major
contributions made in this thesis.
(*) Balancing convergence and diversity in multi-objective optimization prob-

lems

• Proposing a DPP-based co-operative co-evolutionary approach for bal-
ancing the convergence and diversity.[C1].

• Proposing a DPP-based competitive co-evolutionary approach for bal-
ancing the convergence and diversity.[J1].

(*) Applying multi-objective co-evolutionary methods for classification with

imbalanced data

• Proposing a multi-objective competitive co-evolutionary approach for im-
balanced dataset classification (named IBDPPCP)[C7].

• Proposing a multi-objective co-operative co-evolutionary approach (named
IBMCCA) for solving classification with imbalanced data [J2, C2, C3,
C6].

B. Future Studies
Although the Co-evolution was studied widely in the literature, there are

still several possible open problems which require further investigations in order
to have a full understanding about their applicability as follows.

- Developing the DPP-based models using both of co-operative and com-
petitive for multi-objective optimization problems.

- Developing a multi-objective multi-population for machine learning prob-
lems.
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INTRODUCTION

In real life, there are many practical problems in which often-conflicted ob-
jectives need to be optimized simultaneously, especially in machine learning,
where we are seeking a model with the best performance in both accuracy and
generalization measures. These problems are called multi-objective optimiza-
tion problems (MOPs). In multi-objective optimization (MOO), finding a set
of solutions that satisfy both criteria: as close as possible to the Pareto-optimal
front and as diverse as possible is a vital but time-consuming task. Maintain-

ing a balance between diversity and convergence is a key concern in the field of
multi-objective optimization.

In general, using only a single algorithm to solve the problem of balancing
convergence and diversity in MOPs is not easy. Therefore, the current trend is
to combine multiple algorithms and a co-evolutionary algorithm (CoEA) is one
of them. The general idea of CoEA is to break down a problem into a set of
sub-problems and use multiple populations to optimize different sub-problems.

The diversity and accuracy (i.e., convergence) are also keys to ensemble

learning methods. However, there is always a trade-off between classifier diver-
sity and accuracy. From this point, it can be seen that multi-objective evo-
lutionary algorithms in general and co-evolutionary algorithms in particular

are ideal for ensemble learning because they can identify a collection of solu-
tions that ensure both convergence and diversity. In this thesis, the author will
concentrate on resolving two significant issues: first, proposing co-evolutionary
algorithms for conventional multi-objective optimization issues (i.e., balancing
diversity and convergence). Second, applying these co-evolutionary methods to
machine learning issues (i.e., classification)

The dissertation is organised into three chapters except for introduction,
conclusion, future work, bibliography and appendix. Chapter 1 gives the back-
grounds related to this research. Chapter 2 presents the proposed methods of
diversity and convergence, and Chapter 3 introduces the proposed methods
of applying these co-evolutionary methods to imbalanced dataset classification
problems.
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Chapter 1

BACKGROUNDS

1.1 Multi-objective optimization
A multi-objective optimization problem (MOP) can be defined as follows:
Minimize:

F (x) = (f1(x), ..., fm(x))T (1.1)

Subject to: gi(x) ≤ 0; ∀i = 1, ..., p. hj(x) = 0;∀j = 1, ..., q.

Where, a solution x = (x1, ..., xn) ∈ Ω is a vector of decision variables; is
the decision variable space or simply the decision space. gi(x) and hj(x) are
called constraint functions. If any solution x satisfies all constraints and variable
bounds, it is known as a feasible solution, otherwise, it is called an infeasible
solution. There are m objective functions F (x) = (f1(x), ..., fm(x))T ; F : Ω → ℜm

+ .
Where ℜm

+ is called the objective space. For each solution x in the decision
variable space, there exists a point in the objective space.

1.2 Co-evolutionary Algorithms (CoEA)
Co-evolution is reciprocally generated evolutionary change between two or

more species or populations. Traditional evolutionary algorithms (EAs) eval-
uate an individual’s fitness objectively, separate from the population environ-
ment in which they are located. CoEAs operate similarly to standard EAs,
with the exception that fitness evaluations are evaluated through its interac-
tions with other individuals in the evolutionary system. The key benefit of
CoEA over regular EA is its divide-and-conquer deconstruction approach. The
CoEA primarily has four benefits. First, by breaking the problem down into
smaller components, parallelism can accelerate the optimization process. Sec-
ond, each subproblem is resolved by a different subpopulation, maintaining a
wide variety of solutions. Third, breaking a system down into smaller compo-
nents makes it more resilient to mistakes and failures in individual modules,
which improves its capacity to be reused in dynamic contexts . Finally, if the
issue is correctly decomposed, the rapid decrease in performance with a rise in
the number of decision variables can be somewhat mitigated.
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Scenario 3: Compare the proposed algorithm with ensemble learning algo-

rithms

The detailed experimental results are shown in Figure 3.2. It is clear that
the algorithms using the sampling solution give better results than the tra-
ditional algorithms. The difference is significant. Looking at this figure also
shows the complete superiority of the proposed algorithms over the rest of the
algorithms. Through this experimental scenario, the following conclusions can
be drawn: Algorithms using sampling solutions give better and more stable re-
sults than conventional algorithms. The proposed algorithm still gives the best
results when compared to these ensemble learning algorithms. This proves that
selecting subsets from the original dataset by using the co-evolutionary methods

is better than the sampling with replacement mechanism that is commonly used

by ensemble machine learning algorithms.

Figure 3.2: Experimental results of the proposed algorithm and ensemble
learning algorithms (Figures 3.17-3.18 in the thesis)

3.4 Summary
In this chapter, the authors propose a competitive and a cooperative co-

evolutionary algorithm for imbalanced data classification. The proposed algo-
rithms take advantage of their strengths in creating sets of individuals that
have both convergence and diversity factors to generate a collection of subsets
of data that are used to generate classifiers in ensemble learning algorithms.
Combined with hybrid data sampling solutions, IBDPPCP and IBMCCA have
shown a good ability to handle problems related to imbalanced data.
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Table 3.3: The Friedman test results for IBDPPCP and the state-
of-the-art algorithms on two datasets , Chi2 is the Chi-square value (Table

3.4 in the thesis)
Dataset Chi2 P-value
Higher9 45.84983 3.17150e-08
Lower9 65.49744 3.41412e-12

rithms

Experimental results with each dataset are shown in Figure 3.1. It can be
easily seen that the two proposed algorithms give better results in most of the
test cases, except for the case of datasets with IR 9 > 9, where CNN gives
a better result than IBMCCA. In the data set having IR < 9, IBDPPCP and
IBMCCA give superior results compared to other algorithms. From the above
experimental results, it can be concluded that the proposed algorithms and the
CNN algorithm give more stable and better classification results than other al-
gorithms on the datasets. However, in terms of the overlapping factor, the pro-
posed algorithms give superior results to all. Thereby proving that the proposed

algorithms are capable of handling the overlapping phenomenon of imbalanced

data.

Figure 3.1: Experimental results of the proposed algorithm and machine
learning algorithms (Figures 3.15-3.16 in the thesis)
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CoEA can be divided into two main categories: competitive co-evolution
and cooperative co-evolution.

1.2.1 Cooperative co-evolutionary algorithms

Cooperative co-evolutionary algorithms (CCEA - Algorithm 1) are frequently
employed when an issue can be organically divided into smaller components
(or sub-components). CCEA uses a different population (or species) for each
of these sub-components. Since each individual in a given population only rep-
resents a portion of a possible solution to the issue. Therefore, to calculate
fitness, a collaborator is chosen from the other populations to represent the
other sub-components. The objective function is assessed once the individual is
merged with this collaborator to form a complete solution. How successfully a
subpopulation "cooperates" with other species to achieve beneficial outcomes
is a measure of its fitness.

1.2.2 Competetive co-evolutionary algorithms

In competitive co-evolution (Algorithm 2), the first population makes an
effort to fit into the second group’s environment. The members of the second
population will simultaneously make an effort to fit into the environment that
the first population has built. The relative fitness evaluation function for each
member of both populations will then be computed. The level of adaptation
of a member of this population to the environment produced by one or a few
members of the other population is represented by this relative evaluation func-
tion. Better fit individuals will be chosen for the following generation based on
these relative fitness scores. Competitive co-evolution may result in an arms
race when populations compete against one another to outperform one another
and overcome more difficult issues.

1.3 The imbalanced data classification problem
A dataset is said to be imbalanced when a class or a set of classes is rep-

resented in a smaller number than the other classes. The majority class, also
known as the negative class, is the set of data that contains the greatest num-
ber of instances, whereas the minority class, also known as the positive class,
contains the fewest examples.

To address this issue, numerous methods are now being considered. Three
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Algorithm 1: Cooperative co-evolutionary algorithms (CCEA)
Data: P← {P1, P2, ..., PN}
Result: P

1 for population ps ∈ P , all population do
2 Initialize population ps

3 for population ps ∈ P , all population do
4 Evaluate ps

5 t:= 0
6 do
7 for population ps ∈ P , all population do
8 Select parents from population ps
9 Generate offspring from parents

10 Select collaborators from P
11 Make a complete solution via combining offspring with

collaborators
12 Evaluate offspring via the fitness of complete solution
13 Select survivors for new population ps

14 t:= t+1
15 until Terminating criteria is met

major groupings of these solutions can be identified: data-level algorithms,
algorithm-level algorithms and algorithms based on cost-sensitive learning.
Algorithm-level algorithms consist of developing brand-new algorithms or im-
proving already-existing ones to cope with uneven datasets. Cost-sensitive learn-
ing is a strategy combining data- and algorithmic-level approaches while taking
into account larger costs for misclassifying samples from the positive class in
comparison to the negative ones. Currently, a group of data-level algorithms is
most commonly applied. Resampling can be done in three different ways: (a)
undersampling the majority class; (b) oversampling the minority class. (c) a
hybrid strategy that incorporates (a) and (b). Synthetic minority over-sampling
technique (SMOTE), Edited Nearest Neighbor (ENN), Tomek link, and Ran-
dom Undersampling (RU) are typical resampling algorithms.
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Table 3.1: Experimental results
with IR less than 9 (Table 3.7 in

the thesis).

D
at

a
IB

D
P
P
C
P

IB
D
P
P
C
P
2

IB
D
P
P
2

IB
M

C
C
A

E
F
IS

_
M

O
E
A

D
E
M

O
A

S
M

E
N
_
C
45

ye
as

t3
0.
95
48

±
0.
00
22

(1
)

0.
95
15

±
0.
00
11

(2
)

0.
88
27

±
0.
03
17

(7
)

0.
94
52

±
0.
00
49

(3
)

0.
93
95

±
0.
00
55

(5
)

0.
94
46

±
0.
00
48

(4
)

0.
93
26

±
0.
00
00

(6
)

ye
as

t1
0.
75
43

±
0.
00
39

(2
)

0.
75
64

±
0.
00
36

(1
)

0.
70
96

±
0.
01
26

(7
)

0.
73
97

±
0.
00
68

(5
)

0.
74
39

±
0.
00
55

(4
)

0.
74
57

±
0.
00
51

(3
)

0.
71
38

±
0.
00
00

(6
)

w
is
co

n
si
n

0.
98
23

±
0.
00
13

(1
)

0.
98
15

±
0.
00
17

(2
)

0.
96
49

±
0.
00
40

(6
)

0.
97
09

±
0.
00
32

(3
)

0.
97
00

±
0.
00
35

(4
)

0.
96
99

±
0.
00
22

(5
)

0.
95
96

±
0.
00
00

(7
)

ve
h
ic
le
3

0.
82
05

±
0.
00
49

(1
)

0.
80
41

±
0.
00
54

(4
)

0.
75
80

±
0.
01
24

(6
)

0.
79
84

±
0.
00
89

(5
)

0.
80
95

±
0.
00
79

(3
)

0.
81
10

±
0.
00
70

(2
)

0.
74
52

±
0.
00
00

(7
)

ve
h
ic
le
2

0.
98
15

±
0.
00
24

(1
)

0.
98
01

±
0.
00
12

(2
)

0.
93
35

±
0.
01
62

(7
)

0.
96
89

±
0.
00
75

(5
)

0.
97
19

±
0.
00
51

(3
)

0.
97
12

±
0.
00
52

(4
)

0.
94
34

±
0.
00
00

(6
)

ve
h
ic
le
1

0.
80
54

±
0.
00
36

(1
)

0.
78
63

±
0.
00
55

(4
)

0.
75
81

±
0.
01
47

(7
)

0.
78
42

±
0.
00
80

(5
)

0.
79
69

±
0.
00
56

(3
)

0.
79
78

±
0.
00
56

(2
)

0.
75
91

±
0.
00
00

(6
)

ve
h
ic
le
0

0.
96
78

±
0.
00
25

(2
)

0.
96
87

±
0.
00
22

(1
)

0.
93
28

±
0.
01
29

(6
)

0.
95
97

±
0.
95
97

(5
)

0.
96
07

±
0.
00
48

(4
)

0.
96
19

±
0.
00
37

(3
)

0.
91
17

±
0.
00
00

(7
)

se
gm

en
t0

0.
99
58

±
0.
00
07

(1
)

0.
99
18

±
0.
00
07

(5
)

0.
98
93

±
0.
00
20

(7
)

0.
99
34

±
0.
00
13

(2
)

0.
99
06

±
0.
00
17

(6
)

0.
99
25

±
0.
00
14

(3
)

0.
99
20

±
0.
00
00

(4
)

p
im

a
0.
78
89

±
0.
00
37

(2
)

0.
78
92

±
0.
00
42

(1
)

0.
75
62

±
0.
01
26

(6
)

0.
77
53

±
0.
00
64

(4
)

0.
77
46

±
0.
00
70

(5
)

0.
77
73

±
0.
00
74

(3
)

0.
73
76

±
0.
00
00

(7
)

n
ew

th
y
ro

id
2

0.
98
85

±
0.
00
31

(1
)

0.
96
79

±
0.
00
71

(4
)

0.
95
11

±
0.
01
44

(7
)

0.
97
27

±
0.
00
63

(3
)

0.
95
64

±
0.
01
07

(6
)

0.
96
35

±
0.
00
94

(5
)

0.
97
94

±
0.
00
00

(2
)

n
ew

th
y
ro

id
1

0.
99
53

±
0.
00
34

(1
)

0.
98
34

±
0.
00
57

(4
)

0.
96
13

±
0.
00
94

(7
)

0.
98
69

±
0.
00
49

(3
)

0.
97
41

±
0.
01
28

(6
)

0.
97
71

±
0.
01
09

(5
)

0.
98
87

±
0.
00
00

(2
)

ir
is
0

0.
99
76

±
0.
00
25

(1
)

0.
99
65

±
0.
00
24

(2
)

0.
97
95

±
0.
01
23

(7
)

0.
99
08

±
0.
00
66

(3
)

0.
98
06

±
0.
00
89

(6
)

0.
98
42

±
0.
01
01

(5
)

0.
99
00

±
0.
00
00

(4
)

h
ab

er
m
an

0.
63
94

±
0.
01
12

(2
)

0.
67
09

±
0.
00
83

(1
)

0.
63
24

±
0.
02
37

(3
)

0.
61
42

±
0.
01
56

(5
)

0.
61
31

±
0.
01
1
(6
)

0.
62
19

±
0.
01
31

(4
)

0.
58
72

±
0.
00
00

(7
)

gl
as

s6
0.
95
00

±
0.
00
48

(1
)

0.
94
98

±
0.
00
30

(2
)

0.
91
48

±
0.
01
63

(5
)

0.
91
91

±
0.
01
28

(3
)

0.
90
85

±
0.
02
13

(6
)

0.
89
73

±
0.
02
46

(7
)

0.
91
6

±
0.
00
00

(4
)

gl
as

s1
0.
79
66

±
0.
01
05

(1
)

0.
78
39

±
0.
01
31

(3
)

0.
71
83

±
0.
02
65

(6
)

0.
78
17

±
0.
01
77

(4
)

0.
78
10

±
0.
01
12

(5
)

0.
79
19

±
0.
01
24

(2
)

0.
69
87

±
0.
00
00

(7
)

gl
as

s0
0.
86
22

±
0.
00
92

(2
)

0.
86
44

±
0.
00
67

(1
)

0.
80
67

±
0.
02
18

(7
)

0.
83
91

±
0.
01
4
(5
)

0.
84
71

±
0.
01
59

(3
)

0.
84
71

±
0.
01
47

(3
)

0.
81
40

±
0.
00
00

(6
)

gl
as

s0
12

3v
s4

56
5

0.
95
51

±
0.
00
63

(1
)

0.
94
68

±
0.
00
59

(5
)

0.
90
98

±
0.
02
02

(7
)

0.
95
22

±
0.
00
97

(4
)

0.
95
29

±
0.
00
71

(2
)

0.
95
27

±
0.
00
83

(3
)

0.
91
84

±
0.
00
00

(6
)

ec
ol
i3

0.
91
02

±
0.
00
61

(1
)

0.
90
13

±
0.
00
47

(2
)

0.
88
56

±
0.
01
86

(7
)

0.
89
96

±
0.
01
07

(3
)

0.
89
68

±
0.
01
06

(4
)

0.
89
05

±
0.
01
44

(5
)

0.
88
61

±
0.
00
00

(6
)

ec
ol
i2

0.
92
49

±
0.
00
52

(1
)

0.
91
81

±
0.
00
46

(2
)

0.
89
32

±
0.
01
17

(7
)

0.
91
03

±
0.
00
72

(5
)

0.
91
04

±
0.
00
67

(4
)

0.
91
16

±
0.
00
71

(3
)

0.
90
00

±
0.
00
00

(6
)

ec
ol
i1

0.
92
46

±
0.
00
24

(1
)

0.
92
16

±
0.
00
4
(3
)

0.
90
16

±
0.
02
24

(7
)

0.
92
19

±
0.
00
46

(2
)

0.
90
71

±
0.
00
96

(5
)

0.
90
90

±
0.
00
79

(4
)

0.
90
34

±
0.
00
00

(6
)

ec
ol
i0
v
s1

5
0.
98
41

±
0.
00
12

(2
)

0.
98
44

±
0.
00
10

(1
)

0.
97
20

±
0.
00
90

(7
)

0.
98
32

±
0.
00
1
(3
)

0.
98
32

±
0.
00
00

(3
)

0.
98
3

±
0.
00
05

(6
)

0.
98
32

±
0.
00
00

(3
)

A
V
E
R
A
G
E

0.
90
38

(
1.
29
)

0.
89
99

(
2.
48
)

0.
86
72

(
6.
48
)

0.
89
08

(
3.
81
)

0.
88
9
(
4.
43
)

0.
89
06

(
3.
86
)

0.
86
95

(
5.
48
)

Table 3.2: Experimental results
with IR higher than 9 (Table 3.7 in

the thesis).
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pling with replacement mechanisms. This comparison illustrates how useful it

is to use co-evolutionary solutions to find subsets or decision trees.

3.3.3 Results and analysis

Scenario 1: Compare the proposed algorithm with the state-of-the-art al-

gorithms

+ Question 1: Is IBDPPCP algorithm capable of solving the problem of imbalanced

data if the sampling method is not used?

Through the comparison of the two algorithms, IBDPPCP and IBDPPCP2,
this answer will be clarified. Table 3.1 and 3.2 show the comparison results
between the two algorithms. It is easy to see that these two algorithms give
better results than the rest. However, looking at the average AUC results, it
can be seen that the difference between these two algorithms is not significant.
In the first dataset, IBDPPCP results in an average AUC of 0.9038, the value
for IBDPPCP2 is 0.8999. In second dataset, the corresponding values for the
two algorithms are 0.8520 and 0.8365. In summary, it can be said that the

data sampling method enhances the outcomes. However, this difference is not

significant. Even without data sampling, the IDPPCP algorithm is capable of

handling imbalanced data.

+Statistical test for comparing performance

Table 3.3 shows the results of the Friedman statistical test. For each dataset,
the Friedman test returns a chi-square statistic and a p-value. The p-value is
calculated based on the chi-square statistic and the degrees of freedom. The
significance level is 0.05. The null hypothesis (i.e., Ho) assumes that there is no
significant difference between the rankings of the algorithms being compared.
As can be seen, the p-value is less than the significance level (3.17150e-08 and
3.41412e-12), so we can reject Ho and conclude that there is evidence of a
significant difference among the algorithms.

Next, the author uses the Wilcoxon signed-rank test as a post-hoc test to
determine which algorithms differ significantly from each other. The results
of this statistical test show that most of the p-values are smaller than the
significance level (i.e., 0.05). This indicates that there is strong evidence against
the null hypothesis and that the two algorithms are likely to be different.

Scenario 2: Compare the proposed algorithm with machine learning algo-
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Algorithm 2: Competitive co-evolutionary algorithms (CPEA)
Data: Ps : SolutionPopulation;Pt : TestPopulation;P

Result: P
1 P ← {Ps, Pt}
2 for population p ∈ P , all population do
3 Initialize population p

4 for population p ∈ P , all population do
5 Evaluate p

6 t:= 0
7 do
8 for population p ∈ P , all population do
9 Select parents from population p

10 Generate offspring from parents
11 if p is Ps then
12 Select competitors from Pt

13 else
14 Select competitors from Ps

15 Evaluate offspring via competing against collaborators
16 Select survivors for new population p

17 t:= t+1
18 until Terminating criteria is met

1.4 Summary
In this chapter, the author introduces fundamental knowledge related to

the contents used in the thesis. Specifically, multi-objective optimization, co-
evolution (specifically, co-operative and competitive co-evolution), classifica-
tion with imbalanced data, approaches to solving it are presented.
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Chapter 2

THE DUAL-POPULATION

CO-EVOLUTIONARY METHODS FOR

SOLVING MULTI-OBJECTIVE PROBLEMS

2.1 The dual-population paradigm (DPP)
In 2015, Ke Li et.al. dealt with the problem of balancing convergence and

diversity in MOOPs by employing a dual-population cooperative co-evolution

paradigm (named ED/DPP or abbreviated as DPP). DPP employed two co-
evolving populations. The Pareto-based mechanism is used in the first popula-
tion (named Ap) and the decomposition-based mechanism is used in the second
population (named Ad). These populations engage in parallel evolution. At each
generation, a restricted mating selection mechanism (RMS) allows them to in-
teract with each other. In the RMS, the mating parent includes three solutions,
of which two are selected from Ad and the remaining one is selected from Ap.
Thanks to this way, the parents could pass on all the positive characteristics
(i.e., convergence and diversity) to the offspring. To update both Ap and Ad,
the offspring utilizes the corresponding archiving mechanism. In case there is
no solution in the selected sub-region in Ap, an alternative solution is chosen
by the RMS in the corresponding one in Ad. In case there is more than one
solution found in the sub-region, only one solution is selected.

This algorithm gives some promising results. However, there are two areas
for possible improvement, as discussed below:

1. Restricted mating selection method:

In DPP, a neighborhood of a sub-region is defined as a set of its several clos-
est sub-regions. To take advantage of neighborhood information, the authors
specify the neighborhood of each sub-region based on the Euclidean distance
between unit vectors. The authors restrict the mating parents to neighboring
sub-regions with a high probability (and there is only a low probability that
these mating parents will be selected from the whole population). However, they
only randomly select a neighboring sub-region from Ap regardless of whether
this sub-region contains any solutions in the Ap or not. This leads to a high
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algorithms

The two proposed algorithms are compared with five other algorithms.
+ IBDPPCP2 is another version of IBDPPCP. The difference is that IB-

DPPCP2 does not use data sampling. The purpose of this comparison is to
check the effectiveness of using the data sampling method as well as answer
the question: Is the IBDPPCP capable of solving the problem of imbalanced

data if the sampling method is not used?.
+ IBDPP2 is another version of the IBDPPCP algorithm. The difference is

that IBDPP2 uses DPP2 algorithm instead of DPPCP in the co-evolutionary
process. The purpose of this comparison is to check how efficient the two algo-

rithms are then applied to the imbalanced data classification problem.
+ EFIS_MOEA is the premise algorithm chosen by the author for im-

provement. Comparing the two proposed algorithms to determine whether the

proposed algorithms are superior to the premise research.
+ DEMOA [C6] is an algorithm that uses a decomposition mechanism for

classification problems with imbalanced data. DEMOA uses only one popu-
lation and utilizes MOEA/D as a decomposition algorithm. This comparison
helps determine whether a dual population method is better than a single popu-

lation method .
+ SMEN_C45 is an algorithm that uses only the data sampling method

(i.e., SMOTE-ENN) to generate the balanced data without using the co-evolutionary
process or ensemble learning. This comparison shows the effect of using co-

evolution in combination with ensemble learning .
+ Scenario 2: Compare the proposed algorithms with machine learning

algorithms

This case study compares the performance of the proposed method against
some of the most widely used machine learning algorithms, including conven-
tional (i.e. SVM, ANN, KNN, Naive Bayes, and LDA) and deep learning meth-
ods(i.e. CNN).

+Scenario 3: Compare the proposed algorithm with the group of ensemble

learning algorithms.

The main difference between the proposed methods and common ensemble
learning algorithms is the way subsets are generated. In the proposed algo-
rithms, subsets are created from individuals found through the co-evolutionary
process; in the ensemble learning algorithm, the subsets are created using sam-
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Algorithm 6: The IBMCCA algorithm
input : DataSet
output: FinalResult

1 #Step 1: Data preprocessing

2 DataSet ← PreProcessing(DataSet);
3 #Step 2: Population initiation

4 P1← InitializePopulation1(N)

5 P2← InitializePopulation2(N)

6 Elite1← [11. . . 1]

7 ElitePool← Θ;BestArchive← Θ

8 ElitePool.Add(Elite1);
9 CalculateFitness(P2, Elite1, DataSet);

10 Eltite2 ← Sort(P2);
11 Pool.Add(Elite2);
12 #Step 3: The Co-evolutionary process

13 while Stop condition false do
14 Reproduction(P1, Eltite2;
15 Eltite1 ← Sort(P1);

16 Pool.Update(Elite1);
17 Reproduction(P2, Eltite1);
18 Eltite2 ← Sort(P2);
19 Pool.Update(Elite2);

20 #Step 4: Ensemble learning

21 BestArchive= Union (Front0P1, (Front0P2));

22 Classifiers = BuildTrees(BestArchive, Dataset)
23 FinalResult = EnsembleLearning(Classifiers, Dataset)
24 Return FinalResult;

3.3.2 Test scenarios

To evaluate the performance of the two proposed algorithms, in this study,
the author conducts some experiments as follows:

+Scenario 1: Compare the proposed algorithm with the state-of-the-art
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possibility that the selected sub-region does not contain any solutions (so an
alternative solution has to be borrowed from the corresponding sub-region in
Ad). This may lead to an imbalance between the two populations.

2. The interaction between two co-evolving populations:

In DPP, the authors select xG
r3 and xG

r1 from Ad and xG
r2 from Ap to cre-

ate a new offspring using the differential evolution (DE) operator: xG+1
i =

xG
r3 + F ∗ (xG

r1 − xG
r2) with the hope that xG

r1 has good convergence properties
and xG

r2 has promising diversity and offspring has a large chance of having both
advantages. However, there still exist two major drawbacks:

(+) Choosing two out of three solutions from the Ad and only one from the Ap

may cause an imbalance in the co-evolutionary process.
(+) Since the direction vector is made up of two solutions in two different
populations, it could lead to unpromising outcomes, especially when the two
populations are imbalanced (i.e., the convergence of one population is much
better than the other).

Inspired by the co-evolution paradigm in DPP, this study attempts to address

the aforementioned drawbacks. The author proposes two new dual-population
competitive co-evolutionary algorithm named DPP2 and DPPCP (The dual-

population competitive co-evolutionary algorithm). These two proposed algorithms
(i.e., DPP2 and DPPCP) are explained in more detail in the next sections.

2.2 A dual-population co-operative co-evolutionary method

for solving multi-objective problems (DPP2)
The pseudo-code of this algorithm is shown in Algorithm.3. In the first step,

Ap and Ad are randomly initialized. N solutions in Ad are evenly assigned to N
sub-regions (according to N unit vectors). Later, in the process of evolution,
each sub-region always has only one solution. This is to guarantee that Ad

always has an even distribution (i.e., diversity) in objective space. Whereas,
N solutions in Ap will be randomly assigned to N sub-regions. This means
that more than one solution can be in the same sub-region, and there are also
sub-regions that don’t contain any solutions. Next, each solution specifies the
T closest neighborhood sub-regions based on the Euclidean distance between
unit vectors.

The author uses a new RMS mechanism (named RMS2) to select two mating
parents. After the selection process, two mating parents (denoted to xr2 and
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xr3) are selected to generate new offspring by using DE operator. One thing to
be underlined here is that the new offspring need to be assigned to a certain
sub-region. In this research, this offspring belongs to the sub-region that has
the minimum Euclidian distance between its unit vector and the offspring’s
objective vector. Finally, the new offspring is used to update each of Ap and
Ad, respectively.

In general, the DPP2 has three main differences from the DPP:

First, when choosing one solution in Ap, instead of just selecting from a
selected neighborhood sub-region, the author select from all T neighborhood
sub-regions. By doing this, the probability of finding one solution in Ap will be
much higher than in RMS.

Second, in case all T neighborhood sub-regions do not contain any solution.
Instead of choosing an alternative solution in Ad, the author randomly selects a
solution in Ap. In this way, the offspring are generated from parents in different
populations, so they can take advantage of all the advantages of both parents
(i.e., diversity and convergence).

Third, the update procedure for Ap is different from the original DPP. In par-
ticular, whenever a new offspring is generated, it will be stored in an offspring
list (i.e., offSpringAp in Algorithm.3) instead of being updated right away to
Ap. After a generation finishes, offSpringAp will be combined with Ap and the
author uses the crowding distance sorting method (CDSM) in the combined
population to select the N best solutions for the new population. The reason is
that the CDSM is a really time-consuming method.

2.3 The dual-population competitive co-evolutionary method

for solving multi-objective problems (DPPCP)
The pseudo-code of the proposed algorithm DPPCP is shown in Algorithm

4. Like DPP2, this algorithm employs two co-evolving populations:Ap and Ad.
At each generation, the author uses a neighbor-based selection mechanism
(NBSM) to select three candidate solutions from each of the populations. After
that, the author uses DE operator to create two offspring named ChildAp (i.e.,
the offspring in population Ap ) and ChildAd (the offspring in population Ad).
Next, let ChildAd compete with ChildAp using Pareto dominance-based met-
rics and choose the winner to update Ap. Similarly, let ChildAp compete with
ChildAd using decomposition-based metrics and use the winner to update Ad.
At the end of the co-evolution process, the final population is a combination of
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viduals representing different ways of selecting features. The second one (called
the instance population or population 2) contains individuals that each repre-
sents a subset of the original dataset. In the process of co-evolution, in order
to calculate the fitness value, each individual in the first population needs to
be associated with the individual in the second population, and vice versa.
Undergoing a co-evolutionary process, the output is a combination of the best
individuals from two populations.

Objective functions: Because of the different purposes of each population, the
objective functions are varied. The purpose of the feature population is to find
individuals that have not only the least number of selected features but also the
highest AUC value. Therefore, two chosen objectives for this population are the
AUC and the number of selected features. Meanwhile, the second population
(i.e., the instance population) tries to find individuals with the least number of
selected instances as well as the highest AUC value. Therefore, AUC and the
number of selected samples are chosen as two objectives for this population.
IS stands for instance set, ISi is a binary value (0 or 1) converted from the
probability of selection of an instance. FS stands for feature set, FSi is a binary
value (0 or 1) converted from the probability of selection of a feature. Suppose
D is the number of features and S is the number of samples. The formula for
the objective functions of the two populations is as follows:

Population1 :

{
OBJ1 = −AUC

OBJ2 =
∑D−1

i=0 FSi

(3.2)

Population2 :

{
OBJ1 = −AUC

OBJ2 =
∑S−1

i=0 ISi

(3.3)

3.3 Experimental results

3.3.1 Experimental datasets

The experimental datasets consist of 42 standard imbalanced datasets. These
data sets are divided into two groups: imbalance ratios lower than 9 and im-
balance ratios higher than 9.
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Algorithm 5: The IBDPPCP algorithm
input : Dataset
output: FinalResult

1 BestArchive← Θ

2 #Step 1: Data preprocessing

3 Dataset ← DataSampling(DataSet);
4 Dataset ← DuplicateRemoving(DataSet);
5 #Step 2: The Co-evolutionary process

6 BestArchive= DPPCP (Dataset);
7 #Step 3: Ensemble learning

8 Classifiers = BuildTrees(BestArchive, Dataset)
9 FinalResult = EnsembleLearning(Classifiers, Dataset)

10 Return FinalResult;

{
OBJ1 = AUC

OBJ2 =
∑N−1

i=0 ISi

(3.1)

where N is the number of samples of the training dataset; ISi is a binary value
(0 or 1) converted from the probability of selection. The task now is to minimize
these two functions. This implies that for any solution, the smaller the IS and
the higher the AUC, the better it is.

3.2 A multi-objective cooperative co-evolutionary method

for classification with imbalanced data (IBMCCA)
The pseudo-code for this algorithm is presented in Algorithm 6. There are

two main differences between IBDPPCP and IBMCCA algorithms. The first
one is individual encoding. In IBDPPCP, the individuals in the two popula-
tions use the same encoding (i.e., the two substrings FS and IS). In IBMCCA,
each individual is a separate substring. Objective functions are the second dif-
ference. Because the role of each population is different, in IBMCCA, each of
them uses different objective functions, whereas, in IBDPPCP, both popula-
tions use the same objective functions. There are two populations that evolve
simultaneously to solve two tasks: feature selection and instance selection. The
first population (called the feature population or population 1) includes indi-
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Algorithm 3: DPP2 algorithm
input : Maximum number of generations (M)

Neightborhood Size (T)
Population size (N)

output: Final Population P

1 [Ap, Ad] = initializePopulation()

2 W = InitializeUniformWeight()

3 B = InitializeNeighborhood()

4 Z∗ = InitializeIdealPoint()

5 Znad = InitializeNadirPoint()

6 m←0
7 while m < M do
8 offspringAp ← ∅
9 for i← 1 to N do

10 Q= RMS2 (Ap, Ad, m, Bm) (Algorithm)
11 Child = CoOperativeMating(Q)

12 Mutate(Child);
13 Update Sub-Region index for Child
14 Update Idea point Z∗ and nadir point Znad

15 Update Ad

16 Add Child to offspringAp

17 m++;

18 U = Union(offspringAp, Ap)

19 Ap = crowdingDistanceSelection(U)

both Ap and Ad populations. The reason for this decision is that each of them
uses a different optimal mechanism. While Ap uses the true Pareto front, Ad

utilizes the idea point (a solution with the best objective values known since
running the algorithm) as the best goal to achieve. The roles of the two pop-
ulations are the same. Therefore, in order to preserve the good properties of
both populations (i.e., diversity and convergence), the author decided to keep
both populations in the final selected population.
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There are two differences between the DPPCP and other co-evolutionary

methods (i.e. DPP and DPP2): First, in the DPPCP, the author does not use a
cooperative co-evolutionary mechanism. In other words, this study has elimi-
nated the mating parents’ steps to generate offspring. Instead, this study uses a
competitive mechanism to make two offspring interact with each other. Second,
this study uses the NBSM mechanism to select three solutions in each pop-
ulation and use them to create two separate offspring. In general, the model

Algorithm 4: DPPCP Algorithm
input : M: The number of generations.

T: The neighboring numbers
N: The population size

output: Final Population Ap and Ad

1 [Ap, Ad] = initializePopulation()

2 W = InitializeUniformWeight()

3 B = InitializeNeighborhood()

4 Z∗ = InitializeIdealPoint()

5 Znad = InitializeNadirPoint()

6 m←0
7 while m < M do
8 offspringAp ← ∅
9 for i← 1 to N do

10 ChildAp, ChildAd = NBSMSelection(Ap, Ad, i, Bi)

(Algorithm)
11 Winner1 == CompeteDominate(ChildAp, ChildAd)

12 Winner2 == CompeteDecompostion(ChildAp, ChildAd)

13 UpdateAp(Winner1, Ap); (Algorithm)
14 UpdateAd(Winner2, Ad);
15 Update Z∗ and Znad

16 m++;

17 Return P← Ap ∪Ad

is divided into four main steps: Initialization, NBSM selection, Competitive process,
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Chapter 3

THE APPLICATION OF MULTI-OBJECTIVE

CO-EVOLUTIONARY OPTIMIZATION

METHODS FOR CLASSIFICATION

PROBLEMS

3.1 A multi-objective competitive co-evolutionary method

for classification with imbalanced data (IBDPPCP)
The proposed algorithm model is presented in Algorithm 5. There are three

main phases: Data pre-processing, the co-evolutionary process, and ensemble-based decision-

making. The general idea of the algorithm is as follows: Encoding each individual
into a couple of feature sets (FS) and instance sets (IS) with the hope of finding
the optimal ones that have both key features as well as important instances
to help solve the imbalanced dataset problem. The multi-objective competitive
co-evolutionary algorithm (i.e., DPPCP) is utilized to find the set of optimal in-
dividuals, then combine these individuals with an ensemble learning algorithm.
It should be noted that to boost the performance of the ensemble learning al-
gorithm, the weak learners should satisfy two criteria: having diversity as well as

good classification performance. The multi-objective optimization algorithm helps
generate weak learners that satisfy both of these two criteria. After the evolu-
tionary process, all individuals in the final population are used as weak learners
in the ensemble learning algorithm. A voting mechanism is used to determine
the final result. This study uses a DPP-based algorithm (named IBDPPCP) as
the multi-objective optimization algorithm and utilizes the C4.5 algorithm as
the base learner to solve this problem.

Objective functions: There are two key objectives the author wishes to ac-
complish with this study. Increasing identification across all data classes (in-
cluding minority and majority) is the first one. The second is to minimize the
number of samples selected, or, in other words, to maximize the removal of bad
samples. Two objective functions as follows:
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2.5.3 Statistical test for comparing performance

In the previous comparisons, the proposed algorithms yield better average
performance than the other algorithms. To further strengthen this claim, the
authors conducted statistical evaluations to determine whether there is a sig-
nificant difference between the algorithms. Specifically, the Friedman test, a
non-parametric test, is used to check whether there are significant differences
among the results. The null hypothesis (Ho) is that there is no difference be-
tween the algorithms. If the p-value is smaller than a significance level (i.e.,
0.05), the null hypothesis is rejected (or there are significant differences be-
tween the algorithms), and vice versa. Table 2.3 shows the Friedman statistic
of the IGD metric considering reduction performance (distributed according to
chi-square with 4 degrees of freedom: 34.787), and the p-value is approximately
1.084e-06. From these p-values, it can be concluded that there is a significant
difference between the compared algorithms and the DPPCP algorithm gives
the best results.

Table 2.3: Average ranking of the algorithms using the IGD metric (Table
2.7 in the thesis).

Algorithm Ranking
NSGAII 3.5806
MOEAD 3.1290
DPP 3.7742
DPP2 2.8710
DPPCP 1.6452

2.6 Summary
In this chapter, the author presents two DPP-based algorithms for balancing

convergence and diversity in MOEAs. Specifically, a modified dual-population-
based co-evolutionary algorithm (DPP2) and a dual-population competitive co-
evolutionary (named DPPCP) algorithm are presented. The empirical results
pointed out the efficacy of the co-evolutionary methods in balancing diversity
and convergence for solving MOPs.
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and Update population.
Another major difference between the two RMS and NBSM mechanisms

is the solution selection procedure in Ap. For each small partition, this study
conducts a search across the entire T neighborhood sub-regions instead of just
choosing a random sub-region, as in the RMS mechanism. This way, the prob-
ability of finding three solutions is much higher. In the case that any solutions
cannot be found in the neighborhood sub-regions, this study borrows from the
Ad.

Table 2.1: Performance comparisons between the DPPCP and baseline
algorithms using the IGD metric (Table 2.4 in the thesis).

DPP DPP2 DPPCP

ZDT1 3.945162e− 046.4e−04 5.554228e− 052.2e−07 3.093510e− 050.0e+00

ZDT2 4.602254e− 053.6e−05 4.661050e− 057.3e−08 3.241247e− 050.0e+00

ZDT3 6.907624e− 058.2e−05 8.860561e− 058.5e−07 2.623904e− 050.0e+00

ZDT4 3.273414e− 012.5e−01 5.866687e− 054.8e−07 3.104248e− 050.0e+00

ZDT6 3.147239e− 058.0e−07 4.628070e− 056.9e−09 3.135962e− 050.0e+00

UF1 1.219677e− 034.7e−04 6.864305e− 053.0e−06 5.686509e− 050.0e+00

UF2 1.983361e− 036.9e−04 4.221505e− 041.3e−04 1.700001e− 040.0e+00

UF3 6.117055e− 031.7e−03 2.379576e− 045.5e−04 1.820430e− 030.0e+00

UF4 2.055704e− 033.4e−04 1.955396e− 032.4e−04 1.676999e− 030.0e+00

UF5 1.319009e− 014.5e−02 6.085614e− 022.8e−02 1.547979e− 010.0e+00

UF6 1.023728e− 022.6e−03 6.511947e− 034.9e−03 2.268674e− 020.0e+00

UF7 7.577647e− 044.1e−04 1.073177e− 043.7e−05 1.185823e− 040.0e+00

UF8 1.105829e− 033.2e−04 1.033388e− 032.1e−04 8.438084e− 040.0e+00

UF9 2.296300e− 032.4e−04 2.186628e− 031.5e−04 2.269156e− 030.0e+00

UF10 1.254666e− 024.0e−03 4.860551e− 035.9e−04 4.938679e− 030.0e+00

WFG1 4.091125e− 032.0e−03 2.672370e− 041.8e−05 7.811839e− 050.0e+00

WFG2 3.898765e− 041.9e−04 6.061874e− 042.3e−05 8.474260e− 050.0e+00

WFG3 1.837856e− 048.8e−05 5.480337e− 053.4e−08 3.343249e− 050.0e+00

WFG4 2.109915e− 042.9e−05 6.344580e− 051.9e−06 3.390037e− 050.0e+00

WFG5 9.304804e− 042.1e−06 9.328236e− 048.8e−07 9.303355e− 040.0e+00

WFG6 1.249467e− 049.1e−05 9.143875e− 052.0e−07 5.394634e− 050.0e+00

WFG7 2.832908e− 053.6e−06 4.054432e− 052.5e−08 2.255773e− 050.0e+00

WFG8 3.479606e− 039.6e−04 3.172940e− 032.8e−03 8.095268e− 040.0e+00

WFG9 5.823859e− 053.0e−06 4.076749e− 053.5e−07 2.269694e− 050.0e+00

DTLZ1 2.274694e− 021.4e−02 3.471784e− 041.4e−06 2.526425e− 040.0e+00

DTLZ2 3.282544e− 049.9e−06 4.301280e− 041.9e−06 3.343429e− 040.0e+00

DTLZ3 1.647616e− 013.3e−01 7.229934e− 047.5e−06 5.305681e− 040.0e+00

DTLZ4 4.906612e− 042.2e−05 8.454214e− 042.2e−04 5.417136e− 040.0e+00

DTLZ5 2.934037e− 056.4e−06 1.518117e− 051.8e−07 3.674228e− 060.0e+00

DTLZ6 1.138830e− 051.1e−06 3.454072e− 052.2e−08 8.785615e− 060.0e+00

DTLZ7 1.091168e− 035.5e−05 2.612434e− 032.2e−04 1.181486e− 030.0e+00
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2.4 Test scenarios
In this thesis, the author presents a comparison between the proposed al-

gorithms and other algorithms such as with some baseline algorithms (i.e.,
NSGA-II and MOEA/D-DE) and the state-of-the-art algorithms (i.e. DPP).
Via the comparison results, it can be seen how good the performance of the
proposed methods are when compared to the others. Additionally, the thesis
also conducts some other experiments that are not presented in this document
such as comparing with a variant named DPPCP-Variant1 to know the effects
of competitiveness, comparing with two other variants named DPPCP-Variant2

and DPPCP-Variant3 to know the effects of the NBSM mechanism and com-
paring with two other variants named DPPCP-Ap and DPPCP-Ad to know the
interaction between two co-evolving populations.

2.5 Results and discussions

2.5.1 Comparing with the baseline algorithms

The results in Table 2.1 show that the DPPCP is clearly better than DPP
and DPP2 (it gives a better metric value in 24 out of 31 comparisons). In
ZDT instances, DPPCP gives better results than DPP in all instances, espe-
cially in ZDT4, where DPPCP outperforms DPP about 10,000 times. In UF
instances, DPP achieves better performance on UF5 and UF6 instances. How-
ever, DPPCP obtains better IGD metric values in other UF instances; even
with UF1, it is better about 100 times. Similar to WFG instances, DPPCP
achieves better metric values in all of the comparisons (except WFG5). These
findings demonstrate that the competitive co-evolution model proposed in this
study outperforms other cooperative co-evolution methods.

2.5.2 DPPCP with baseline algorithms

Tables 2.2 provide the performance comparisons of DPPCP, MOEA/D-DE,
and NSGA-II on 31 test instances using the IGD metric. Based on experimental
results, it can be seen that DPPCP achieves a better outcome than both NSGA-
II and MOEA-D/DE. It wins 26 out of 31 comparisons. It is worth noting that
although NSGA-II is the worst among the three candidates, it achieves the best
IGD metric values on the UF4 and the UF5. Meanwhile, MOEA/D-DE obtains
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Table 2.2: Performance comparisons between the DPPCP and baseline
algorithms using the IGD metric. The metric value with the highest mean
is emphasized by being displayed in bold font with a gray background

(Table 2.6 in the thesis).
NSGAII MOEAD DPPCP

ZDT1 5.788071e− 054.8e−06 5.556843e− 053.3e−07 3.093510e− 050.0e+00

ZDT2 5.968199e− 052.9e−06 4.660528e− 054.7e−08 3.241247e− 050.0e+00

ZDT3 4.146423e− 051.9e−06 8.838159e− 057.9e−07 2.623904e− 050.0e+00

ZDT4 5.699439e− 052.2e−06 5.906846e− 055.0e−07 3.104248e− 050.0e+00

ZDT6 7.378607e− 054.2e−06 4.628025e− 056.2e−09 3.135962e− 050.0e+00

UF1 3.546947e− 036.0e−04 6.903693e− 055.0e−06 5.686509e− 050.0e+00

UF2 1.066904e− 032.9e−04 3.608501e− 042.4e−04 1.700001e− 040.0e+00

UF3 7.154636e− 031.8e−03 1.702418e− 041.5e−04 1.820430e− 030.0e+00

UF4 1.358224e− 032.4e−05 1.940253e− 032.3e−04 1.676999e− 030.0e+00

UF5 4.394656e− 028.3e−03 6.607502e− 021.7e−02 1.547979e− 010.0e+00

UF6 8.797878e− 033.8e−03 3.479782e− 038.8e−03 2.268674e− 020.0e+00

UF7 1.859278e− 031.7e−03 1.085036e− 042.4e−05 1.185823e− 040.0e+00

UF8 2.981191e− 031.7e−04 9.841127e− 044.3e−04 8.438084e− 040.0e+00

UF9 2.732983e− 032.0e−03 2.165702e− 031.5e−03 2.269156e− 030.0e+00

UF10 5.161469e− 033.7e−03 4.986122e− 036.2e−04 4.938679e− 030.0e+00

WFG1 3.200666e− 042.3e−05 2.702204e− 042.7e−05 7.811839e− 050.0e+00

WFG2 1.174109e− 041.1e−05 6.057198e− 046.6e−06 8.474260e− 050.0e+00

WFG3 6.512669e− 053.3e−06 5.476262e− 059.3e−08 3.343249e− 050.0e+00

WFG4 5.717426e− 052.8e−06 6.238275e− 051.3e−06 3.390037e− 050.0e+00

WFG5 9.330129e− 045.7e−07 9.337936e− 043.8e−07 9.303355e− 040.0e+00

WFG6 1.122812e− 046.5e−05 9.139109e− 051.4e−07 5.394634e− 050.0e+00

WFG7 3.877603e− 051.7e−06 4.054086e− 051.9e−08 2.255773e− 050.0e+00

WFG8 2.747423e− 032.2e−03 3.174261e− 032.4e−03 8.095268e− 040.0e+00

WFG9 4.337451e− 055.0e−06 4.071753e− 051.1e−07 2.269694e− 050.0e+00

DTLZ1 3.201110e− 041.9e−05 3.474762e− 041.3e−06 2.526425e− 040.0e+00

DTLZ2 4.355620e− 042.4e−05 4.306742e− 043.0e−06 3.343429e− 040.0e+00

DTLZ3 6.953162e− 042.1e−05 7.211632e− 046.2e−06 5.305681e− 040.0e+00

DTLZ4 7.724318e− 041.2e−04 7.911537e− 041.3e−04 5.417136e− 040.0e+00

DTLZ5 6.185971e− 064.8e−07 1.516055e− 051.1e−07 3.674228e− 060.0e+00

DTLZ6 3.789467e− 042.9e−04 3.453845e− 053.1e−08 8.785615e− 060.0e+00

DTLZ7 1.204211e− 036.4e−05 2.612999e− 031.7e−04 1.181486e− 030.0e+00

the best IGD metric values on the UF3, UF6, UF9, and WFG5. By contrast,
DPPCP shows a poor result on the UF5 test instance. However, DPPCP shows
better performance than the baseline algorithm on all the ZDT and DTLZ
instances. These results indicate the effectiveness of DPPCP in achieving both
convergence and diversity criteria.
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- Developing Spatial-based co-evolutionary algorithms for solving spatial
challenges such as spatial forest planning, groundwater management, etc.
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