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INTRODUCTION

Problem statement

In real life, there are many practical problems in which often-conflicted

objectives need to be optimized simultaneously, especially in machine

learning, where we are seeking a model with the best performance in

both accuracy and generalization measures. These problems are called

multi-objective optimization problems (MOPs). Unlike single-objective

optimization, where it has to find the best single solution, in multi-

objective optimization (MOO), a set of optimal solutions (called Pareto-

optimal solutions) will usually be selected. Obviously, finding the largest

number of Pareto-optimal solutions possible from MOO is a vital but

time-consuming task. Therefore, MOO tries to find a set of solutions

that satisfy both criteria (Figure. 1): as close as possible to the Pareto-

optimal front and as diverse as possible [107].

Maintaining a balance between diversity and convergence is

a key concern in the field of multi-objective optimization. However, in

the context of multi-objective optimization, this is a particularly chal-

lenging problem to solve. Each of these goals will typically have a certain

priority with every algorithm. The algorithms will handle these two goals

in a variety of ways, depending on how to balance them. Algorithms can

be classified into two categories based on this criterion (Figure.2) sin-

gle algorithms and hybrid algorithms (i.e., groups that combine many

algorithms together)

Recently, the group of single multi-objective evolutionary algorithms
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Figure 1: Illustrate two key concepts: diversity and convergence in Multi-objective optimization
problems

(MOEAs) can be divided into three groups: Pareto-based algorithms

( [30], [133]), indicator-based algorithms [132] and decomposition-based

algorithms [130]. These MOEAs differ both in convergence and diversity

preservation. The first group (i.e., Pareto-based algorithms) allocates

priority to handling convergence, and the second one (i.e., the decom-

position algorithm) focuses on diversity. Meanwhile, the last group (i.e.,

indicator-based algorithms) considers both convergence and diversity

by using an indicator like hypervolume (HV). Typical indicator-based

algorithms are IBEA (Indicator-based Evolutionary Algorithm; [132]);

dynamic neighborhood MOEA based on HV indicator (DNMOEA/HI)

[68]; an HV estimation algorithm (HypE) [6], and S-metric selection

evolutionary multiobjective optimization algorithms (SMS-EMOA) [11].

These algorithms have the advantage that they do not require any addi-

tional diversity preservation mechanisms. However, when the number of

objectives increases, the computational complexity of these algorithms

also increases very quickly. This is their biggest weakness. This draw-

back has limited its application to solving multi- and many-objective

problems.
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Figure 2: Division of multi-objective evolutionary algorithms based on the balance between diversity
and convergence. The boxes with red text indicate the methods used in this study.

In general, using only a single algorithm to solve the problem of bal-

ancing convergence and diversity in MOPs is not easy. Therefore, the

current trend is to combine multiple algorithms. This approach can

be divided into two main groups: the multi-algorithm approach [121]

(i.e., using multiple algorithms on the same population) and the multi-

population approach [125] (i.e. using multiple populations, each of which

corresponds to one objective). The multi-population approach can be

regarded as a co-evolutionary algorithm (CoEA). The general idea

of CoEA is to break down a problem into a set of sub-problems and use

multiple populations to optimize different sub-problems. The CoEA can

be categorized into two groups [127] which are competitive and cooper-

ative. In the competitive approach, the fitness of each individual in one

population is measured by their competition with others in other pop-

ulations. With regard to the latter group, a collaborative mechanism is

used to determine the fitness of each individual.

The diversity and accuracy (i.e., convergence) are also keys to en-

semble learning methods and the importance of them was explained
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in [33]. However, there is always a trade-off between classifier diversity

and accuracy [106]. From this point, it can be seen that multi-objective

evolutionary algorithms in general and co-evolutionary algorithms

in particular are ideal for ensemble learning because they can

identify a collection of solutions that ensure both convergence and diver-

sity [100]. Instead of generating just one classifier, they force the training

process to produce a set of diverse and optimal classifiers. An ensemble

of classifiers can be created using Pareto-optimal solutions. Typically,

a population-based approach is used to create candidate classifiers, and

these classifiers are then improved using a multi-objective optimization

strategy so that only Pareto-optimal solutions are kept [19]. The afore-

mentioned strategy not only promotes the selection of the precise clas-

sifiers in the ensemble framework but also their distribution along the

Pareto optimal front.

Beginning with the aforementioned issues, along with conducting the-

oretical research in the area of co-evolution, in this thesis, the author will

concentrate on resolving two significant issues (Figure.3): first, proposing

co-evolutionary algorithms for conventional multi-objective optimization

issues (i.e., balancing diversity and convergence). Second, applying these

co-evolutionary methods to machine learning issues (i.e., classification)

The next parts will provide a full presentation of the broad theory of

co-evolution and the concept of solving practical challenges.

Motivation

Evolutionary algorithms (EAs) are regarded as effective algorithms

for solving Pareto optimization problems because of their simplicity,

capacity to operate in populations, and broad applicability. Multi-

objective Evolutionary Algorithms (MOEAs) are currently one of the

hottest topics in EAs research. MOEAs have undergone much research,
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Figure 3: Illustrate the two main problems of this thesis. The first problem (i.e., balancing
convergence and diversity in MOPs) is addressed in Chapter 2, while the remaining problems (i.e.,

designing co-evolutionary algorithms for imbalanced classification problems) are addressed in
Chapter 3 of this thesis.

development, and improvement during the last three decades. In [25],

C. A. Coello examined the background, current trends in development,

and difficulties facing the field of evolutionary multi-objective optimiza-

tion. The author stated that many people believe that the evolving

multi-objective optimization area will be difficult for scientists, espe-

cially Ph.D. students, to make major contributions to after 20 years of

rapid progress. However, the author did highlight that there are

still a lot of exciting research topics being developed . Accord-

ing to the author, there are currently two main development trajectories:

one is in terms of objective space , and the other is in terms of vari-

able space (Figure.4). The majority of multi-objective optimization

research is presently conducted in terms of variable space, particularly
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for large-scale multi-objective optimization problems. The author un-

derlines that the Co-operative co-evolutionary technique is the

most well-liked and successful study direction to address this

issue in this development direction . Today’s practical problems

are typically complex multi-objective optimization problems that are

challenging to resolve with just one optimization solution. As a result

of this practice, hybrid algorithms have become a more widely utilized

technique. One current trend in this development path is the employ-

ment of co-evolutionary approaches, which involve the deployment of

numerous populations, each of which is concentrated on addressing a

particular criterion.

Figure 4: Illustration of the objective space corresponding to the decision variable space

In the field of multi-objective optimization, convergence and diver-

sity are the two most crucial criteria to attain. The balance be-

tween these two factors is still a big challenge that the current

multi-objective optimization algorithms are facing . Well-known

MOEAs now in use, including NSGA-II and MOEA/D, cannot address

these two issues concurrently. Instead, each algorithm has a specific pri-

ority. While NSGA-II prioritizes convergence first, MOEA/D does the

opposite. The CoEA can address this issue by utilizing a dual-population

approach. This is a process whereby one population is used to obtain the
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highest degree of convergence and another is used to achieve the greatest

degree of diversity. A new population that fully converges on the two

criteria will be created when these two populations combine. Up until

now, there have been many studies using CoEA to solve this problem.

Some typical studies can be mentioned as [65] [69] [126]. In addition,

some recent studies are still focusing on addressing this balance issue

for both the objective and decision spaces [84] [117], or in special cases

such as changing decision variables [122] or constrained multi-objective

optimization problems with the dynamic dual-population solution [61].

Although these studies have achieved feasible results, there are still many

details that can be improved, as well as many new methods that can be

proposed to deal with this problem.

After the initial success of applying the co-evolution algorithm to con-

ventional multi-objective optimization problems, there have been an in-

creasing number of studies using the co-evolution algorithm in conjunc-

tion with machine learning techniques to address real-world issues like

classification, prediction, and clustering problems. The machine learn-

ing field has been dominated by two techniques: ensemble learning and

deep learning [82]. The term Ensemble learning describes methods

that aggregate the results of at least two different models. In general,

ensemble methods yield more accurate results than a single model. Ac-

cording to empirical findings [62], the accuracy of the ensemble and the

diversity of the base classifiers are positively correlated. Many strategies

have been put forth to build a strong classifier ensemble by looking for

both the diversity among them and the accuracy of the classifiers, and

the multi-objective co-evolutionary approach is one of them. To gen-

erate individuals that fulfill both of these criteria, the multi-objective

optimization algorithms often use accuracy (or convergence) and diver-

sity as objective functions [14] [18]. After that, utilize a non-dominant
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sorting mechanism (as in NSGA-II) to find the set of Pareto optimal so-

lutions. As mentioned above, although this approach can find a set

of solutions, the balance between convergence and diversity is

still not guaranteed. Meanwhile, multi-objective co-evolution is likely

to ensure this balance. Some of the latest research using co-evolution

combined with ensemble learning can be mentioned as [72] [119] [87] [15].

These studies demonstrate the effectiveness of using co-evolution to gen-

erate diverse and high-quality ensembles of classifiers for various clas-

sification tasks. By generating a Pareto set of diverse solutions, these

methods ensure that the ensemble is both accurate and diverse, leading

to improved classification performance. From this point, it can be seen

that the combination of a co-evolutionary method and ensemble learning

algorithms has great potential for solving machine learning problems.

To summarize, through the process of researching and examining this

area, the following are the explanations for why the author chose this

topic:

1. This remains an open topic and a promising study area in the multi-

objective optimization community these days. There is still plenty of is-

sues and challenges that need to be resolved (Especially the problem of

balance between convergence and diversity in multi-objective optimiza-

tion problems).

2. There haven’t been many in-depth studies on co-evolution in the

world or in Vietnam up to this point. These frequently concentrate on

thoroughly addressing each minor issue in the realm of co-evolution. A

comprehensive and complete study of the field of co-evolution is still

necessary, and this has significant scientific implications.

3. Machine learning is currently gaining popularity across many facets

of society. A significant issue they are currently dealing with is the

growing number of large-scale, imbalanced datasets, etc. Studies have
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been done on the basic idea of using a co-evolutionary approach to help

machine learning algorithms further promote performance while tack-

ling this challenge. The combination of machine learning (especially

ensemble learning) and a co-evolutionary method has been continually

researched and developed in recent years.

The three factors listed above are the main motivations leading the

author to select the topic “Enhancing the effectiveness of co-evolutionary

methods in multi-objective optimization and applying to data classifica-

tion problems” as the main focus of the thesis’s research.

Objectives and scopes

Objectives The thesis’ primary objectives are: a thorough examination

of the notion of co-evolution; developing a dual population co-evolution

solution for the multi-objective optimization problems that balance con-

vergence and diversity at the same time, and proposing co-evolutionary

algorithms that can be used to solve classification problems.

Scopes The scope of the thesis is limited as follows:

- Experimental datasets: All these datasets are benchmarks, widely

utilized by scientists around the world. The following information is

specific to each data collection used to solve each problem:

+ The problem of balancing convergence and diversity in multi-objective

optimization utilizes the four datasets: ZDT, WFG, DTLZ, and UF

(More details of these datasets are described in the Appendix 4 of the

thesis.)

+ The classification problem uses imbalanced datasets in KEEL dataset

repository.

- Regarding methods of co-evolution:

+ Using co-operative and competitive co-evolutionary methods

+ The co-evolutionary methods use two populations (i.e., the dual

9
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population).

+ The multi-objective models use two objectives.

Contributions

Following is a summary of the thesis’ main contribution to the field of

research:

First, proposing a dual-population paradigm (DPP)-based co-operative

co-evolutionary algorithm for solving multi-objective problems (named

DPP2) with new features:

1. Using a new restricted mating selection mechanism (named RMS2)

to increase the probability of finding one solution in Ap.

2. Using a new strategy of choosing alternative solutions to increase

the probability the offspring are generated from parents in different

populations so they can take advantage of both the diversity and

the convergence).

3. Using a new update mechanism to reduce the running time.

Second, proposing a DPP-based competitive co-evolutionary algorithm

for the multi-objective evolutionary algorithms (named DPPCP) with

new features:

1. Using the neighbor-based selection mechanism (NBSM selection) to

address the imbalanced issue that previous methodologies frequently

have with the co-evolutionary processes between two populations.

2. Using competitive co-evolutionary mechanisms to make two offspring

interact with each other instead of the cooperative co-evolutionary

mechanism.

Third, proposing a multi-objective competitive co-evolutionary algo-

rithm for imbalanced dataset classification problems (named IBDPPCP)

with new features:
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1. Data sampling : IBDPPCP uses a combination of upper and lower

sampling techniques instead of using only the upper sampling as

in the premise research. By using this method, the imbalance is

resolved without causing noisy data in the overlapping area.

2. The combination of a DPP-based algorithm and an ensemble learn-

ing algorithm: Thanks to the ability to find individuals that can

satisfy both convergence and diversity factors, IBDPPCP is suitable

when combined with an ensemble learning algorithm for solving clas-

sification problems.

Fourth, proposing a multi-objective co-operative co-evolutionary algo-

rithm (named IBMCCA) for solving classification with imbalanced data.

The primary contribution of this algorithm is a dual-population cooper-

ative co-evolutionary model to address both FS and IS problems. This

new model allows for finding a set of individuals (or sub-datasets) that

have both convergence and diversity factors. IBMCCA utilizes the same

data sampling and ensemble learning strategies as IBDPPCP. The main

difference between the two algorithms is the co-evolutionary model. IB-

DPPCP uses a competitive model with two populations having the same

individual encoding (i.e., FS and IS); in IBMCCA, two populations use

a cooperative model with two different individual encodings.

Structure of the thesis

This thesis is organized into four chapters as follows:

1. Chapter 1 introduces the background knowledge related to the re-

search problem. Multi-objective optimization techniques will come

initially. An overview of multi-objective co-evolutionary methods is

then introduced. It will go into great length about both cooperative

and competitive co-evolution. The connection between co-evolution

and ensemble learning, in particular, is covered in the final section.
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This is the basis for the following chapter, which presents in more

detail the application of co-evolution to solving classification prob-

lems.

2. The first significant issue that the thesis attempts to address is in-

troduced in Chapter 2. It is a balancing problem between conver-

gence and diversity in multi-objective optimization problems using

the dual population paradigm (DPP). There are two proposed so-

lutions given here. The first is an upgraded version of the original

DPP algorithm (named DPP2). Ideas, details of improvements, and

experiments will be presented. After this version of DPP2, a main

proposed algorithm for this problem will be presented (named DP-

PCP). The details on contributions, advancements, and experiments

are presented.

3. Chapter 3 introduces the applications of co-evolution in the field of

machine learning. Two multi-object cooperative and competitive-

based algorithms for imbalanced classification problems are presented.

The author has employed two dual-population co-evolutionary meth-

ods in this chapter to solve classification challenges.

4. Conclusion and future works: Summary of thesis contents, achieved

issues, and main contributions of the thesis and future research di-

rections.
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Chapter 1

BACKGROUNDS

1.1. Multi-objective optimization

1.1.1. Preliminary concepts

A multi-objective optimization problem (MOP) can be defined as fol-

lows:

Minimize:

F (x) = (f1(x), ..., fm(x))
T (1.1)

Subject to: gi(x) ≤ 0;∀i = 1, ..., p. hj(x) = 0; ∀j = 1, ..., q.

Where, a solution x = (x1, ..., xn) ∈ Ω is a vector of decision vari-

ables; is the decision variable space or simply the decision space. gi(x)

and hj(x) are called constraint functions. If any solution x satisfies all

constraints and variable bounds, it is known as a feasible solution, other-

wise, it is called an infeasible solution. There are m objective functions

F (x) = (f1(x), ..., fm(x))
T ; F : Ω→ ℜm

+ .

where ℜm
+ is called the objective space. For each solution x in the

decision variable space, there exists a point in the objective space.

Definition 1. A solution x(1) can dominate another solution x(2), de-

noted as x(1) ≺ x(2) if and only if: ∀i ∈ {1, ...,m} : fi(x(1)) ≤ fi(x
(2)) and

∃j ∈ {1, ...,m} : fi(x(1)) < fi(x
(2)).

Definition 2. A feasible solution x∗ ∈ Ω is a Pareto optimal solution if

∄x ∈ Ω such that x < x∗.

Definition 3. The set of all Pareto optimal solutions is called the pareto
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set (PS), denoted as PS = {x∗ ∈ Ω | ∄x ∈ Ω, x ≺ x∗}.
Definition 4. The set of all objective function values correspond-

ing to the solutions in PS is called the Pareto front (PF), denoted as

PF = {F (x) | x ∈ PS} .
Definition 5. The ideal objective vector is Z∗ = (f ∗

1 , ..., f
∗
m)

T . Where

f ∗
m is the minimum value of the m-th objective function.

Definition 6. The nadir objective vector is Znad = (fnad
1 , ..., fnad

m )T .

Where fnad
m is the maximum value of the m-th objective function.

1.1.2. Typical MOEAs

a. Non-dominated sorting genetic algorithm II (NSGA-II)

NSGA-II [30] is one of the most common algorithms among Pareto-

based EMO algorithms. The pseudocode of the NSGA-II algorithm is

shown on Algorithm 1. Convergence and diversity are taken into ac-

count in turn in NSGA-II. Individuals are ranked at each generation

using a non-dominated sorting technique. A population is split into var-

ious fronts as a result. Individuals with lower ranks (i.e. corresponds

to better convergence) are preselected. Next, by using a diversity selec-

tion strategy (i.e. crowding distance), individuals on the final front are

chosen up to the size of a population. The maintenance of diversity is

thus secondary in NSGA-II. It only ensures diversity for a small subset

of the population’s solutions; the rest are primarily chosen based on con-

vergence, regardless of their diversity. Due to this, it is difficult to solve

issues with many objectives (more than three), or challenging problems

with a complex Pareto-optimal set.

b. The multiobjective evolutionary algorithm based on de-

composition (MOEA/D)

MOEA/D [130] is a decomposition-based method. It decomposes

MOPs into a set of single-objective optimization sub-problems through
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Algorithm 1: Procedure for NSGAII

procedure NSGAII(N,NA)
t ← 0
Pt← new population(N)
Qt ← ∅
A ← non dominated(Pt)
while not stop criterion do

Rt ← Pt ∪ Qt

F ← fast non dominated sorting(Rt)
Pt+1 ← ∅
i ← 1
while |Fi|+ |Pt+1| ≤ N do
Ci ← crowding distance assigment(Fi)
Pt+1← Pt ∪ Fi

i ← i+1
end while
Fi ← sort(Fi,Ci,’descending’)
Pt+1← Pt+1 ∪ Fi[1 : (N − |Pt+1|)] ▷ fill Pt+1

with the N - |Pt+1| less crowded individuals of Fi

Qt ←selection(Pt+1, N)
Qt ← crossover(Qt)
Qt ← mutation(Qt)
t ← t+1
A ← non dominated(A ∪ Qt)

end while
end procedure

an aggregation method (such as the weighted sum, Tchebycheff, and

boundary intersection approaches [75]). In order to address these sub-

problems, a population-based algorithm is applied. In MOEA/D, each

solution is associated with a sub-problem, and the population consists of

the best solution for each sub-problem. Therefore, the diversity among

these sub-problems will result in diversity in the population. In addition,

a set of evenly spread weight vectors is used by MOEA/D to identify the

search directions. Therefore, MOEAD can produce a uniform distribu-

tion of Pareto solutions. The pseudocode of the algorithm is presented

in Algorithm.2
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Algorithm 2: The MOEA/D general framework

Input:
+ N: The number of the sub-problems considered in MOEA/D
+ λ1, ..., λN : N weight vectors
+ T : the neighborhood size
+ genmax : Thegenerationnumber

Output:
EP

Step 0 - Setup:
Set EP = Ø
gen=0

Step 1 - Initialization
Uniformly randomly generate an initial internal population:
IP = {x1, ..., xN} and set FVi = F (xi).
Initialize Z = (Z1, ...,Zn)

T

Compute the Euclidean distances between any two weight vectors and then
work out the T closest weight vectors to each weight vector.
∀i = 1, ..., N, setB(i) = {i1, ..., iT} where λi1 , ..., λiT are the T closest weight

vectors to λi

Step 2 - Update
For i = 1 to N do
Randomly select two indexes k, l from B(i), and then generate a new

solution y from xk and xl by using genetic operators.
Update of Z,∀j = 1, ..., n, if Zj < fj(y), then setZj = fj(y)
Update of Neighboring Solutions:
For each index j ∈ B(i) if gtc(y|λj,Z) ≤ gtc(y|λj,Z∗) then set

xj = y and FV i = F (yj).
Update of EP: Remove from EP all the vectors dominated by F(y).
Add F(y) to EP if no vector in EP dominate F(y).

Step 3 - Stopping criteria
If gen = genmax, then stop and output EP, otherwise gen = gen + 1, go

to Step 2.

1.2. Co-evolutionary Algorithms

1.2.1. Defining co-evolution

Co-evolution has its roots in the field of biology. Charles Darwin

was the first to mention how flowering plants and insects evolved to-

gether in 1895 [27]. He demonstrated how plants and insects can evolve

through mutual evolutionary changes, even though he did not use the

term “co-evolution”. This work paves the way for numerous further in-
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vestigations into how interactions between species can affect each other’s

evolutionary processes. Around the beginning of the 1940s, plant pathol-

ogists created breeding programs. At first, they created novel cultivars

that were disease-resistant to various degrees. However, this has allowed

disease populations to rapidly evolve in order to outpace the plant’s de-

fenses. This fact requires the development of new plant varieties that

are resistant. As a result, there has been an ongoing cycle of reciprocal

evolution in both plants and illnesses.

The study of the interactions between butterflies and plants by two

authors, Ehrlich and Raven, in 1964 is where the term “co-evolution”

first appeared [38]. Although they did not come up with the concept

of co-evolution initially, their stimulating work helped to promote it

and sparked the interest of numerous generations of co-evolution-focused

scientists. The term “co-evolution” refers to the evolution of two or more

evolutionary entities as a result of reciprocal beneficial selective effects.

A change in plant morphology, for instance, might have an evolutionary

impact on herbivore morphology, which in turn could have an impact

on plant evolution, and vice versa. Although co-evolution is largely a

biological concept, it has been used as an analogy in other disciplines,

including computer science, sociology, and astronomy. Following are

some of the concepts related to co-evolution that have been introduced.

Definition 1.1. co-evolution is reciprocally generated evolutionary change

between two or more species or populations

(According to evolutionary biologist Price (1998))

Definition 1.2. A system is considered co-evolutionary if and only

if fTr
P (x)—the “true” fitness propensity of each evolving individual (or

trait), x—varies with respect to other reciprocally evolving individuals

(or traits).

To help the reader comprehend the various types of potential metrics
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for individuals, the following four definitions are presented [118].

Definition 1.3. Objective measure: A measurement of an individual

is objective if the measure considers that individual independently from

any other individuals, aside from scaling or normalization effects.

Definition 1.4. Subjective measure: A measurement of an individual

is subjective if the measure is not objective.

Definition 1.5. Internal measure: A measurement of an individual

is internal if the measure influences the course of evolution in some way.

Definition 1.6. External measure: A measurement of an individual

is external if the measure cannot influence the course of evolution in any

way.

Given the above definitions, it is tempting to define co-evolution as

follows:

Definition 1.7. co-evolutionary algorithm is an EA that employs

a subjective internal measure for fitness assessment

Traditional EAs evaluate an individual’s fitness objectively, separate

from the population environment in which they are located. CoEAs

operate similarly to standard EAs, with the exception that fitness eval-

uations are subjective rather than objective. Through its interactions

with other individuals in the evolutionary system, an individual is eval-

uated. Simple CoEAs [94] first choose a few individuals from the popu-

lation to serve as the evaluators. Then, each member of the population

is evaluated using these assessors. This evaluation approach ought to

theoretically provide a good approximation of an individual’s genuine

fitness whenever the range of evaluators is sufficiently diverse. The key

benefit of CoEA over regular EA is its divide-and-conquer deconstruc-

tion approach. The CoEA primarily has four benefits [79]. First, by
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breaking the problem down into smaller components, parallelism can ac-

celerate the optimization process. Second, each subproblem is resolved

by a different subpopulation, maintaining a wide variety of solutions [20].

Third, breaking a system down into smaller components makes it more

resilient to mistakes and failures in individual modules, which improves

its capacity to be reused in dynamic contexts [89]. Finally, if the issue

is correctly decomposed, the rapid decrease in performance with a rise

in the number of decision variables can be somewhat mitigated.

1.2.2. Types of co-evolutionary methods

CoEA algorithms can be categorized in a variety of ways, but the most

typical ones are determined by the number of populations and the way

these populations co-evolve.

Based on population number, CoEA can be separated into the follow-

ing three groups [78]:

1. 1-Population co-evolution: A single population’s individuals as-

sess their fitness through competition with one another in games. It

is frequently utilized to develop effective competitive strategies (e.g.,

for checkers or soccer).

2. 2-Population (or dual population) co-evolution: There are

two smaller populations within the larger population. How many

members of sub-population 2 that an individual in sub-population

1 can defeat in a competition serves as a measure of its fitness (and

vice versa). Essentially, sub-population 1 comprises the potential so-

lutions that are of interest to us, and sub-population 2 contains test

cases for those potential solutions. This method is usually utilized

to help sub-population 1 identify strong candidate solutions despite

whatever challenges sub-population 2 may present.

3. N-Population (or multi-population) co-evolution: The prob-
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lem is broken down into n sub-problems; for instance, if the task is to

come up with soccer plans for a team of n robots, each sub-problem

is to figure out a plan for a single robot. An individual’s fitness is

evaluated by choosing members of the other sub-populations, com-

bining them with this individual to make a whole n-sized solution

(in this case, a complete soccer robot team), and then judging the

fitness of that solution. This type of CoEA is frequently employed to

break large problems down into smaller, more manageable problems

in order to lessen their high dimensionality.

Based on the interactions between populations, CoEA can be divided

into two main categories: competitive co-evolution [105] and co-operative

co-evolution [96]. In competitive co-evolution, each individual’s fitness is

assessed by an adversarial battle with others. In contrast, in co-operative

co-evolution, the collaboration and complementarity between individuals

influence each individual’s fitness. Below, a detailed explanation of these

two algorithms’ components will be provided.

1.2.3. co-operative co-evolutionary algorithms

co-operative co-evolutionary algorithms (CCEA) are frequently em-

ployed when an issue can be organically divided into smaller components

(or sub-components). CCEA uses a different population (or species) for

each of these sub-components. Since each individual in a given pop-

ulation only represents a portion of a possible solution to the issue.

Therefore, to calculate fitness, a collaborator is chosen from the other

populations to represent the other sub-components. The objective func-

tion is assessed once the individual is merged with this collaborator to

form a complete solution. How successfully a sub-population ”cooper-

ates” with other species to achieve beneficial outcomes is a measure of

its fitness.
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The decompositional aspect of co-evolution may provide CCEA some

advantages for handling issues that are complex yet highly structured,

whereas classical evolution may be fully applicable to static single-objective

optimization problems of arbitrary complexity. It would seem logical

that a CCEA could coevolve the different sub-components independently

more effectively than a typical EA could (conventional EAs often evolve

the entire structure). In fact, this has been the main driving force behind

co-operative co-evolutionary methods.

In 1994, Potter and De Jong [95] proposed a general CCEA framework

for static function optimization problems. This study paved the way for

future CCEA research. In 2000 [96], these authors used this paradigm

to apply neural network learning to problems. In Potter’s model, each

population has individuals that represent a part of a whole solution,

and these populations evolve nearly independently of one another while

Figure 1.1: Co-operative co-evolution’s architectural framework. The domain evaluation model’s
solid line indicates the requirement for an absolute fitness function.
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Algorithm 3: co-operative co-evolutionary algorithms (CCEA)

Data: P← {P1, P2, ..., PN}
Result: P

1 for population ps ∈ P , all population do
2 Initialize population ps

3 for population ps ∈ P , all population do
4 Evaluate ps

5 t:= 0
6 do
7 for population ps ∈ P , all population do
8 Select parents from population ps
9 Generate offspring from parents

10 Select collaborators from P
11 Make a complete solution via combining offspring with collaborators
12 Evaluate offspring via the fitness of complete solution
13 Select survivors for new population ps

14 t:= t+1
15 until Terminating criteria is met

working in concert to maximize fitness. Such a process can be either

static (i.e., the divisions for the various components are predetermined

and never changed) or dynamic (i.e., populations of components may be

added or subtracted as the run goes on). Other researchers have adapted

or used Potter’s techniques. The CCEA was utilized in [40] by Eriks-

son and Olsson to optimize inventory control. In order to cooperatively

coevolve neural networks, Moriarty and Miikkulainen [86] adopted a dif-

ferent, perhaps more adaptable strategy in 1997. In this instance, the

parent population stands in for various network designs, and the child

population is employed to gather node data. Designs are judged on how

successfully they work with their cooperating nodes to solve an issue,

and the cooperating nodes partake in this fitness. Thus, a node only

gains fitness indirectly by being rewarded for engaging more often and

coming up with successful strategies. The CCEAs have been success-

ful in a number of fields, including function optimization, production

scheduling, constructing artificial neural networks, and room painting.
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1.2.4. Competetive co-evolutionary algorithms

In 1992, the study [55] was the first to put forth a competitive co-

evolution model that sorted networks using the Prey and Predator con-

cept. The transfer of co-evolution from the realm of biology to the field

of computer science is being published for the first time with this paper.

Hillis used two independent populations, one generated by a set of Sort-

ing Networks and the other by a set of test data sets. A fitness score is

given to an individual in one population that represents a prospective

sorting network depending on how successfully it sorts an opponent’s

data set from the other population. Individuals in the second popula-

tion, meanwhile, represent potential data sets. The fitness is determined

by how successfully they trick rival sorting networks. In reality, compet-

itive co-evolution has been the focus of the majority of early research in

co-evolutionary algorithms. Competitive co-evolution can take place be-

tween different populations or within a self-playing population. Multiple

species interact in competitive co-evolution. They compete with one an-

other for access to shared resources and space. The Iterated Prisoner’s

Dilemma [97] as well as identifying strong game strategies in games like

Tic-Tac-Toe and backgammon, have all been solved using single popu-

lation competitive co-evolution.

Competitive co-evolutionary algorithms (CPEA) have been used most

frequently in relation to gaming tactics ( [102], [93]). Additionally, by

creating the idea of competitive fitness to offer a more comprehensive

training environment than standalone fitness functions, it illustrates how

competition can be used to evolve superior solutions. In attempts to coe-

volve complicated agent behaviors, the competition was crucial. Finally,

a range of machine learning issues has been addressed using competitive

approaches ( [92], [81]).

In general, a competitive co-evolution solution goes through the fol-
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lowing processing: Each population’s individuals are first assigned at

random. The first population will then make an effort to fit into the

second group’s environment. The members of the second population

will simultaneously make an effort to fit into the environment that the

first population has built. The relative fitness evaluation function for

each member of both populations will then be computed. The level of

adaptation of a member of this population to the environment produced

by one or a few members of the other population is represented by this

relative evaluation function. Better fit individuals will be chosen for the

following generation based on these relative fitness scores.

In short, the battle for survival among individuals is what drives co-

evolution in the competitive co-evolution paradigm. Competitive co-

Figure 1.2: Competitive co-evolution’s architectural framework. A possible relative interaction
function is shown by the domain evaluation model’s dashed line.
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Algorithm 4: Competitive co-evolutionary algorithms (CPEA)

Data: Ps : SolutionPopulation;Pt : TestPopulation;P
Result: P

1 P ← {Ps, Pt}
2 for population p ∈ P , all population do
3 Initialize population p

4 for population p ∈ P , all population do
5 Evaluate p

6 t:= 0
7 do
8 for population p ∈ P , all population do
9 Select parents from population p

10 Generate offspring from parents
11 if p is Ps then
12 Select competitors from Pt

13 else
14 Select competitors from Ps

15 Evaluate offspring via competing against collaborators
16 Select survivors for new population p
17 t:= t+1
18 until Terminating criteria is met

evolution may result in an arms race when populations compete against

one another to outperform one another and overcome more difficult is-

sues.

1.2.5. Current co-evolution research directions

The algorithms based on the co-evolution technique can be divided as

shown in Figure 2.3.

In general, algorithms are divided into three main groups:

+ The algorithms are based on the co-operative co-evolutionary ap-

proach

+ The algorithms are based on the competitive co-evolutionary ap-

proach

+The algorithms are based on hybridizing both co-operative and com-

petitive approaches.
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Figure 1.3: Classification of co-evolutionary algorithms

a. The algorithms are based on the co-operative co-evolutionary approach

The group of co-operative co-evolution algorithms can be further sub-

divided based on the way decomposing the problem into sub-problems.

It is possible to decompose based on decision variables or objective func-

tions.

Figure 1.4: Co-operative co-evolutionary model based on decomposition by decision variable. Each
sub-population is used to optimize a sub-components (i.e. a small part of the decision variables)

Figure 1.4 illustrates the main idea of the co-operative co-evolutionary

algorithms that break down dependent decision variables. Multi-Objective
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Problem (MOP) is broken down into sub-problems along the search

space. Specifically, after being divided into sub-problems, each of these

sub-parts becomes an individual and is assigned to a population. The

task of each population now is to optimize these sub-parts simultane-

ously. After the optimization process, each offspring needs to be com-

bined with individuals from other populations to form a complete so-

lution. The most difficult of these algorithms is how to break down

the original problem or how to optimize them as well as combine them

after being refined. Division by variable space is difficult, especially

for extremely complicated issues. Typical algorithms for this approach

are [4], [8], [128].

Figure 1.5 displays the model that the MOP is decomposed based

on the objective functions of the problem. Each objective function is

assigned to a certain sub-population, and all these sub-populations are

combined to create an approximation of a distribution over the entire

Pareto front. In this model, each individual is a solution to the MOP.

These individuals are computed with all objective functions, just like in

conventional MOEAs. However, the distinction, in this case, is that the

fitness value of each individual in each sub-population will only be evalu-

Figure 1.5: Collaborative co-evolution model based on objective function decomposition. Each
sub-population represents a single objective function
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ated using the value of the relevant sub-population’s objective function.

In this way, individuals within each sub-population are then navigated

in accordance with each of that sub-population’s objective functions in

order to look for various Pareto Front regions. Typical algorithms for

this approach are [115], [71] [116].

b. The algorithms are based on the competitive co-evolutionary approach

These competing co-evolutionary strategies can be further divided ac-

cording to the manner of resistance, which can be antagonistic based

on adaptive function, the Predator-Prey model, or target solutions. In

the Predator-Prey-based antagonistic model, an instance of the decision

variable space is represented by a predator. The prey, meanwhile, stands

in for the objective function. This model attempts to simulate how a

predator seeks its prey. The predator will only take the weakest prey (or

solutions with the lowest objective function value). Studies that address

this concept include [37] [53].

The adaptive antagonist-based competitive co-evolution algorithms

evaluate fitness differently than traditional multi-objective optimization

methods. It employs a special fitness function that takes into consider-

ation population interdependencies. Different methods [39] can be used

to calculate this function. If there are two populations A and B, we can

use the following techniques to determine the nth individual’s relative

fitness (named CA,n) in population A.

1. Simple fitness: sampling a set of individuals {CB,1, CB,2,. . . , CB,m})
in population B then let CA,n antagonize each CB,i. The relative

fitness value of CA,n is the number of times it wins.

2. Fitness sharing: This method is interested in the similarity of indi-

viduals in the same population. After calculating the SimpleFitness

value of each individual A, divide this value by the Similarity value.
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The Similarity value of each individual is the number of individuals

in population A that beat the same sample of individuals in popu-

lation B. The utilization of this function will result in higher points

being awarded to unusual individuals.

3. Competitive fitness sharing: Suppose that the sampling popu-

lation B includes individuals {CB,1, CB,2,. . . , CB,m}. Nm is the total

number of individuals in population A that beat individual CB,m.

The fitness value of each individual CA,n is defined as follows:

F(CA,n) =
M∑

m=1

1

Nm

(1.2)

This strategy raises the reward points for population A’s members

who defeat population B’s members, which some other members of pop-

ulation A are unable to do.

In competitive coevolution, the method of sampling for confrontation

is also quite important. There are many different ways of sampling

(Figure 1.6), and some strategies can be mentioned as follows:

1. All versus all sampling: Each individual in population A will

compete against all individuals in population B.

2. Random sampling: randomly sample one or more individuals in

population B and bring them up against an individual in population

A.

3. Tournament sampling: Use relative measurement to select the

most effective opponent to battle.

4. All versus best sampling: all individuals in population A compete

with the best individual in population B.

The competitive co-evolution model (Figure 1.7), which is based on
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Figure 1.6: Some patterns of adversarial sampling: (a) all members of population A are pitted
against the best member of population B; (b) each individual play a one-on-one match against each
other; (c) all members of population A are pitted against each other, and (d) a duel is held within

each population before a pair is chosen to engage in combat

the co-evolution of target solutions, operates under the following funda-

mental tenet: performing battle between two populations, one of which

provides potential MOP solutions and the other of which has desired

solutions for each objective function. In other words, for any objective

function, this population contains the best feasible solutions. Following

each evolution generation, these outstanding solutions are updated. The

typical studies for this model are [76] [88].

c. The hybrid co-evolutionary algorithms

There are now numerous studies [43] demonstrating that in co-evolutionary

techniques, maintaining a balance between cooperation and competition

is necessary to avoid algorithmic instability. In this hybrid model, the

decomposition process is self-adapting rather than being fixed from the

start. The model is designed to achieve both convergence and diversity

in the most efficient manner possible.

Similar to the co-operative co-evolution model, individuals from pop-

ulations will evolve separately and collaborate with each other to solve

the MOP, but this model also contains a co-evolutionary competitive
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Figure 1.7: The competitive co-evolution model is based on the target solution set, the left
population contains the set of possible solutions and the right population (the target population)

contains the best achievable target vectors

mechanism. Individuals engage in an arms race as a result of the com-

petitive mechanism, which enhances the performance of the ecosystem

as a whole. Additionally, it enables the discovery of component interde-

pendencies. This co-operative/competitive hybrid model offers a method

that permits the employment of strategies that maintain the diversity of

both mechanisms. In co-evolution, the division of MOP into various sub-

populations and the concurrent evolution of these populations contribute

to population variety. However, the inherent behaviors of each member

of each sub-population do not preserve this diversity trait. This is made

possible via competitive co-evolution [26]. The search space within each

population is widened as a result of individuals competing with one an-

other for survival. These case studies employ this strategy: [24,52].

1.3. The co-evolutionary algorithms in machine learning

Co-evolutionary approaches have been increasingly popular in recent

years as solutions to machine learning problems. Some common applica-
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tions of co-evolution for machine learning problems can be mentioned as

neural network co-evolution [90]; multi-agent reinforcement learning [60];

Clustering and classification [72] [54]; Time series prediction [21] [129]

Currently, machine learning algorithms are facing a number of data-

related problems such as insufficient, imbalanced, incomplete, high-

dimensional, or abundant [90]. Within the scope of this thesis, the

author has focused on solving classification problems with imbalanced

data. The proposed methodology’s core is composed of a number of

components. First, feature selection (FS) is used to simplify over-

lapping areas and make it easier to create rules to differentiate between

classes. Second, instance selection (IS) is utilized to select samples

from all classes. Determining the best class distribution for the learning

task will address the imbalance directly and may also help to elimi-

nate noise and challenge borderline samples. Finally, the combination

of a co-evolutionary approach and an ensemble learning algorithm

is utilized to produce the final results. Up until now, there have been

many proposals to use co-evolution to solve each of the above problems.

In [58], the authors proposed a competitive co-evolution paradigm for

FS and utilized this model for the diagnosis of pulmonary emphysema

problems. The Spider Monkey Optimization (SMO) algorithm and the

Paddy Field Algorithm (PFA) are the two bio-inspired algorithms that

serve as the model’s foundation. A co-operative co-evolution for FS in

Big data with random feature grouping (named CCFSRFG) was pro-

posed in [99]. The feature vector is dynamically divided by CCFSRFG

into smaller, lower-dimensional sub-datasets, and each sub-dataset is

represented by a sub-population. In [63], for three-objective feature se-

lection, the authors suggested a multi-objective large-scale co-operative

co-evolutionary method, named MLFS-CCDE. In this method, a frame-

work for co-operative searching is created to quickly and effectively find
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the best feature subset. Besides, this method established three objectives

to direct the evolution of feature combinations: feature number, classi-

fication accuracy, and total information gain. In this method, a cluster-

based decomposition technique is developed as part of the framework’s

decomposition process to minimize computation. In [50], the authors in-

troduced a co-operative co-evolutionary approach for multilabel problem

instance selection. co-operative evolution occurs between two separate

populations. One population focuses on finding solutions for each label,

while the second population integrates these findings to seek solutions

for the multilabel dataset challenges.

It has been established that the combination of co-evolutionary algo-

rithm and ensemble learning are superior. While the basis learners

for the ensemble learning solution must simultaneously assure perfor-

mance (i.e., convergence) and variety (i.e., diversity). Since these

base learners are initialized randomly in conventional ensemble machine

learning algorithms, it is challenging to achieve the two factors mentioned

above right away. The co-evolution approach helps to speed up this

procedure and improve the effectiveness of ensemble learning methods.

There have been many studies on this issue. In [51], a co-operative co-

evolution method for creating neural network ensembles was presented.

This model has two key goals: first, improving the combination of the

trained individual networks; and second, fostering the co-operative evo-

lution of such networks rather than individual network training. To

accomplish this, this method took into account not only how well each

network performs in the given task but also how well it cooperates with

the other networks. Finally, rather than choosing all networks for ensem-

ble learning, a subset of networks is chosen after an evolution process.

In [87], the authors proposed a co-operative co-evolutionary algorithm

to create an ensemble of accurate and diverse multi-label classifiers. The
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algorithm evolves several sub-populations simultaneously, each of which

utilizes a different subset of the training data. Also, each individual is

focused only on a small subset of labels. This way, the ensemble has a

greater diversity of members.

1.4. The imbalanced data classification problem

1.4.1. Preliminary concepts

Definition 1: Imbalanced dataset

A dataset is said to be imbalanced when a class or a set of classes is

represented in a smaller number than the other classes. The majority

class, also known as the negative class, is the set of data that contains

the greatest number of instances, whereas the minority class, also known

as the positive class, contains the fewest examples.

Definition 2: Imbalanced Ratio

The degree of imbalance, which measures the proportion of data in-

stances in the majority class (nmajority) to those in the minority class

(nminority), can be used to determine whether or not a set of data is

unbalanced. The imbalanced ratio can be defined by Eq (1.3).

Imbalanced Ratio (IR) =
nmajority

nminority

(1.3)

Definition 3: Overlapping ratio

When there is shared data across each class, overlap happens. The

scenario would be more complicated for classification if overlap happens

along with unbalanced data. One technique for determining the overlap-

ping ratio is the maximum Fisher’s Discriminant Ratio (FD). The FD is

defined by Eq (1.4).
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FDi =
(µminority − µmajority)

2
i

(σ2
minority − σ2

majority)i
(1.4)

where

FDi is Fisher’s Discriminant Ratio of feature i.

µminority, µmajority are mean of minority class and majority class,

respectively

σ2
minority, σ

2
majority are variance of minority class and majority class,

respectively

1.4.2. Imbalanced approaches

Figure 1.8: Approaches to address imbalanced data classification

To address this issue, numerous methods are now being considered.

Three major groupings of these solutions can be identified: data-level

algorithms [10], algorithm-level algorithms [7] and algorithms based on

cost-sensitive learning [34]. Algorithm-level algorithms consist of devel-

oping brand-new algorithms or improving already-existing ones to cope

with uneven datasets [77]. Cost-sensitive learning is a strategy com-

bining data- and algorithmic-level approaches while taking into account

larger costs for misclassifying samples from the positive class in compar-

ison to the negative ones [5, 48]. Currently, a group of data-level algo-

rithms is most commonly applied. Resampling can be done in three dif-

ferent ways: (a) undersampling the majority class; (b) oversampling the
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minority class. (c) a hybrid strategy that incorporates (a) and (b) [59].

The undersampling technique involves taking out certain samples from

the initial data set until an equilibrium ratio is obtained. The data to

be removed may be chosen at random or, more effectively, in accordance

with predetermined criteria, such as the exclusion of samples from the in-

put space’s outer regions. Edited Nearest Neighbor (ENN) [120], Tomek

link [108], and Random Undersampling (RU) [85] are a few examples

of representative undersampling algorithms. On the other hand, the

oversampling strategy balances the original database’s imbalance by in-

cluding more samples from the minority class. This can be accomplished

by both copying already-existing uncommon samples and producing new

ones in a particular area of the input space. Duplication can take the

form of random selection or the deliberate selection of samples that fall

on the borderline between rare and common samples, forcing the clas-

sifier to assign certain spatial regions to the rare class. The SMOTE

algorithm [22] is a typically efficient algorithm that has shown the most

feasible results in methods related to data preprocessing. However, a

significant problem with this method is that it usually produces noise

between marginal outliers and inliers, and generating a lot of samples

can result in overgeneralization. This issue can be resolved by using un-

dersampling methods (e.g., ENN or Tomek’s link) to clean the SMOTE-

caused space (i.e., removing some instances from the overlapped areas).

Because of this, the SMOTE-ENN and SMOTE-Tomek’slink combina-

tions are two that are widely employed. In [17], a brand-new resampling

technique called SUNDO (Similarity-based Undersampling and Normal

Distribution-based Oversampling) was developed by the authors. This

method combines oversampling and undersampling. The proposed ap-

proach shows better performance than the commonly used strategy that

combines random undersampling with SMOTE oversampling. Some
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publications [35,41] demonstrate that combining undersampling the ma-

jority class with oversampling the minority class can improve classifier

performance. This is what spurred the author to employ a combined

resampling approach to this issue.

1.4.3. Resampling algorithms

a. Synthetic minority over-sampling technique (SMOTE)

Based on the feature space similarities between real minority samples,

SMOTE produces synthetic samples. Every sample in the minority class

xi is compared to its k nearest neighbors, with k as a user-defined pa-

rameter. These neighbors are determined based on Euclidean distance.

The new synthetic instance’s feature vector is then determined using the

Figure 1.9: An example of generating new instance using the SMOTE algorithm. There are two
main steps: the first step selects the K nearest neighbors to the current sample, and the second one
chooses one of the K nearest neighbors, then generates a new sample on the line connecting the

current sample and the selected neighbor.

formula 1.5:

xnew = xi + (x̂i − xi) x δ (1.5)

where xi is the current minority sample.
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Finally, at the line between xi and x̂i a new synthetic instance, xnew

is produced. This technique is repeated until enough instances are pro-

duced to reach the user-specified target balancing ratio.

b. SMOTE-Tomek

To understand how this algorithm works, it is necessary to first under-

stand the concept of a Tomek Link. Mathematically, it can be expressed

as follows:

Definition 1.8. Tomek Link

Let d(xi, xj) stand for the Euclidean distance between xi and xj, where

xi denotes sample that belongs to the minority class and xj represents

sample that belongs to the majority class. If there isn’t a sample, xk

meets the following condition:

1. d(xi, xk) < d(xi, xj), or

2. d(xj, xk) < d(xi, xj)

then the pair of (xi, xj) is a Tomek Link.

Figure 1.10 shows an illustration of a Tomek link. When two samples

are connected by a Tomek link, either one of the samples is a noise or

both samples are in close proximity to a border. Following the oversam-

pling process, the classification performance can be enhanced by using

this result to remove undesirable overlaps between the minor and major

classes. The SMOTE-Tomek technique [9] employs SMOTE to balance

the unbalanced dataset first, and then it removes all Tomek linkages from

the dataset to eliminate overlapping instances and, as a result, improve

the performance of the classifiers with regard to the class imbalance

problem.

c. SMOTE-ENN

SMOTE-ENN [10,48] implements SMOTE for the oversampling phase

and then employs ENN to remove instances that are overlapping. The
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Figure 1.10: An example of Tomek link. When two samples are connected by a Tomek link, either
one of the samples is a noise or both samples are in close proximity to a border.

edited nearest-neighbor (ENN) approach uses the nearest-neighbor algo-

rithm to eliminate samples whose class labels don’t match those of most

of their K-nearest neighbors. In other words, if a high proportion of the

neighbors are from the majority class, this sample (from the minority

Figure 1.11: An example of ENN.The samples whose class labels don’t match those of most of their
K-nearest neighbor will be eliminated.
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class) and its K-nearest neighbor are eliminated. In this way, ENN helps

to clean overlapping occurrences. When the number of nearest neigh-

bors is set to three, for instance, ENN eliminates all instances that don’t

match two of the three nearest neighbor examples. Figure 1.11 depicts

an illustration of an ENN.

It can be seen that when the class of the observation and the majority

class of the observation’s K-nearest neighbor are different, this method is

more effective than Tomek Links because it removes both the observation

and its K-nearest neighbor rather than just the observation and its 1-

nearest neighbor when the classes are different. As a result, ENN is

anticipated to provide more thorough data cleansing than Tomek Links.

In this study, SMOTE-ENN is used as a data preprocessing step.

1.4.4. Ensemble learning

Algorithm-level algorithms, in general, can be in the form of a single or

a combination of many algorithms in the form of ensemble learning (EL)

[48]. A group (or ensemble) of base learners, or models, collaborate to

make a better final prediction. This technique is referred to as ensemble

learning. Due to significant bias or variation, a single model (sometimes

referred to as a base or weak learner) may not perform effectively on its

own. However, when weak learners are combined, they might become

strong learners since this minimizes bias or variation and improves model

performance. Bagging (also known as bootstrap aggregation) [13] and

boosting [47] are the two most common types in ensemble learning.

The main idea of bagging (Figure.1.12A) is to subdivide data into

various sub-groups with replacement (meaning that the individual data

points can be chosen more than once). These groups are randomly cho-

sen. Following independent training of these weak models, the average

or majority of those predictions will produce a more accurate estimate,
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depending on the task (regression or classification). As a point of inter-

est, the random forest technique is viewed as an extension of the bagging

approach, employing both bagging and feature randomness to produce

an uncorrelated forest of decision trees. One thing to keep in mind is

that by generating a large number of sub-datasets from which to build

models, these models have a high degree of diversity (i.e., a large differ-

ence between them). This is one of the important factors that will help

the ensemble learning model perform better.

One significant distinction between bagging and boosting procedures

is that, while models are trained concurrently in bagging, they are taught

sequentially in boosting (Figure.1.12B). The fundamental idea behind

boosting solutions is that difficult data samples are weighted higher than

other data so that in the next iteration the models will focus on process-

ing these samples. This approach is helpful for handling classification

issues with an imbalanced dataset. Minority-class data will be viewed as

more challenging data, and there is a greater likelihood that the models

will choose them over samples from the majority class to concentrate on

solving.

One point to emphasize here, EL is a method that combines multiple

Figure 1.12: Illustrations of (A) bagging and (B) boosting ensemble algorithms [123]
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machine learning models to improve prediction performance compared to

using a single individual model. To be successful, EL requires diversity

in the base models and the ability to efficiently synthesize information

from these models. Specifically, EL needs to employ diverse base models

(i.e. classifiers). This means that the models should operate differently

or be trained on different subsets of data. This helps reduce reliance on

a specific model and creates diversity in predictions. While diversity is

important, EL also needs convergence, meaning that base models should

start from different initial points but ultimately converge to the same

optimal solution or close to it. This ensures that the ensemble is not

scattered and does not produce contradictory predictions.

1.4.5. C4.5 algorithm

The C4.5 algorithm [103], an improvement on the ID3 algorithm, was

put forth by Ross Quinlan in 1991. Based on the normalized information

gain, a tree classifier is built using this algorithm. It is thought that

this technique, which is frequently applied to classification problems,

is “a landmark decision tree program that is possibly the most widely

used machine learning tool in practice to date”. Three factors led to

the selection of this algorithm as the fundamental learner. First of all,

this approach is frequently applied to unbalanced data in modern times.

The second is its effectiveness and speed of execution. In order to avoid

distorting the overall complexity of the approach due to the abundance

of individual fitness assessments in evolution, a learner with a quick

computation speed must be utilized, and finally, this is the algorithm

frequently used in ensemble learning algorithms. One point to note here

is that the C4.5 is known to do an internal feature selection process on

its own based on the information obtained. By doing a preselection of

the variables based on the intrinsic characteristics of the problem, the

way the author in this research seeks to aid C4.5 learning.
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1.5. Performance evaluation in multi-objective optimization

When measuring the performance of MOEAs, two common factors

are considered: convergence (the closeness between the obtained solu-

tion set and the true Pareto optimal front) and diversity (the spread

and distribution of solutions on the Pareto front). There exist a number

of performance metrics to evaluate these factors, such as generational

distance (GD) [11], spacing metric (SP) [11], hypervolume (HV) [73]

and inverted generational distance (IGD) [64], inverted generational dis-

tance plus (IGD+), or stability [29]. Figure.2.9 shows the ability of each

metric. The GD and SP metrics evaluate convergence and uniformity,

respectively. Meanwhile, the IGD as well as the HV metrics measure not

only the convergence but also the diversity of a solution set.

The generational distance (GD) [112] The average distance be-

tween a set of evolutionarily discovered solutions (denoted P), and the

global POF is known as the GD. The first-norm formula is given as:

GD =

∑n
i=1 di
n

(1.6)

where n is the size of P, and di is the Euclidean distance (in objective

space) between solution I and the closest solution in the POF. The con-

vergence component of performance is taken into account with this mea-

surement. As a result, it is possible that the set of solutions is extremely

close to the POF but does not entirely cover it.

The Inverse generational distance (IGD) [112]: This metric ac-

counts for both convergence and diversity across the entire POF. The

following is the IGD first-norm equation:

IGD =

∑N
i=1 di

N
(1.7)
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where N is the size of the POF, di is the Euclidean distance (in objective

space) between solution I in the POF and the closest solution in P.

Hypervolume indicator (HV) [131]. For real-world applications,

which frequently do not have a POF, GD and IGD are not practical. HV

is measured as the hypervolume in an objective space that is dominated

by a collection of non-dominated points. Typically, the reference points

in objective space are the anti-optimal or worst-possible points. The

disadvantage of this measurement is that the computation time is longer

than the two IGD and GD measurements.

1.6. Benchmark MOPs

In this thesis, a collection of multi-objective test functions is employed

to test the MOEAs’ performance. These test functions include multi-

modality, non-convexity, and discontinuity problems that are known to

be challenging for most MOEAs to solve in general. Some issues in-

clude two or three objective functions with disconnected and asymmet-

ric Pareto fronts, which makes it difficult for MOEAs to reach all the

regions in the true Pareto front.

1. ZDT test problems: these test problems are proposed by [131].

The ZDT set contains convex, concave, non-concave, multi-modal,

and disconnected POF.

2. DTLZ test problems: [31] have proposed a set of test functions

to check an MOEA’s ability to converge to the true Pareto front in

problems with three or more objectives. This set contains seven test

problems.

3. UF test problems: For the 2009 IEEE Congress on Evolution-

ary Computation (CEC) algorithm competition, Qingfu Zhang et

al. [126] offered a set of unconstrained (bound constrained) MOP
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test instances and a collection of generally constrained test instances.

Ten UC test problems are included in this collection.

4. WFG test problems: Simon Huband, Luigi Barone, LyndonWhile,

and Phil Hingston [56] introduced the WFG. There are nine distinct

scalable multi-objective unconstrained problems in this collection

(both in their objectives and in their decision vectors). Nonsepara-

ble problems, deceiving problems, a genuinely degenerate problem,

a mixed-shape Pareto front problem, problems with dependencies

between position- and distance-related factors, and problems with

a scalable number of position-related parameters are all included

in the WFG. The WFG test suite offers a more accurate way to

evaluate how well optimization methods work on a variety of issues.

More details of these test problems are described in the Appendix 4 of

the thesis.

1.7. Summary

In this chapter, the author introduces fundamental knowledge related

to the contents used in the thesis. Specifically, definitions of multi-

objective optimization as well as typical multi-objective optimization

algorithms are introduced. Definitions, methods of co-evolution (specif-

ically, co-operative and competitive co-evolution), related studies on

these types of co-evolution, and the relationship between co-evolution

and the field of machine learning are also introduced. Next, the prob-

lem of classification with imbalanced data, approaches to solving it, and

solving algorithms are presented. Finally, standard multi-objective op-

timization measures and problems are introduced.
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Chapter 2

THE DUAL-POPULATION CO-EVOLUTIONARY

METHODS FOR SOLVING MULTI-OBJECTIVE

PROBLEMS

This chapter studies a very important issue in the field of multi-

objective optimization: the balance between convergence and diversity

in these algorithms. Two methods introduced in this chapter all use

the dual population co-evolution approach. Two populations are uti-

lized in these methods, one of which operates on the Pareto mechanism

(which prefers convergence) and the other on the decomposition mech-

anism (which prefers diversity). This dual population evolution will

hopefully produce new solutions that meet both convergence and diver-

sity criteria. The first proposed algorithm is a co-operative co-evolution

algorithm, which is an extended version of a prerequisite study. This

algorithm allows for improving the probability that a child can be pro-

duced from two parents drawn from two populations so that the traits of

both parents can be obtained. Besides, the proposed algorithm also has

a mechanism to reduce its execution time. The second algorithm uses

a competitive co-evolution mechanism. The way in which the child is

created as well as the interaction between the two parents in this method

are completely different from the methods proposed earlier. By using a

solution selection mechanism to create solution parents in each popula-

tion and then using a competitive mechanism to produce offspring that

fulfill both convergence and diversity criteria. The first proposed method

was published in [C1] while the second one was published in [J1].
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2.1. Introduction

Recently, there have been many studies addressing the problem of bal-

ancing convergence and diversity in solving more complex problems such

as constrained multi-objective optimization problems (CMOPs) ( [126]-

[131]), dynamic multi-objective optimization [67], many objectives ( [73]-

[1]), or ensemble learning problems (with the objectives of maximizing

accuracy and diversity of the ensemble). The main idea of these studies is

based on a combination of Pareto-based and decomposition-based meth-

ods. In [126], the authors used a co-evolutionary algorithm using the

two-archive strategy (called C-TAEA) for solving the CMOPs. In par-

ticular, C-TAEA utilized two populations, one named the convergence-

oriented archive (CA) and the other named the diversity-oriented archive

(DA). CA’s mission is to maintain convergence and feasibility. The DA,

meanwhile, is responsible for preserving the convergence and diversity

of the evolution process. The empirical results on benchmark and real-

world problems showed the competitiveness of the proposed method in

comparison with other state-of-the-art algorithms.

In [69], Ke Li et.al. dealt with convergence and diversity simultane-

ously by employing a dual-population co-operative co-evolution

paradigm (named ED/DPP or abbreviated as DPP). With the

first population, a Pareto-based mechanism was operated in order to

maintain a solution set that was satisfactory. The solutions for this pop-

ulation are randomly spread. Regarding the second population, diver-

sity was preserved by the application of a decomposition-based mech-

anism. In order to guarantee this trait, solutions in this population

must be uniformly spread. Finally, a restricted mating selection mech-

anism (RMS) was employed to harmonize interactions between two co-

evolving populations. In the RMS, two mating parents are chosen from

both populations. Each of them is restrictively selected from its neigh-
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boring sub-regions with a high probability. Because of this selection,

there is a possibility that the solution in the first population may not

be found. If this happens, a alternative solution can be taken from the

corresponding sub-region in the second population. In such a case, both

mating parents are selected from the same population, rendering the

co-evolutionary mechanism meaningless. Ke Li et.al. and other authors

have continued to develop this approach in order to solve additional prob-

lems, such as constrained [65], dynamic [23, 66] and combinatorial [16]

multi-objective optimization, or even practical applications like SQL in-

jection testing [74], cross-project defect prediction [70] and vehicle rout-

ing and scheduling problem [114], as a result of the initial success in

using the dual population approach for common multi-objective opti-

mization problems. Inspired by the co-evolution paradigm with

encouraging results [69], this study continues to explore in this

direction with some improvements. Specifically, firstly, the author

improves this model by proposing a new restricted selection mechanism

(named RMS2) and some improvements in the DPP model to shorten the

running time as well as achieve better results (this algorithm is known as

DPP2). Secondly, a competitive co-evolutionary algorithm is developed

to solve multiobjective optimization problems (named DPPCP). The dif-

ference between DPPCP and existing studies is detailed as follows: First,

this study utilizes an alternative mating selection mechanism instead of

the RMS mechanism to select two mating parents. Second, to generate

two offspring from the selected parents, this study uses a competitive

model instead of the co-operative one.

2.2. The dual-population paradigm (DPP)

Given in Figure.2.1 is the general architecture of the DPP model [69],

which employed two co-evolving populations. The Pareto-based mecha-
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nism is used in the first population (named Ap) and the decomposition-

based mechanism is used in the second population (named Ad). These

populations engage in parallel evolution. At each generation, a restricted

mating selection mechanism (RMS) allows them to interact with each

other.

In the RMS, the mating parent includes three solutions, of which two

are selected from Ad and the remaining one is selected from Ap. Thanks

to this way, the parents could pass on all the positive characteristics (i.e.,

convergence and diversity) to the offspring. To update both Ap and Ad,

the offspring utilizes the corresponding archiving mechanism.

In the RMS process, there are two cases. In the first case, if no solu-

tion is included in the selected sub-region in Ap, an alternative solution

will be chosen by the RMS in the corresponding one in Ad. In the sec-

ond case, if more than one solution is found in the sub-region, only one

solution will be selected.

Figure 2.1: The pseudo-code of the DPP algorithm. After selecting three solutions from two
populations, DPP uses the mate operator of the DE algorithm to generate an offspring solution.

Then, this solution is updated into the two original populations.
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This algorithm gives some promising results. However, there are two

areas for possible improvement, as discussed below:

1. Restricted mating selection method:

In DPP, a neighborhood of a sub-region is defined as a set of its several

closest sub-regions. To take advantage of neighborhood information,

the authors specify the neighborhood of each sub-region based on the

Euclidean distance between unit vectors. The authors restrict the mating

parents to neighboring sub-regions with a high probability (and there is

only a low probability that these mating parents will be selected from the

whole population). However, they only randomly select a neighboring

sub-region from Ap regardless of whether this sub-region contains any

solutions in the Ap or not. This leads to a high possibility that the

selected sub-region does not contain any solutions (so an alternative

solution has to be borrowed from the corresponding sub-region in Ad).

This may lead to an imbalance between the two populations.

2. The interaction between two co-evolving populations:

In DPP, the authors define interaction as the way to generate offspring

from mating parents. To be specific, they use differential evolution (DE)

for offspring generation. This means they need three solutions (such as,

xG
r1, x

G
r2, x

G
r3, where xG

r3 is the current solution, xG
r1 is a solution selected

from Ap and xG
r2 is a solution selected from Ad) to create new offspring

(xG+1
i ).

xG+1
i = xG

r3 + F ∗ (xG
r1 − xG

r2) (2.1)

It is worth noting that in Eq.2.1, F ∗ (xG
r1 − xG

r2) is a direction vector.

This vector is vital because it may help to direct the current vector to a

new location that is closer to the global extremes, or maybe even make

it move further away from this position. Take Figure.[2.2] as an exam-

ple. In case 1, using Eq.2.1, from the three parents xG
r1, x

G
r2, x

G
r3, we can

obtain an offspring solution xG+1
i whose position is closer to the global
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Figure 2.2: The way to generate offspring from mating parents using DE operators

extreme position (denoted by Min) than its parents. On the contrary, in

case 2, also using Eq.2.1, although the parents xG
r1, x

G
r2, x

G
r3 are close to

Min, the offspring solution xG+1
i is actually further away from Min than

its parents. In DPP, the authors select xG
r3 and xG

r1 from Ad and xG
r2 from

Ap with the hope that xG
r1 has good convergence properties and xG

r2 has

promising diversity. In this way, we have a large chance of generating

offspring that have both advantages. However, there still exist two

major drawbacks:

(+) Choosing two out of three solutions from the Ad and only one from

the Ap may cause an imbalance in the co-evolutionary process.

(+) Since the direction vector is made up of two solutions in two dif-

ferent populations, it could lead to unpromising outcomes, especially

when the two populations are imbalanced (i.e., the convergence of one

population is much better than the other). Let us consider a simple

example in Figure.2.3. xG
r2 is quite close to the Pareto front. Meanwhile,

xG
r1 is far from the Pareto front. Suppose that we are running with the

Ad population. By iterating over each sub-region, for each sub-region

(assuming the current sub-region contains xG
r3), the author makes a ran-

dom selection of two neighboring sub-regions (e.g., NB1, NB2). In these

2 sub-regions, NB1 contains a solution (e.g., xG
r2), while NB2 does not

contain any solutions. In this case, NB2 will borrow a solution in the
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corresponding sub-region for the Ap population (e.g., xG
r1). After mating,

based on Eq.2.1,we might obtain the offspring xG+1
i . It can be seen that

xG+1
i has shifted to a position that is far from the Pareto-front. This

leads to poorer results.

This study attempts to address the aforementioned draw-

Figure 2.3: A simple illustration of generating offspring from mating parents

backs. The author proposes a new dual-population competitive co-

evolutionary algorithm named DPPCP (The dual-population competi-

tive co-evolutionary algorithm). This algorithm differs from the DPP

model in two ways. First, it uses competitive co-evolution rather than

co-evolution to interact between two co-evolving populations. Second, it

uses a neighbor-based selection mechanism (NBSM) instead of the RMS

to select three different solutions for each distinct population. These two

proposed algorithms (i.e., DPP2 and DPPCP) are explained in more de-

tail in the next sections.

2.3. A dual-population co-operative co-evolutionary method for

solving multi-objective problems (DPP2)

The general diagram of the modified dual-population algorithm (DPP2)

is given in Figure.2.4 and the pseudo-code of this algorithm is shown in
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0.9

Figure 2.4: Diagram of the DPP algorithm. In the first case, the selected neighborhood sub-region
does not contain any solution (the alternative solution is selected from the corresponding sub-region
in Ad), whereas in the second case, this sub-region contains at least one solution (a random solution

in this sub-region is selected).
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Algorithm.5 A more detailed explanation of DPP will be shown here.

In the first step, Ap and Ad (for simplicity, they have the same size N)

are randomly initialized. N solutions in Ad are evenly assigned to N sub-

regions (according to N unit vectors). Later, in the process of evolution,

each sub-region always has only one solution. This is to guarantee that

Ad always has an even distribution (i.e., diversity) in objective space.

Whereas, N solutions in Ap will be randomly assigned to N sub-regions.

This means that more than one solution can be in the same sub-region,

and there are also sub-regions that don’t contain any solutions. Next,

each solution specifies the T closest neighborhood sub-regions based on

the Euclidean distance between unit vectors.

As mentioned previously. In [124], the authors used an RMS mecha-

nism to select two mating parents. Ideally, one solution is selected from

Ap and the other from Ad. However, there is no guarantee that each

solution in Ap is associated with a sub-region. Hence, when Ap does not

contain any solution in the selected sub-region, RMS utilizes an alter-

native solution from the corresponding sub-region in Ad (see case 1 in

Figure.2.4). At this time, the offspring are generated from parents in

the same population. As a result, the offspring cannot take advantage

of both populations. This might lead to an imbalance between diversity

and convergence.

After the selection process, two mating parents (denoted to xr2 and

xr3) will be selected for the co-operative process. To generate new off-

spring from these mating parents, the author borrows the reproduction

idea from MOEA/D-DE [64].

One thing to be underlined here is that the new offspring need to be

assigned to a certain sub-region. In this research, this offspring belongs

to the sub-region that has the minimum Euclidian distance between its

unit vector and the offspring’s objective vector.
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Finally, the new offspring is used to update each of Ap and Ad, respec-

tively.

In general, the DPP2 has three main differences from the

DPP:

First, when choosing one solution in Ap, instead of just selecting from

a selected neighborhood sub-region, the author will select from all T

neighborhood sub-regions. By doing this, the probability of finding one

solution in Ap will be much higher than in RMS.

Second, in case all T neighborhood sub-regions do not contain any

solution. Instead of choosing an alternative solution in Ad, the author

randomly selects a solution in Ap. In this way, the offspring are generated

from parents in different populations, so they can take advantage of all

the advantages of both parents (i.e., diversity and convergence).

Third, the update procedure for Ap is different from the original DPP.

In particular, whenever a new offspring is generated, it will be stored in

an offspring list (i.e., offSpringAp in Algorithm.2.4) instead of being

updated right away to Ap. After a generation finishes, offSpringAp

will be combined with Ap and the author uses the crowding distance

sorting method (CDSM) in the combined population to select the N

best solutions for the new population. The reason is that the CDSM is

a really time-consuming method. Assuming that the maximum number

of generations is M = 300.000 and the population size is N = 300, then

there are 300.000 new offspring generated. Thus, the CDSM will be

called 300.000 times in the DPP. Meanwhile, 1000 is the number for

DPP2. Apparently, with this new update mechanism, the computing

time has been greatly reduced (i.e., N times).

In summary, based on the above discussion, we can conclude that

DPP2 has, in principle, many potentials for tackling this kind of problem.
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Algorithm 5: DPP2 algorithm

input : Maximum number of generations (M)
Neightborhood Size (T)
Population size (N)

output: Final Population P

1 [Ap, Ad] = initializePopulation()
2 W = InitializeUniformWeight()
3 B = InitializeNeighborhood()
4 Z∗ = InitializeIdealPoint()

5 Znad = InitializeNadirPoint()
6 m←0
7 while m < M do
8 offspringAp ← ∅
9 for i← 1 to N do

10 Q= RMS2 (Ap, Ad, m, Bm) (Algorithm 6)
11 Child = CoOperativeMating(Q)
12 Mutate(Child);
13 Update Sub-Region index for Child

14 Update Idea point Z∗ and nadir point Znad

15 Update Ad

16 Add Child to offspringAp
17 m++;

18 U = Union(offspringAp, Ap)
19 Ap = crowdingDistanceSelection(U)

Algorithm 6: RMS2(Ap,Ad,m,Bm)

input : Ap (Pareto-based archive)
Ad (Decomposition-based archive)
m: current subregion index
Bm: A Set contains neighborhood indexes of current subregion.
T: the neighborhood size;
N: the Population size

output: Two mating parent(Q).

1 P1 = MatSelectionAp() (Algorithm 7)
2 P2 = MatSelectionAd() (Algorithm 8)
3 ReturnQ = (P1, P2)
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Algorithm 7: MatSelectionAp(Ap,m,Bm)

input : Ap(Pareto-based archive)
m: current subregion index
Bm: A Set contains neighborhood indexes of the current subregion.
T: the neighborhood size;
N: the Population size

output: A subregion index.

1 listNeighborAp← ∅
2 if rand < neighborhoodSelectionProbability then

// Select a sub-region index in Ap

3 for i← 0 to T do
4 for j ← 0 to N do
5 if Ap[j] ∈ Bm[i] then
6 Return j;

7 else
8 Randomly select an index from {1, 2, ..., N}

Algorithm 8: MatSelectionAd(Ad,m,Bm)

input : Ad(Decomposition-based archive)
m: current subregion index
Bm: A Set contains neighborhood indexes of the current subregion.
T: the neighborhood size;
N: the Population size

output: a subregion index.

1 if rand < neighborhoodSelectionProbability then
2 Randomly select an index from Bm

3 else
4 Randomly select an index from {1, 2, ..., N}
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2.4. The dual-population competitive co-evolutionary method

for solving multi-objective problems (DPPCP)

Figure 2.5: System architecture of the dual-population competitive co-evolutionary method. Each
population selects three solutions to create offspring. Then, these two offspring compete against each

other using two different mechanisms. The winner of the competition is selected to update the
population using the corresponding mechanism.

The general diagram of the DPPCP is given in Figure.2.5 and the

pseudo-code of the proposed algorithm DPPCP is shown in Algorithm

9. There are two co-evolving populations: the first one (named Ap)

evolves by using the Pareto-based mechanism; the other one (named

Ad) utilizes the decomposition-based mechanism to evolve. At each gen-

eration, the author uses a neighbor-based selection mechanism (NBSM)

to select three candidate solutions from each of the populations. After

that, the author uses differential evolution (DE) to create two offspring

named ChildAp (i.e., the offspring in population Ap ) and ChildAd (the
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offspring in population Ad). Next, let ChildAd compete with ChildAp us-

ing Pareto dominance-based metrics and choose the winner to update Ap.

Similarly, let ChildAp compete with ChildAd using decomposition-based

metrics and use the winner to update Ad. At the end of the co-evolution

process, the final population is a combination of both Ap and Ad popu-

lations. The reason for this decision is that each of them uses a different

optimal mechanism. While Ap uses the true Pareto front, Ad utilizes the

idea point (a solution with the best objective values known since running

the algorithm) as the best goal to achieve. The roles of the two popula-

tions are the same. Therefore, in order to preserve the good properties

of both populations (i.e., diversity and convergence), the author decided

to keep both populations in the final selected population.

As mentioned above, there are two differences between the

DPPCP model and the DPP model : First, in the DPPCP, the

author does not use a co-operative co-evolutionary mechanism. In other

words, this study has eliminated the mating parents’ steps to generate

offspring. Instead, this study uses a competitive mechanism to make two

offspring interact with each other. Second, this study uses the NBSM

mechanism to select three solutions in each population and use them to

create two separate offspring. In general, the model is divided into four

main steps: Initialization, NBSM selection, Competitive process, and

Update population.

Initialization

In the first step, Ap and Ad (with the same size N) are randomly gen-

erated. However, the distribution of solutions in the two populations is

different. In Ad, N solutions are assigned to different N sub-regions. To

make sure that there is only one solution for each sub-region, the algo-

rithm divides the original region into N sub-regions (denoted as Si) by

using N uniformly distributed unit vectors denoted as λi (see Figure.2.6).
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Algorithm 9: DPPCP Algorithm

input : M: The number of generations.
T: The neighboring numbers
N: The population size

output: Final Population Ap and Ad

1 [Ap, Ad] = initializePopulation()
2 W = InitializeUniformWeight()
3 B = InitializeNeighborhood()
4 Z∗ = InitializeIdealPoint()
5 Znad = InitializeNadirPoint()
6 m←0
7 while m < M do
8 offspringAp ← ∅
9 for i← 1 to N do

10 ChildAp, ChildAd = NBSMSelection(Ap, Ad, i, Bi) (Algorithm 10)
11 Winner1 == CompeteDominate(ChildAp, ChildAd)
12 Winner2 == CompeteDecompostion(ChildAp, ChildAd)
13 UpdateAp(Winner1, Ap); (Algorithm 13)
14 UpdateAd(Winner2, Ad);

15 Update Z∗ and Znad

16 m++;

17 Return P← Ap ∪ Ad

Each λi will be identified as corresponding to solutioni (or each solution

will be assigned to only one sub-region). The algorithm utilizes the λ

vectors to calculate the Euclidean distance between these vectors. Based

on these distances, the algorithm can determine which sub-regions are

neighbors of a solution. In the next step (i.e., the evolutionary step),

when a new solution is created, it is necessary to determine which sub-

region it belongs to. This is done based on the calculation of the distance

between the new solution and the λ vectors. A sub-region will be selected

if it contains the λ vector that is closest to the new solution. However, it

should be noted that, instead of including this new solution directly in

this sub-region, a competition between the new solution and the existing

solution in this sub-region will take place. The better solution (based

on the fitness functions) will be selected and assigned to this sub-region.

In this way, there is exactly one solution in each sub-region, and Ad is
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distributed evenly (i.e., with diversity) in the objective space. Unlike

Ad, Ap does not rely on the even spread of N unit vectors. Therefore,

N solutions in Ap are randomly assigned to N sub-regions (Figure.2.7

gives an intuitive example of the distribution of solutions in each popu-

lation. Ap does not contain any solution in sub-regions 0, 1, 3, 5, while

sub-regions 2 and 4 contain more than one solution). This leads to the

situation that a sub-region may either not have any solutions or contain

more than one solution. Next, this study finds the T closest neighbor-

hood sub-regions for each solution (by using the Euclidean distance).

These neighborhoods play a vital role in the next steps.

Figure 2.6: A simple illustration of initializing the population for Ad. The algorithm divides the
original region into N sub-regions. N solutions are assigned to different N sub-regions

The neighbor-based selection mechanism (NBSM)

In [130] the authors showed that, when solving continuous MOPs, in

some mild conditions, neighborhood solutions should have similar struc-

tures. This means the neighborhood information is very important, and

it would be better if we used this important information in the orien-

tation process for new solutions. For that reason, this study prefers

to choose mating parents from several neighboring sub-regions. As for

the traditional DE operator, [57], xG
r1 and xG

r2 (two components of the

direction vectors in Eq.2.2) are randomly selected from the whole popu-
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Algorithm 10: NBSMSelection(Ap,Ad,i,Bi)

input : Ap: the Pareto-based population
Ad: the decomposition-based population
i: the current sub-region index
Bi: a set contains neighborhood indexes of the current sub-region.
T: the neighborhood size;
N: the population size

output: Q: Two mating parents

1 (r1p, r2p) = MatSelectTwoAp() (Algorithm 11)
2 (r1d, r2d) = MatSelectTwoAd() (Algorithm 12)
3 Solution1 = Ap[r1p]
4 Solution2 = Ap[r2p]
5 if SubRegion(r1p) does not contain any solutions then
6 Solution1 = Ad[r1p]

7 if SubRegion(r2p) does not contain any solutions then
8 Solution2 = Ad[r2p]

9 ChildAp = DE(Solution1, Solution2, Ap[i])
10 ChildAd = DE(Ad[r1d], Ad[r2d], Ad[i])
11 Return Q = (ChildAp , ChildAd

)

lation. This random mating selection mechanism can be explored well.

However, since there is no guidance information regarding the Pareto

set, it may lead to a degeneration problem. The RMS mechanism in [65]

improved this weakness by using more information from neighboring sub-

regions than from the whole population. However, as mentioned above,

a drawback of the RMS mechanism is that the probability of selecting

a sub-region in Ap that contains at least a solution is relatively low. At

that time, the RMS borrows an alternate solution in the Ad, which can

lead to an imbalance between two populations in the co-evolutionary

process. This is the reason why this study proposes another selection

mechanism (i.e., the NBSM).

The pseudo-code of the NBSM mechanism is presented in Algorithm

10.

There are two underlying principles of the NBSM. Firstly, the author

wants fairness in choosing the number of solutions to hybridize in the

co-evolutionary step. Secondly, the three chosen solutions used in the
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Figure 2.7: A simple illustration of the distribution of solutions in sub-regions. While in the Ad

population, each partition has only one solution, in the Ap population, there are partitions without
any solutions, and some partitions have more than one solution.

Algorithm 11: MatSelectTwoAd(Ad, i, Bi)

input : Ad: the decomposition-based population
i: the current sub-region index
Bi: a set contains neighborhood indexes of the current sub-region.
T: the neighborhood size;
N: the population size
θ: the neighborhood selection probability

output: [I,J]: Two sub-region indexes.

1 if rand < θ then
2 Randomly select two indices, I and J, from Bi

3 else
4 Randomly select two indices I and J from {1, 2, ..., N}

DE operator must be on the same population (in order to avoid the phe-

nomenon as shown in Figure 2.3).

To generate new offspring (i.e. ChildAp or ChildAd), this study im-

itates the idea from MOEA/D-DE [64]. Specifically, in MOEA/D-DE,

a solution y is generated from xr1 (i.e. the current solution), xr2 and

xr3 according to Eq.2.2, and a new solution is generated by a mutation

operator on y with a small probability, according to Eq.2.3

yk =

xr1
k + F ∗ (xr2

k − xr3
k ), with probability < CR

xr1
k , with probability 1-CR

(2.2)
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Algorithm 12: MatSelectTwoAp(Ap,i,Bi)

input : Ap: the Pareto-based population
i: the current sub-region index
Bi: a set contains neighborhood indexes of the current sub-region.
T: the neighborhood size;
N: the population size
θ: the neighborhood selection probability

output: [I,J]: Two sub-region indexes.

1 listNeighborAp← ∅
2 if rand < θ then

// Select two sub-region indexes in Ap

3 for i← 0 to T do
4 for j ← 0 to N do
5 if Ap[j] ∈ Bi[i] then
6 Add j to listNeighborAp;

7 while size of listNeighborAp < 2 do
8 Randomly select an index r from 1,2. . . .,N
9 Add r to listNeighborAp

10 Randomly select two indices, J and K, from listNeighborAp.

11 else
12 Randomly select an index from {1, 2, ..., N}

where CR and F are two control parameters

yk =

yk + σk ∗ (uk − lk), with probability pm

yk, with probability 1-pm
(2.3)

σk =

(2 ∗ rand) 1
η+1 − 1, if rand < 0.5

1− (2− 2 ∗ rand) 1
η+1, otherwise

(2.4)

where rand is a uniform random number in [0, 1], pm is the mutation

rate, and uk and lk are the upper and lower bounds of the kth decision

variable, respectively.

Another major difference between the two RMS and NBSM mech-

anisms is the solution selection procedure in Ap. For each small par-

tition, this study conducts a search across the entire T neighborhood

sub-regions instead of just choosing a random sub-region, as in the RMS
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Figure 2.8: The competitive mechanism

mechanism. This way, the probability of finding three solutions is much

higher. In the case that any solutions cannot be found in the neighbor-

hood sub-regions, this study borrows from the Ad.

The competitive co-evolutionary mechanism (Competitive process)

In this step, two offspring solutions, ChildAp and ChildAd in each pop-

ulation are selected to participate in tournaments. Figure.2.8 gives an

intuitive explanation of this mechanism. Specifically, ChildAp competes

against ChildAd using the Pareto-based rule (i.e., CompeteDominance

method in Algorithm 9), a winner is selected to update Ap. Meanwhile,

ChildAd competes against ChildAp using the decomposition-based rule

(i.e., CompeteDecomposition method in Algorithm 9). The author would

like to highlight the benefits of competitive co-evolution by considering

two possible cases:

(+) If two winning solutions belong to two different populations, it means

we have one solution with good convergence and another with good di-

versity. This is what this study expected.

(+) If two winning solutions belong to the same population (e.g., Ap).

It means one solution in Ap has better convergence than its competitor
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(this is normal). Along with that, the remaining solution in Ap is more

diverse than its contestant in Ad. It is interesting to note that, in this

case, we have one mating solution that has good convergence and an-

other that has not only good convergence but also excellent diversity.

Therefore, the offspring can inherit both good traits. This is in stark

contrast to the DPP’s cooperative co-evolution.

Update Population

Algorithm 13: UpdateAp (winner1, Ap)

input : LimitedNum: The limited number of updated times
N : the Population size

output: Ap after updated

1 isNonDominte= False ; Flag = False;
2 for i← 0 to N do
3 if winner1 dominate Ap[j] then
4 Update Ap[j] by winner1;
5 Flag = True;
6 Num++;
7 if Num = LimitedNum then
8 Break;

9 else if winner1 and Ap[j] are nondominated then
10 isNonDominte = True;

11 ;

12 if isNonDominte = True and Flag = False then
13 Add winner1 to Ap

14 Ap = crowdingDistanceSelection(Ap)

15 else
16 Randomly select an index from {1, 2, ..., N}

The update mechanism in each population will be different. In [65],

the authors only updated Offspring to the nearest sub-region. This is

to ensure population diversity, but the probability that this solution

will replace the sub-region is rather small (because it only compares to

only one sub-region, while there are some other sub-regions having much

worse solutions). This may lead to the possibility that convergence will

decrease. To improve this disadvantage, the author used the updated
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idea of the MOEA/D algorithm for both populations. Specifically, this

study will iterate through all solutions in the neighborhood sub-regions

in question and update them a limited number of times (this helps to

avoid having many similar solutions as well as speeding up the conver-

gence of the population).

Specifically, the UpdateAd (winner2,Ad) method in algorithm 9 is used

in the same way as the MOEA/D-DE algorithm; whereas the UpdateAp

(winner1,Ap) method is shown in the algorithm 13.

It can be easy to see that, the way to update Ap is different from the

one in the NSGA-II algorithm. this study updates Ap as soon as the

winner dominates a solution in Ap and conducting Ranking and Crowd-

ingDistanceSelection methods every time updating offspring. Mean-

while, the NSGA-II uses a list to store all of the offspring and performs

ranking when the loop is finished.

It is highlighted that the new offspring requires being assigned to a

certain sub-region. In this study, to determine the suitable sub-region,

the authors first measure the distance between its unit vector and the

offspring’s objective vector. Whichever sub-region has the shortest dis-

tance will be selected to contain the offspring. It is also noted that the

scaling of each objective function differs from the other. It means the

value of objective functions can vary from low to high. This leads to the

situation that, in the calculation of the Euclid distance, the low objec-

tive value is of no importance. Therefore, it is essential to standardize

the objective functions within the same range of values. Here, this study

performs the standardization [28] to the interval [0, 1] as follows:

fnorm
i =

fi − Z∗
i

Znad
i − Z∗

i

(2.5)

Where i ∈ {1, 2, ...,m}; m is the number of objective functions.

The above analysis shows that basically Ap is similar to NSGA-II, and

Ad is similar to MOEA/D in terms of how they work, but the details
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of the implementation are quite different. In light of the experimental

results, this study will further analyze these differences.

2.5. Experimental design

This step will perform experiments with the proposed algorithm to

clarify the following problems: First, this study compares the proposed

methods with some baseline algorithms (i.e., NSGA-II and MOEA/D-

DE) and the state-of-the-art algorithm (DPP in [65]). Via the compar-

ison results, we could see how good the performance of the proposed

method was when compared to the others. Next, this study develops

a variant named DPPCP-Variant1 and compares it to the DPPCP to

know the effects of competitiveness. In order to know the effects of

the NBSM mechanism, this study creates two variants named DPPCP-

Variant2 and DPPCP-Variant3 and compares them to DPPCP. Finally,

to know the interaction between two co-evolving populations, this study

creates two other variants named DPPCP-Ap and DPPCP-Ad. After

that, this study conducts three test cases between NSGA-II and Ap;

MOEAD and Ad; and DPPCP-Ap and DPPCP-Ad.

2.6. Test problems

In this study, 31 test instances (ZDT1 to ZDT6, UF1 to UF10, WFG1

to WFG9, and DTLZ1 to DTLZ7) are used as benchmark problems.

Among these, UF1 to UF7 [69] and WFG1 to WFG9 [91] and ZDT1,

ZDT2, ZDT3, ZDT4, and ZDT6 [134] are the bi-objective test problems

(the ZDT5 is not discussed or utilized in this thesis due to it is a binary

problem), UF8 to UF10 and DTLZ1 to DTLZ7 are the tri-objective

benchmarks. More detailed test problems are described in the Appendix

4 of the thesis. Table 2.1 shows some summary information on the DTLZ

problems.
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Table 2.1: The DTLZ series test instances

Name
Variable
number

Objective
number

Geometry

DTLZ1 7 3 Linear
DTLZ2 12 3 Concave
DTLZ3 12 3 Concave
DTLZ4 12 3 Concave
DTLZ5 12 3 -
DTLZ6 12 3 -
DTLZ7 22 3 Disconnected

2.6.1. Performance metrics

Figure 2.9: Several performance metrics are used in MOEAs

In this study, the IGD and HV are chosen as the main metrics. It

is worth highlighting that the quality of a solution depends on the HV

value. The greater the HV value, the better the solution is, while a lower

IGD value indicates a better result.

2.6.2. Parameters settings of MOEAs

Table 2.2: The parameter setting of the MOEAs

MOEAs Parameters settings
NSGA-II pc=0.9, pm=1/nvariables; µc = 20;µm = 20

MOEA/D-DE
pm=1/ nvariables, µm = 20, CR=1.0, F=0.5,
σ = 0.9, T=20, ′rand/1/bin′; nreplaced=2

Given in table 2.2 are the parameters of the NSGA-II and MOEA/D-

DE. In each test trial, every algorithm is independently run 20 times.

The population size (N) is set to 300, and the termination criterion

of an algorithm is a predefined number of generations (M), which is
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constantly set to 1000. These parameter values are selected similarly

to the previous prerequisite studies [69] to facilitate the comparison of

execution performance between algorithms.

2.7. Results and discussions

2.7.1. Comparing with state-of-the-art algorithm

In [65], the authors compared the DPP algorithm with some state-of-

the-art algorithms (e.g. MOEA/D-FRRMAB [67], MOEA/D-RMS [73],

MOEA/D-M2M [73], D2 MOPSO [1] and HyPE [6]) with competitive

results. Therefore, DPP can be considered a state-of-the-art algorithm.

In this experimental scenario, the author focuses on comparing the DP-

PCP with the original algorithm, the DPP, and the DPP2 algorithm.

The results in Table 2.3 and Table 2.4 show that the proposed method

(DPPCP) is clearly better than DPP and DPP2 (it gives a better metric

value in 24 out of 31 comparisons). In ZDT instances, DPPCP gives

better results than DPP in all instances, especially in ZDT4, where

DPPCP outperforms DPP about 10,000 times. In UF instances, DPP

achieves better performance on UF5 and UF6 instances. However, DP-

PCP obtains better IGD metric values in other UF instances; even with

UF1, it is better about 100 times. Similar to WFG instances, DPPCP

achieves better metric values in all of the comparisons (except WFG5).

These findings demonstrate that the competitive co-evolution model pro-

posed in this study outperforms co-operative co-evolution methods in

( [65], [104]).

2.7.2. Comparing with baseline algorithms

As mentioned above, the DPPCP uses two populations, one based

on the Pareto mechanism (using the NSGA-II algorithm) and the other

70



Table 2.3: Performance comparisons between the proposed algorithms with state-of-the-art
algorithm using the HV metric. The metric value with the highest mean is emphasized by being

displayed in bold font with a gray background.

DPP DPP2 DPPCP

ZDT1 6.503543e− 011.9e−02 6.648341e− 014.6e−05 6.655793e− 010.0e+00

ZDT2 3.062317e− 017.8e−02 3.315689e− 013.8e−05 3.321892e− 010.0e+00

ZDT3 5.137847e− 012.3e−03 5.162233e− 019.3e−06 5.170450e− 010.0e+00

ZDT4 0.000000e+ 000.0e+00 6.649716e− 011.0e−05 6.655913e− 010.0e+00

ZDT6 4.052969e− 011.9e−05 4.047282e− 015.4e−08 4.053136e− 010.0e+00

UF1 6.095147e− 011.5e−02 6.635853e− 011.4e−04 6.639659e− 010.0e+00

UF2 6.071246e− 019.4e−03 6.568236e− 011.6e−03 6.616692e− 010.0e+00

UF3 4.299732e− 015.4e−02 6.521115e− 011.5e−02 5.965543e− 010.0e+00

UF4 2.384583e− 017.3e−03 2.438856e− 014.2e−03 2.551797e− 010.0e+00

UF5 1.642984e− 036.7e−03 1.208023e− 019.1e−02 8.999985e− 020.0e+00

UF6 9.514643e− 025.0e−02 2.001687e− 018.5e−02 1.725421e− 010.0e+00

UF7 4.701857e− 018.9e−03 4.958239e− 018.2e−04 4.954061e− 010.0e+00

UF8 2.564091e− 013.3e−02 3.271188e− 011.6e−02 3.623309e− 010.0e+00

UF9 5.107049e− 013.8e−02 5.646465e− 013.1e−02 5.565798e− 010.0e+00

UF10 0.000000e+ 000.0e+00 7.045457e− 021.4e−02 9.315613e− 020.0e+00

WFG1 4.500378e− 016.6e−02 6.347178e− 013.6e−04 6.370891e− 010.0e+00

WFG2 5.635474e− 017.7e−04 5.646761e− 011.2e−05 5.654082e− 010.0e+00

WFG3 4.922166e− 012.6e−03 4.979994e− 014.2e−06 4.987931e− 010.0e+00

WFG4 2.117675e− 011.3e−03 2.211018e− 011.4e−04 2.220795e− 010.0e+00

WFG5 1.995414e− 012.1e−03 1.987193e− 012.8e−03 1.989817e− 010.0e+00

WFG6 2.109626e− 011.5e−03 2.128725e− 013.8e−06 2.136358e− 010.0e+00

WFG7 2.129709e− 011.8e−04 2.128533e− 016.8e−06 2.136157e− 010.0e+00

WFG8 1.576003e− 011.8e−02 1.732010e− 012.6e−02 2.114787e− 010.0e+00

WFG9 2.412725e− 011.6e−04 2.438372e− 014.6e−05 2.449073e− 010.0e+00

DTLZ1 3.981344e− 021.6e−01 7.848863e− 011.7e−04 8.027772e− 010.0e+00

DTLZ2 4.325969e− 011.5e−03 4.185189e− 019.8e−04 4.294453e− 010.0e+00

DTLZ3 8.816880e− 021.7e−01 4.182285e− 011.1e−03 4.298513e− 010.0e+00

DTLZ4 4.198804e− 011.5e−03 4.065588e− 013.0e−02 4.245304e− 010.0e+00

DTLZ5 8.724304e− 022.3e−03 9.469878e− 029.7e−06 9.579286e− 020.0e+00

DTLZ6 9.656330e− 021.2e−05 9.566300e− 028.0e−07 9.678412e− 020.0e+00

DTLZ7 3.129314e− 012.5e−03 2.800935e− 016.8e−03 3.103702e− 010.0e+00

based on the decomposition mechanism (using the MOEAD/DE algo-

rithm). In order to assess the effectiveness of using the co-evolutionary

mechanism, the author compares the proposed algorithm with these two

baseline algorithms (i.e., NSGA-II and MOEAD/DE). Tables 2.5 and

2.6 provide the performance comparisons of DPPCP, MOEA/D-DE, and

NSGA-II on 32 test instances with respect to the IGD and HV metrics,

respectively. Based on experimental results, we can see that DPPCP

achieves a better outcome than both NSGA-II and MOEA-D/DE. It

wins 26 out of 31 comparisons using the HV and the IGD metrics. It

is worth noting that although NSGA-II is the worst among the three

candidates, it achieves the best IGD metric values on the UF4 and the
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Table 2.4: Performance comparisons between the proposed algorithms and state-of-the-art algorithm
using the IGD metric. The metric value with the highest mean is emphasized by being displayed in

bold font with a gray background.

DPP DPP2 DPPCP

ZDT1 3.945162e− 046.4e−04 5.554228e− 052.2e−07 3.093510e− 050.0e+00

ZDT2 4.602254e− 053.6e−05 4.661050e− 057.3e−08 3.241247e− 050.0e+00

ZDT3 6.907624e− 058.2e−05 8.860561e− 058.5e−07 2.623904e− 050.0e+00

ZDT4 3.273414e− 012.5e−01 5.866687e− 054.8e−07 3.104248e− 050.0e+00

ZDT6 3.147239e− 058.0e−07 4.628070e− 056.9e−09 3.135962e− 050.0e+00

UF1 1.219677e− 034.7e−04 6.864305e− 053.0e−06 5.686509e− 050.0e+00

UF2 1.983361e− 036.9e−04 4.221505e− 041.3e−04 1.700001e− 040.0e+00

UF3 6.117055e− 031.7e−03 2.379576e− 045.5e−04 1.820430e− 030.0e+00

UF4 2.055704e− 033.4e−04 1.955396e− 032.4e−04 1.676999e− 030.0e+00

UF5 1.319009e− 014.5e−02 6.085614e− 022.8e−02 1.547979e− 010.0e+00

UF6 1.023728e− 022.6e−03 6.511947e− 034.9e−03 2.268674e− 020.0e+00

UF7 7.577647e− 044.1e−04 1.073177e− 043.7e−05 1.185823e− 040.0e+00

UF8 1.105829e− 033.2e−04 1.033388e− 032.1e−04 8.438084e− 040.0e+00

UF9 2.296300e− 032.4e−04 2.186628e− 031.5e−04 2.269156e− 030.0e+00

UF10 1.254666e− 024.0e−03 4.860551e− 035.9e−04 4.938679e− 030.0e+00

WFG1 4.091125e− 032.0e−03 2.672370e− 041.8e−05 7.811839e− 050.0e+00

WFG2 3.898765e− 041.9e−04 6.061874e− 042.3e−05 8.474260e− 050.0e+00

WFG3 1.837856e− 048.8e−05 5.480337e− 053.4e−08 3.343249e− 050.0e+00

WFG4 2.109915e− 042.9e−05 6.344580e− 051.9e−06 3.390037e− 050.0e+00

WFG5 9.304804e− 042.1e−06 9.328236e− 048.8e−07 9.303355e− 040.0e+00

WFG6 1.249467e− 049.1e−05 9.143875e− 052.0e−07 5.394634e− 050.0e+00

WFG7 2.832908e− 053.6e−06 4.054432e− 052.5e−08 2.255773e− 050.0e+00

WFG8 3.479606e− 039.6e−04 3.172940e− 032.8e−03 8.095268e− 040.0e+00

WFG9 5.823859e− 053.0e−06 4.076749e− 053.5e−07 2.269694e− 050.0e+00

DTLZ1 2.274694e− 021.4e−02 3.471784e− 041.4e−06 2.526425e− 040.0e+00

DTLZ2 3.282544e− 049.9e−06 4.301280e− 041.9e−06 3.343429e− 040.0e+00

DTLZ3 1.647616e− 013.3e−01 7.229934e− 047.5e−06 5.305681e− 040.0e+00

DTLZ4 4.906612e− 042.2e−05 8.454214e− 042.2e−04 5.417136e− 040.0e+00

DTLZ5 2.934037e− 056.4e−06 1.518117e− 051.8e−07 3.674228e− 060.0e+00

DTLZ6 1.138830e− 051.1e−06 3.454072e− 052.2e−08 8.785615e− 060.0e+00

DTLZ7 1.091168e− 035.5e−05 2.612434e− 032.2e−04 1.181486e− 030.0e+00

UF5. Meanwhile, MOEA/D-DE obtains the best IGD metric values on

the UF3, UF6, UF9, and WFG5. By contrast, DPPCP shows a poor

result on the UF5 test instance. However, DPPCP shows better perfor-

mance than the baseline algorithm on all the ZDT and DTLZ instances.

These results indicate the effectiveness of DPPCP in achieving both con-

vergence and diversity criteria.

2.7.3. Statistical test for comparing performance

The detailed comparison results of the proposed algorithm with other

algorithms have been presented in the previous sections. Based on these

results, it can be concluded that the proposed algorithm yields better
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Table 2.5: Performance comparisons between the DPPCP and baseline algorithms using the HV
metric. The metric value with the highest mean is emphasized by being displayed in bold font with

a gray background.

NSGAII MOEAD DPPCP

ZDT1 6.647858e− 015.3e−05 6.648386e− 014.7e−05 6.655793e− 010.0e+00

ZDT2 3.314961e− 013.3e−05 3.315780e− 015.1e−05 3.321892e− 010.0e+00

ZDT3 5.168567e− 011.2e−05 5.162200e− 011.1e−05 5.170450e− 010.0e+00

ZDT4 6.648548e− 012.2e−05 6.649686e− 019.8e−06 6.655913e− 010.0e+00

ZDT6 4.031456e− 011.4e−04 4.047282e− 011.7e−08 4.053136e− 010.0e+00

UF1 5.484432e− 011.9e−02 6.636184e− 011.3e−04 6.639659e− 010.0e+00

UF2 6.396909e− 013.6e−03 6.572483e− 012.8e−03 6.616692e− 010.0e+00

UF3 4.571061e− 013.4e−02 6.569119e− 019.5e−03 5.965543e− 010.0e+00

UF4 2.726602e− 013.2e−04 2.458777e− 015.8e−03 2.551797e− 010.0e+00

UF5 2.374327e− 012.8e−02 3.632481e− 026.5e−02 8.999985e− 020.0e+00

UF6 2.778372e− 014.1e−02 2.024907e− 017.9e−02 1.725421e− 010.0e+00

UF7 4.195309e− 016.1e−02 4.952861e− 012.4e−03 4.954061e− 010.0e+00

UF8 1.069511e− 012.2e−02 3.295556e− 012.3e−02 3.623309e− 010.0e+00

UF9 4.296275e− 011.2e−01 6.014756e− 016.2e−02 5.565798e− 010.0e+00

UF10 5.292133e− 041.1e−03 5.944409e− 022.7e−02 9.315613e− 020.0e+00

WFG1 6.336915e− 013.8e−04 6.347114e− 012.2e−04 6.370891e− 010.0e+00

WFG2 5.652985e− 011.2e−05 5.646742e− 011.3e−05 5.654082e− 010.0e+00

WFG3 4.978645e− 014.7e−05 4.980009e− 016.1e−06 4.987931e− 010.0e+00

WFG4 2.214379e− 018.9e−05 2.212084e− 011.1e−04 2.220795e− 010.0e+00

WFG5 1.982352e− 018.4e−05 1.988567e− 012.2e−03 1.989817e− 010.0e+00

WFG6 2.104230e− 013.2e−03 2.128723e− 014.5e−06 2.136358e− 010.0e+00

WFG7 2.129812e− 014.4e−05 2.128570e− 018.1e−06 2.136157e− 010.0e+00

WFG8 1.676837e− 012.3e−02 1.704603e− 012.4e−02 2.114787e− 010.0e+00

WFG9 2.433160e− 015.0e−04 2.438831e− 015.5e−05 2.449073e− 010.0e+00

DTLZ1 7.952908e− 012.2e−03 7.849171e− 012.9e−04 8.027772e− 010.0e+00

DTLZ2 4.145143e− 012.7e−03 4.185581e− 018.5e−04 4.294453e− 010.0e+00

DTLZ3 4.237451e− 012.2e−03 4.192297e− 019.9e−04 4.298513e− 010.0e+00

DTLZ4 4.135101e− 011.9e−03 4.121623e− 012.2e−02 4.245304e− 010.0e+00

DTLZ5 9.540642e− 023.0e−05 9.469685e− 027.7e−06 9.579286e− 020.0e+00

DTLZ6 6.407350e− 021.0e−02 9.566239e− 027.8e−07 9.678412e− 020.0e+00

DTLZ7 3.120551e− 011.2e−03 2.770128e− 011.6e−02 3.103702e− 010.0e+00

average performance than the other algorithms. To further strengthen

this claim, the authors conducted statistical evaluations to determine

whether there is a significant difference between the algorithms. Specifi-

cally, the Friedman test, a non-parametric test, is used to check whether

there are significant differences among the results. The null hypothesis

(Ho) is that there is no difference between the algorithms. If the p-value

is smaller than a significance level (i.e., 0.05), the null hypothesis is re-

jected (or there are significant differences between the algorithms), and

vice versa.

Table 2.7 shows the Friedman statistic of the IGD metric considering

reduction performance (distributed according to chi-square with 4 de-

73



Table 2.6: Performance comparisons between the DPPCP and baseline algorithms using the IGD
metric. The metric value with the highest mean is emphasized by being displayed in bold font with

a gray background.

NSGAII MOEAD DPPCP

ZDT1 5.788071e− 054.8e−06 5.556843e− 053.3e−07 3.093510e− 050.0e+00

ZDT2 5.968199e− 052.9e−06 4.660528e− 054.7e−08 3.241247e− 050.0e+00

ZDT3 4.146423e− 051.9e−06 8.838159e− 057.9e−07 2.623904e− 050.0e+00

ZDT4 5.699439e− 052.2e−06 5.906846e− 055.0e−07 3.104248e− 050.0e+00

ZDT6 7.378607e− 054.2e−06 4.628025e− 056.2e−09 3.135962e− 050.0e+00

UF1 3.546947e− 036.0e−04 6.903693e− 055.0e−06 5.686509e− 050.0e+00

UF2 1.066904e− 032.9e−04 3.608501e− 042.4e−04 1.700001e− 040.0e+00

UF3 7.154636e− 031.8e−03 1.702418e− 041.5e−04 1.820430e− 030.0e+00

UF4 1.358224e− 032.4e−05 1.940253e− 032.3e−04 1.676999e− 030.0e+00

UF5 4.394656e− 028.3e−03 6.607502e− 021.7e−02 1.547979e− 010.0e+00

UF6 8.797878e− 033.8e−03 3.479782e− 038.8e−03 2.268674e− 020.0e+00

UF7 1.859278e− 031.7e−03 1.085036e− 042.4e−05 1.185823e− 040.0e+00

UF8 2.981191e− 031.7e−04 9.841127e− 044.3e−04 8.438084e− 040.0e+00

UF9 2.732983e− 032.0e−03 2.165702e− 031.5e−03 2.269156e− 030.0e+00

UF10 5.161469e− 033.7e−03 4.986122e− 036.2e−04 4.938679e− 030.0e+00

WFG1 3.200666e− 042.3e−05 2.702204e− 042.7e−05 7.811839e− 050.0e+00

WFG2 1.174109e− 041.1e−05 6.057198e− 046.6e−06 8.474260e− 050.0e+00

WFG3 6.512669e− 053.3e−06 5.476262e− 059.3e−08 3.343249e− 050.0e+00

WFG4 5.717426e− 052.8e−06 6.238275e− 051.3e−06 3.390037e− 050.0e+00

WFG5 9.330129e− 045.7e−07 9.337936e− 043.8e−07 9.303355e− 040.0e+00

WFG6 1.122812e− 046.5e−05 9.139109e− 051.4e−07 5.394634e− 050.0e+00

WFG7 3.877603e− 051.7e−06 4.054086e− 051.9e−08 2.255773e− 050.0e+00

WFG8 2.747423e− 032.2e−03 3.174261e− 032.4e−03 8.095268e− 040.0e+00

WFG9 4.337451e− 055.0e−06 4.071753e− 051.1e−07 2.269694e− 050.0e+00

DTLZ1 3.201110e− 041.9e−05 3.474762e− 041.3e−06 2.526425e− 040.0e+00

DTLZ2 4.355620e− 042.4e−05 4.306742e− 043.0e−06 3.343429e− 040.0e+00

DTLZ3 6.953162e− 042.1e−05 7.211632e− 046.2e−06 5.305681e− 040.0e+00

DTLZ4 7.724318e− 041.2e−04 7.911537e− 041.3e−04 5.417136e− 040.0e+00

DTLZ5 6.185971e− 064.8e−07 1.516055e− 051.1e−07 3.674228e− 060.0e+00

DTLZ6 3.789467e− 042.9e−04 3.453845e− 053.1e−08 8.785615e− 060.0e+00

DTLZ7 1.204211e− 036.4e−05 2.612999e− 031.7e−04 1.181486e− 030.0e+00

Table 2.7: Average ranking of the algorithms using the IGD metric

Algorithm Ranking
NSGAII 3.58065
MOEAD 3.1290
DPP 3.7742
DPP2 2.8710
DPPCP 1.6452

grees of freedom: 34.787), and the p-value is approximately 1.084e-06.

From these p-values, it can be concluded that there is a significant dif-

ference between the compared algorithms. Combining the comparison

results in the previous sections, it can be concluded that the DPPCP

algorithm gives the best results, followed by the DPP2 algorithm.
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2.7.4. Effects of competitiveness

To verify the effect of the competitive co-evolutionary method, the au-

thor has developed a variant (denoted asDPPCP-Variant1 ). InDPPCP-

Variant1, there is no interaction between the two populations, except

for a connection in the selection stage (NBSM), where some solutions

on the Ad side can be borrowed from the Ap. Two offspring, ChildAp

and ChildAd will be used to update the population immediately instead

of competing in the DPPCP. The result is a combination of the output

from each population.

The performance comparisons are shown in Tables 2.8 and 2.9 via the

mean and standard deviation values. For each row in the table, the best

value is highlighted in bold.

In Table 2.8, this study conducts the comparison between DPPCP

and DPPCP-Variant1 using the HV metric. The DPPCP attains better

metric values in all of the comparisons (except UF5, UF6, and UF9). Es-

pecially in Table 2.9, the DPPCP’s results are about ten times as good

as the DPP’s with ZDT1, ZDT3, ZDT4, UF1, WFG3, WFG4, DTLZ5,

DTLZ6, and about 100 times with WFG1, WFG2.

It can be seen that DPPCP shows better performance than DPPCP-

Variant1 in most instances. Especially, DPPCP outperforms DPPCP-

Variant1 in the WFG series. Based on the results, it is easy to see

the advantage of the competitive co-evolutionary method. It helps to

achieve better results on both criteria (i.e., convergence and diversity).

2.7.5. Effects of the NBSM mechanism

To further understand the effects of the NBSM mechanism, this study

extends this mechanism to two other variants as follows:

1. DPPCP-Variant2 : This variant is different from DPPCP in that it

chooses two sub-regions in the Ap. If the sub-regions do not contain any
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Table 2.8: Performance comparisons between the DPPCP and DPPCP-Variant1 using HV metric.
The metric value with the highest mean is emphasized by being displayed in bold font with a gray

background.

DPPCP-Variant1 DPPCP

ZDT1 6.630161e− 017.2e−04 6.655793e− 010.0e+00

ZDT2 3.308929e− 012.9e−04 3.321892e− 010.0e+00

ZDT3 5.146396e− 016.9e−04 5.170450e− 010.0e+00

ZDT4 6.636102e− 012.7e−04 6.655913e− 010.0e+00

ZDT6 4.045542e− 011.9e−05 4.053136e− 010.0e+00

UF1 6.507534e− 011.6e−02 6.639659e− 010.0e+00

UF2 6.571386e− 011.9e−03 6.616692e− 010.0e+00

UF3 5.920556e− 011.8e−02 5.965543e− 010.0e+00

UF4 2.470220e− 014.8e−03 2.551797e− 010.0e+00

UF5 1.429759e− 019.4e−02 8.999985e− 020.0e+00

UF6 2.563506e− 015.3e−02 1.725421e− 010.0e+00

UF7 4.927444e− 013.7e−03 4.954061e− 010.0e+00

UF8 3.124623e− 011.6e−02 3.623309e− 010.0e+00

UF9 6.119489e− 015.9e−02 5.565798e− 010.0e+00

UF10 5.908046e− 021.7e−02 9.315613e− 020.0e+00

WFG1 5.860027e− 017.6e−02 6.370891e− 010.0e+00

WFG2 5.636535e− 013.4e−04 5.654082e− 010.0e+00

WFG3 4.961655e− 014.1e−04 4.987931e− 010.0e+00

WFG4 2.194508e− 015.5e−04 2.220795e− 010.0e+00

WFG5 1.974580e− 012.2e−04 1.989817e− 010.0e+00

WFG6 2.113252e− 012.7e−04 2.136358e− 010.0e+00

WFG7 2.115485e− 012.1e−04 2.136157e− 010.0e+00

WFG8 1.716974e− 012.4e−02 2.114787e− 010.0e+00

WFG9 2.414078e− 016.9e−04 2.449073e− 010.0e+00

DTLZ1 7.868666e− 011.2e−03 8.027772e− 010.0e+00

DTLZ2 4.063181e− 011.5e−03 4.294453e− 010.0e+00

DTLZ3 4.069326e− 011.5e−03 4.298513e− 010.0e+00

DTLZ4 4.027093e− 012.5e−03 4.245304e− 010.0e+00

DTLZ5 9.467247e− 023.2e−05 9.579286e− 020.0e+00

DTLZ6 9.562214e− 028.9e−06 9.678412e− 020.0e+00

DTLZ7 2.873680e− 016.2e−03 3.103702e− 010.0e+00

solutions, it randomly selects from the Ap instead of borrowing from the

Ad such as DPPCP. This experiment aims to demonstrate the signifi-

cance of selecting solutions in neighboring sub-regions.

2. DPPCP-Variant3 : In Ap, instead of carefully selecting two mating

parents from all neighborhoods of the current sub-region, this variant

randomly selects two neighborhood sub-regions regardless of whether

they contain any solutions or not. If two sub-regions do not contain any

solution, they borrow from two sub-regions in the Ad respectively. This

experiment aims to show the importance of searching for neighborhood

solutions in the entire neighborhood sub-regions.

The performance comparisons between DPPCP and its two variants,
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Table 2.9: Performance comparisons between the DPPCP with DPPCP-Variant1 using the IGD
metric. The metric value with the highest mean is emphasized by being displayed in bold font with

a gray background.

DPPCP-Variant1 DPPCP

ZDT1 1.300515e− 042.0e−05 3.093510e− 050.0e+00

ZDT2 9.765445e− 052.2e−05 3.241247e− 050.0e+00

ZDT3 1.731261e− 042.4e−05 2.623904e− 050.0e+00

ZDT4 1.363398e− 041.4e−05 3.104248e− 050.0e+00

ZDT6 5.354539e− 055.6e−07 3.135962e− 050.0e+00

UF1 6.941814e− 048.8e−04 5.686509e− 050.0e+00

UF2 3.218592e− 041.0e−04 1.700001e− 040.0e+00

UF3 2.212806e− 036.5e−04 1.820430e− 030.0e+00

UF4 2.022856e− 031.5e−04 1.676999e− 030.0e+00

UF5 6.183181e− 021.6e−02 1.547979e− 010.0e+00

UF6 5.570435e− 034.3e−03 2.268674e− 020.0e+00

UF7 3.427245e− 044.4e−04 1.185823e− 040.0e+00

UF8 1.005022e− 031.5e−04 8.438084e− 040.0e+00

UF9 1.387835e− 036.8e−04 2.269156e− 030.0e+00

UF10 4.734256e− 034.8e−04 4.938679e− 030.0e+00

WFG1 1.711538e− 031.9e−03 7.811839e− 050.0e+00

WFG2 1.185953e− 038.2e−05 8.474260e− 050.0e+00

WFG3 1.448185e− 042.6e−05 3.343249e− 050.0e+00

WFG4 1.497142e− 042.8e−05 3.390037e− 050.0e+00

WFG5 9.367849e− 042.1e−06 9.303355e− 040.0e+00

WFG6 2.140030e− 043.1e−05 5.394634e− 050.0e+00

WFG7 8.367173e− 051.1e−05 2.255773e− 050.0e+00

WFG8 2.419494e− 031.0e−03 8.095268e− 040.0e+00

WFG9 9.602084e− 051.4e−05 2.269694e− 050.0e+00

DTLZ1 3.483237e− 046.9e−06 2.526425e− 040.0e+00

DTLZ2 4.540029e− 047.2e−06 3.343429e− 040.0e+00

DTLZ3 7.371303e− 041.6e−05 5.305681e− 040.0e+00

DTLZ4 6.460156e− 047.3e−05 5.417136e− 040.0e+00

DTLZ5 1.263027e− 051.2e−06 3.674228e− 060.0e+00

DTLZ6 3.071575e− 054.2e−07 8.785615e− 060.0e+00

DTLZ7 3.071591e− 033.0e−03 1.181486e− 030.0e+00

regarding the IGD and the SPREAD metrics, are presented in Tables

2.10 and 2.11. It is clear that DPPCP is the best candidate: it ob-

tains better metric values in 20 out of 31 comparisons. On the contrary,

DPPCP-Variant2 is the worst among them with the IGD metric. Mean-

while, DPPCP-Variant3 has a low spread.

In short, our proposed NBSM mechanism, which fully utilizes the

guidance information of the neighborhood, is effective.

2.7.6. Interaction between two co-evolving populations

In this section, this study clarifies the effect of using dual populations.

Specifically, this study considers two main points:
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Table 2.10: Performance comparisons between the DPPCP with DPPCP-Variant2 and
DPPCP-Variant3 using IGD metric. The metric value with the highest mean is emphasized by being

displayed in bold font with a gray background.

DPPCP DPPCP-Variant3 DPPCP-Variant2

ZDT1 6.655793e− 010.0e+00 6.655222e− 013.5e−05 6.654682e− 018.0e−05

ZDT2 3.321892e− 010.0e+00 3.321594e− 014.2e−05 3.322645e− 014.6e−05

ZDT3 5.170450e− 010.0e+00 5.170514e− 014.4e−06 5.170115e− 012.3e−05

ZDT4 6.655913e− 010.0e+00 6.655955e− 011.2e−05 6.655771e− 011.7e−05

ZDT6 4.053136e− 010.0e+00 4.053195e− 011.0e−05 4.053177e− 012.0e−05

UF1 6.639659e− 010.0e+00 6.638367e− 011.7e−04 6.611297e− 011.3e−02

UF2 6.616692e− 010.0e+00 6.584050e− 012.3e−03 6.585740e− 011.8e−03

UF3 5.965543e− 010.0e+00 6.489444e− 011.2e−02 6.341751e− 014.1e−02

UF4 2.551797e− 010.0e+00 2.522927e− 015.0e−03 2.527116e− 013.6e−03

UF5 8.999985e− 020.0e+00 1.511017e− 019.1e−02 1.851661e− 011.0e−01

UF6 1.725421e− 010.0e+00 1.954255e− 011.0e−01 1.720137e− 018.3e−02

UF7 4.954061e− 010.0e+00 4.472362e− 011.0e−01 4.918281e− 018.7e−03

UF8 3.623309e− 010.0e+00 3.418781e− 012.7e−02 3.032140e− 018.0e−02

UF9 5.565798e− 010.0e+00 5.540199e− 017.7e−03 5.885163e− 015.4e−02

UF10 9.315613e− 020.0e+00 6.069509e− 021.6e−02 8.027631e− 024.1e−02

WFG1 6.370891e− 010.0e+00 6.353138e− 013.2e−04 6.353696e− 011.4e−04

WFG2 5.654082e− 010.0e+00 5.654134e− 016.5e−06 5.654117e− 014.9e−06

WFG3 4.987931e− 010.0e+00 4.987877e− 018.3e−06 4.987841e− 011.7e−05

WFG4 2.220795e− 010.0e+00 2.220849e− 011.1e−04 2.221528e− 014.8e−05

WFG5 1.989817e− 010.0e+00 1.997983e− 012.6e−03 1.993798e− 011.8e−03

WFG6 2.136358e− 010.0e+00 2.136419e− 011.0e−05 2.136229e− 019.6e−06

WFG7 2.136157e− 010.0e+00 2.136398e− 019.0e−06 2.136212e− 018.9e−06

WFG8 2.114787e− 010.0e+00 1.950397e− 012.6e−02 1.762630e− 012.7e−02

WFG9 2.449073e− 010.0e+00 2.446959e− 018.0e−05 2.447730e− 011.6e−04

DTLZ1 8.027772e− 010.0e+00 8.034714e− 016.8e−04 7.993489e− 018.5e−04

DTLZ2 4.294453e− 010.0e+00 4.318317e− 011.2e−03 4.275582e− 018.8e−04

DTLZ3 4.298513e− 010.0e+00 4.337437e− 011.2e−03 4.282988e− 018.1e−04

DTLZ4 4.245304e− 010.0e+00 4.270484e− 016.5e−04 4.241378e− 017.9e−04

DTLZ5 9.579286e− 020.0e+00 9.578658e− 021.1e−05 9.574149e− 021.1e−05

DTLZ6 9.678412e− 020.0e+00 9.676609e− 026.0e−06 9.676292e− 027.1e−06

DTLZ7 3.103702e− 010.0e+00 2.811700e− 014.6e−02 2.462745e− 013.2e−02

1. The effect of using competitive co-evolution on each population.

2. The effect of the interaction between two populations.

Specifically, this study first compares Ap with the NSGA-II algorithm

and Ad with the MOEA/D-DE algorithm. As discussed above, the algo-

rithms used in Ap and Ad differ from baseline algorithms (i.e., NSGA-II

and MOEA/D) at three main points: (a) the mating parent selection

mechanism (i.e. NBSM); (b) the way to generate offspring (i.e., compet-

itive method); and (c) how to update Offspring to populations. Through

this experiment, we will know whether co-evolution helps solution pop-

ulations evolve better than independent evolution.

To implement this comparison, this study creates two new variants of
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Table 2.11: Performance comparisons between the DPPCP with DPPCP-Variant2 and
DPPCP-Variant3 using the SPREAD metric. The metric value with the highest mean is emphasized

by being displayed in bold font with a gray background.

DPPCP DPPCP-Variant3 DPPCP-Variant2

ZDT1 5.090732e− 010.0e+00 5.147352e− 011.8e−02 5.096334e− 011.4e−02

ZDT2 5.234142e− 010.0e+00 4.927756e− 011.3e−02 4.992091e− 012.2e−02

ZDT3 8.496801e− 010.0e+00 8.649409e− 013.5e−03 8.585498e− 015.6e−03

ZDT4 4.978226e− 010.0e+00 5.190670e− 011.3e−02 5.083129e− 011.4e−02

ZDT6 1.262919e+ 000.0e+00 1.100262e+ 003.3e−01 7.020149e− 013.2e−01

UF1 4.395728e− 010.0e+00 4.341900e− 011.9e−02 4.813619e− 019.4e−02

UF2 5.609735e− 010.0e+00 5.422028e− 012.4e−02 5.267486e− 012.3e−02

UF3 9.158526e− 010.0e+00 8.435704e− 012.0e−01 8.540161e− 012.0e−01

UF4 5.607462e− 010.0e+00 6.460472e− 016.7e−02 6.239098e− 016.3e−02

UF5 1.116620e+ 000.0e+00 1.210485e+ 002.2e−01 1.219553e+ 001.7e−01

UF6 1.000035e+ 000.0e+00 1.329176e+ 001.8e−01 1.217140e+ 001.6e−01

UF7 9.278187e− 010.0e+00 6.441274e− 013.1e−01 5.959498e− 011.7e−01

UF8 8.112851e− 010.0e+00 8.631439e− 014.4e−02 8.516223e− 011.1e−01

UF9 1.172136e+ 000.0e+00 1.055870e+ 001.0e−01 1.016694e+ 001.4e−01

UF10 1.113429e+ 000.0e+00 1.139191e+ 002.0e−01 9.984497e− 011.4e−01

WFG1 5.910268e− 010.0e+00 5.980603e− 018.6e−03 6.014965e− 011.4e−02

WFG2 9.265058e− 010.0e+00 9.275593e− 013.8e−03 9.266749e− 013.2e−03

WFG3 5.067168e− 010.0e+00 5.092385e− 019.3e−03 5.061781e− 011.5e−02

WFG4 5.102968e− 010.0e+00 5.259370e− 018.2e−03 5.184175e− 011.5e−02

WFG5 5.124313e− 010.0e+00 5.297967e− 011.2e−02 5.311470e− 011.1e−02

WFG6 5.025690e− 010.0e+00 5.081665e− 011.7e−02 5.058109e− 011.5e−02

WFG7 5.117605e− 010.0e+00 5.070984e− 011.2e−02 5.085303e− 011.4e−02

WFG8 5.850444e− 010.0e+00 6.678814e− 019.4e−02 6.883508e− 017.6e−02

WFG9 5.152843e− 010.0e+00 5.435935e− 011.6e−02 5.384225e− 011.1e−02

DTLZ1 7.480045e− 010.0e+00 7.700924e− 011.7e−02 7.612776e− 011.5e−02

DTLZ2 6.909910e− 010.0e+00 7.058144e− 012.1e−02 6.936715e− 011.4e−02

DTLZ3 7.258689e− 010.0e+00 7.074477e− 011.5e−02 6.992068e− 011.7e−02

DTLZ4 7.042373e− 010.0e+00 7.078723e− 011.9e−02 6.894604e− 011.2e−02

DTLZ5 6.133811e− 010.0e+00 6.366189e− 011.3e−02 6.351343e− 011.7e−02

DTLZ6 6.074105e− 010.0e+00 6.360939e− 011.2e−02 6.328897e− 019.2e−03

DTLZ7 9.165426e− 010.0e+00 8.179126e− 011.1e−01 7.521809e− 011.1e−01

the DPPCP algorithm: DPPCP-Ad and DPPCP-Ap. These variants are

very similar to the DPPCP algorithm, except that at the last step they

only get the results done by the Ap (for DPPCP-Ap) and by the Ad (for

DPPCP-Ad). The performances of NSGA-II and DPPCP-Ap are pre-

sented in Tables 2.12, 2.13; 2.14, 2.15 show the results of comparisons

between MOEA/D-DE and DPPCP-Ad. It is clear that DPPCP-Ap

and DPPCP-Ad give better results than NSGA-II and MOEA/D-DE

respectively. DPPCP-Ap wins in 25 out of 31 comparisons, DPPCP-

Ad obtains better results in 22 out of 31 comparisons using the IGD

metric. Through experimental results, it can be seen that the effec-

tiveness of baseline algorithms is enhanced by utilizing a competitive
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Table 2.12: Performance comparisons between NSGAII with Ap using HV metric. The metric value
with the highest mean is emphasized by being displayed in bold font with a gray background.

NSGAII Ap

ZDT1 6.647712e− 015.6e−05 6.650548e− 013.2e−05

ZDT2 3.314915e− 012.8e−05 3.317714e− 011.2e−05

ZDT3 5.168546e− 011.3e−05 5.169530e− 012.6e−06

ZDT4 6.648566e− 012.0e−05 6.651099e− 013.9e−06

ZDT6 4.031377e− 011.2e−04 4.047653e− 016.9e−06

UF1 5.419462e− 012.1e−02 6.639871e− 018.5e−05

UF2 6.409438e− 013.6e−03 6.602307e− 019.2e−04

UF3 4.692771e− 011.8e−02 6.531597e− 011.2e−02

UF4 2.726242e− 013.8e−04 2.538280e− 014.0e−03

UF5 2.395064e− 013.2e−02 1.533705e− 019.1e−02

UF6 2.702487e− 014.2e−02 1.845366e− 017.1e−02

UF7 4.238320e− 016.3e−02 4.944873e− 013.7e−03

UF8 1.065488e− 012.3e−02 3.201665e− 012.2e−02

UF9 4.384664e− 011.2e−01 4.968106e− 016.8e−02

UF10 8.641870e− 041.4e−03 3.287506e− 022.3e−02

WFG1 6.337007e− 013.9e−04 6.354226e− 011.9e−04

WFG2 5.653015e− 011.1e−05 5.653629e− 012.6e−06

WFG3 4.978586e− 014.8e−05 4.982742e− 015.1e−06

WFG4 2.214275e− 011.0e−04 2.218771e− 013.7e−06

WFG5 1.982329e− 019.5e−05 1.986686e− 017.8e−06

WFG6 2.097628e− 014.0e−03 2.133093e− 012.2e−06

WFG7 2.129740e− 015.5e−05 2.133029e− 011.6e−06

WFG8 1.752138e− 012.6e−02 1.734960e− 012.6e−02

WFG9 2.435342e− 014.9e−04 2.444773e− 011.5e−04

DTLZ1 7.951600e− 012.9e−03 7.902245e− 011.8e−03

DTLZ2 4.146214e− 012.9e−03 4.210202e− 011.9e−03

DTLZ3 4.231073e− 012.8e−03 4.225103e− 012.4e−03

DTLZ4 4.132746e− 011.8e−03 4.148104e− 012.7e−03

DTLZ5 9.541452e− 022.5e−05 9.562316e− 026.0e−06

DTLZ6 6.790182e− 021.2e−02 9.656647e− 021.0e−05

DTLZ7 3.121336e− 011.4e−03 2.459266e− 013.4e−02

co-evolutionary method.

The author continues comparing the results of each independent pop-

ulation (i.e., Ap and Ad) using co-evolutionary mechanisms with the re-

sult of combining both dual populations. Through this comparison, this

study examines whether or not the use of dual populations combines the

quintessence of both populations.

Tables 2.16 and 2.17 show the results of comparisons between DPPCP,

DPPCP-Ap, and DPPCP-Ad. It is clear that DPPCP achieves better

values in most instances. This shows that thanks to the co-evolution

mechanism, with interactions between solutions in two populations, the

final population can get the advantages of both populations. It can be
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Table 2.13: Performance comparisons between NSGAII with Ap using the IGD metric. The metric
value with the highest mean is emphasized by being displayed in bold font with a gray background.

NSGAII Ap

ZDT1 5.919099e− 052.6e−06 4.484072e− 052.0e−07

ZDT2 6.035183e− 052.2e−06 4.586843e− 052.9e−07

ZDT3 4.190027e− 051.5e−06 3.235044e− 054.4e−07

ZDT4 5.677679e− 051.1e−06 4.468699e− 052.6e−07

ZDT6 7.329672e− 052.5e−06 4.395604e− 051.6e−07

UF1 3.531346e− 036.7e−04 5.458855e− 051.5e−06

UF2 1.014096e− 032.9e−04 2.503008e− 045.8e−05

UF3 7.093487e− 031.6e−03 3.015407e− 042.9e−04

UF4 1.351779e− 031.3e−05 1.721485e− 038.0e−05

UF5 4.420051e− 024.3e−03 1.027762e− 014.5e−02

UF6 8.820306e− 032.6e−03 1.716127e− 025.2e−03

UF7 3.519909e− 033.8e−03 4.313322e− 045.1e−04

UF8 2.991707e− 038.8e−05 1.032012e− 031.4e−04

UF9 2.324010e− 031.1e−03 2.173429e− 035.4e−04

UF10 5.264139e− 032.0e−03 5.715941e− 039.0e−04

WFG1 3.146505e− 042.1e−05 2.353121e− 041.7e−05

WFG2 1.185735e− 048.1e−06 9.394695e− 055.0e−06

WFG3 6.509974e− 052.8e−06 4.879745e− 058.5e−07

WFG4 5.599029e− 053.1e−06 4.188075e− 055.4e−07

WFG5 9.334401e− 041.2e−06 9.309544e− 041.1e−07

WFG6 1.654294e− 041.3e−04 7.376991e− 053.9e−06

WFG7 3.933206e− 053.0e−06 2.845054e− 052.6e−07

WFG8 2.389023e− 031.3e−03 2.778718e− 031.4e−03

WFG9 4.201996e− 052.8e−06 2.995207e− 051.9e−07

DTLZ1 3.231009e− 049.7e−06 3.214582e− 041.3e−05

DTLZ2 4.433946e− 041.7e−05 4.132936e− 049.8e−06

DTLZ3 6.935231e− 041.5e−05 6.602071e− 041.7e−05

DTLZ4 7.956023e− 041.2e−04 7.878465e− 044.7e−05

DTLZ5 6.212032e− 062.9e−07 4.629317e− 067.3e−08

DTLZ6 2.898050e− 041.5e−04 1.134035e− 053.0e−07

DTLZ7 1.210533e− 034.6e−05 1.846060e− 027.2e−03

said that this population is likely to be able to balance both convergence

and diversity.

The final solutions obtained by the DPPCP algorithm and the true

PF on the DTLZ, UF, WFG, and ZDT series are plotted in Figure.2.21-

2.24. From these figures, the author finds that the proposed algorithm

can find the approximation set that covers entirely the true PF.

2.7.7. The change of population quality over time

To observe the changes in population quality over time, the author

used line charts to show the changes of two values, IGD and HV, after

each iteration of the proposed algorithm. For each dataset, there are two
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Table 2.14: Performance comparisons between MOEAD/DE with Ad using the HV metric. The
metric value with the highest mean is emphasized by being displayed in bold font with a gray

background.

MOEAD/DE Ad

ZDT1 6.648280e− 015.4e−05 6.649500e− 013.2e−05

ZDT2 3.315831e− 015.4e−05 3.316895e− 011.0e−05

ZDT3 5.162168e− 011.4e−05 5.162376e− 013.0e−06

ZDT4 6.649704e− 018.3e−06 6.649978e− 014.4e−06

ZDT6 4.047282e− 011.5e−08 4.047278e− 011.3e−06

UF1 6.635979e− 011.3e−04 6.639067e− 011.6e−04

UF2 6.565669e− 012.8e−03 6.602800e− 016.3e−04

UF3 6.578853e− 014.4e−03 6.528604e− 011.0e−02

UF4 2.472456e− 015.4e−03 2.530931e− 015.1e−03

UF5 4.976365e− 025.8e−02 1.901213e− 011.2e−01

UF6 2.059300e− 018.3e−02 1.557399e− 019.6e−02

UF7 4.945292e− 013.3e−03 4.947838e− 013.1e−03

UF8 3.286710e− 012.2e−02 3.347479e− 013.0e−02

UF9 5.973945e− 016.0e−02 5.653599e− 017.9e−03

UF10 7.037545e− 021.9e−02 7.481132e− 023.5e−02

WFG1 6.347123e− 012.2e−04 6.349902e− 012.2e−04

WFG2 5.646696e− 011.5e−05 5.646973e− 012.0e−06

WFG3 4.980009e− 014.5e−06 4.980084e− 012.8e−06

WFG4 2.212079e− 018.0e−05 2.213991e− 019.9e−06

WFG5 1.987543e− 012.0e−03 1.989529e− 012.6e−03

WFG6 2.128719e− 014.6e−06 2.128776e− 013.4e−06

WFG7 2.128584e− 018.0e−06 2.128669e− 013.0e−06

WFG8 1.732240e− 012.6e−02 1.677706e− 012.3e−02

WFG9 2.439037e− 016.4e−05 2.439922e− 011.7e−04

DTLZ1 7.848600e− 012.6e−04 7.849389e− 012.5e−04

DTLZ2 4.187079e− 019.6e−04 4.186242e− 017.6e−04

DTLZ3 4.193613e− 019.2e−04 4.193516e− 011.2e−03

DTLZ4 4.169853e− 018.7e−04 4.157544e− 011.1e−03

DTLZ5 9.469885e− 027.5e−06 9.472012e− 025.0e−06

DTLZ6 9.566261e− 026.8e−07 9.566209e− 026.4e−07

DTLZ7 2.801997e− 016.6e−03 2.316691e− 012.6e−02

corresponding charts, one for IGD and one for HV of the corresponding

sub-problems. Note that the smaller the IGD value, the better, while

the opposite is true for HV. Therefore, when looking at the chart, if the

IGD line goes down and the HV line goes up, it means that the quality

of the population is improving over time.

The results are shown in Figures 2.10 to 2.17. One common point

that can be observed in the four datasets is that both IGD and HV

reach convergence in most cases. However, each problem achieves that

state at different speeds.

For the ZDT dataset (Figures 2.10, 2.11), all five problems achieve the

best IGD state early (under 200 iterations). However, for IGD, besides
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Table 2.15: Performance comparisons between MOEAD/DE with Ad using the IGD metric. The
metric value with the highest mean is emphasized by being displayed in bold font with a gray

background.

MOEAD Ad

ZDT1 5.561091e− 052.2e−07 5.528320e− 051.7e−07

ZDT2 4.661063e− 054.8e−08 4.662861e− 058.1e−09

ZDT3 8.897932e− 051.7e−06 8.797083e− 059.4e−08

ZDT4 5.903217e− 054.4e−07 5.892080e− 051.5e−07

ZDT6 4.627950e− 055.4e−09 4.627584e− 051.6e−09

UF1 7.056534e− 055.6e−06 6.249016e− 052.8e−06

UF2 4.789866e− 041.5e−04 2.519000e− 043.9e−05

UF3 1.852946e− 049.2e−05 2.948503e− 042.2e−04

UF4 1.919477e− 031.2e−04 1.765559e− 031.1e−04

UF5 6.953943e− 021.0e−02 9.583202e− 025.3e−02

UF6 7.166399e− 038.6e−03 2.003117e− 027.4e−03

UF7 3.171871e− 044.7e−04 3.210059e− 044.0e−04

UF8 1.082474e− 032.5e−04 1.122969e− 033.3e−04

UF9 1.706092e− 037.8e−04 2.168509e− 037.8e−05

UF10 5.162630e− 034.9e−04 5.195688e− 036.8e−04

WFG1 2.771777e− 041.4e−05 2.574595e− 041.9e−05

WFG2 6.031492e− 048.5e−06 6.081285e− 041.1e−06

WFG3 5.477941e− 056.2e−08 5.475384e− 053.2e−08

WFG4 6.262985e− 057.2e−07 6.154841e− 052.9e−07

WFG5 9.156851e− 045.7e−05 9.095219e− 047.3e−05

WFG6 9.134833e− 051.0e−07 9.137324e− 056.0e−08

WFG7 4.053872e− 051.2e−08 4.053413e− 052.3e−08

WFG8 2.601146e− 031.3e−03 2.976396e− 031.2e−03

WFG9 4.064367e− 051.4e−07 4.055560e− 052.0e−07

DTLZ1 3.475079e− 041.1e−06 3.473201e− 048.9e−07

DTLZ2 4.309118e− 042.2e−06 4.308753e− 041.9e−06

DTLZ3 7.219248e− 044.6e−06 7.210165e− 043.3e−06

DTLZ4 7.737441e− 045.9e−05 8.445142e− 047.7e−05

DTLZ5 1.517558e− 056.4e−08 1.514454e− 055.4e−08

DTLZ6 3.453149e− 052.9e−08 3.454897e− 051.9e−08

DTLZ7 4.015304e− 034.3e−03 2.044364e− 027.1e−03

ZDT4 which takes 1000 iterations to reach the best state, other problems

can achieve a balanced state early (around 20 iterations).

For the DTLZ dataset (Figure 2.12, 2.13), while for HV, DTLZ1 needs

around 250 iterations to reach a balanced and best state compared to

other problems, the remaining problems can achieve a balanced state

before 200 iterations. Similarly for IGD, DTLZ1 also needs nearly 200

iterations, while other problems can achieve a balanced state in under

50 iterations.

For the WFG dataset (Figures 2.14, 2.15), the results with HV are

quite similar to those with DTLZ, where DTLZ1 requires the most it-

erations (around 400 iterations) to reach the best state, while other
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Table 2.16: Performance comparisons between DPPCP with DPPCP-Ap and DPPCP-Ad using the
HV metric. The metric value with the highest mean is emphasized by being displayed in bold font

with a gray background.

DPPCP-Ap DPPCP-Ad DPPCP
ZDT1 6.650573e − 013.4e−05 6.649439e − 013.5e−05 6.654682e − 018.0e−05

ZDT2 3.317733e − 011.2e−05 3.316889e − 011.1e−05 3.322645e − 014.6e−05

ZDT3 5.169542e − 012.8e−06 5.162387e − 013.6e−06 5.170115e − 012.3e−05

ZDT4 6.651104e − 015.3e−06 6.649971e − 015.5e−06 6.655771e − 011.7e−05

ZDT6 4.047643e − 016.5e−06 4.047280e − 018.9e−07 4.053177e − 012.0e−05

UF1 6.639747e − 017.9e−05 6.639469e − 011.4e−04 6.611297e − 011.3e−02

UF2 6.599954e − 011.3e−03 6.601949e − 019.0e−04 6.585740e − 011.8e−03

UF3 6.521510e − 011.2e−02 6.512283e − 011.2e−02 6.341751e − 014.1e−02

UF4 2.541054e − 013.9e−03 2.555352e − 015.5e−03 2.527116e − 013.6e−03

UF5 1.690427e − 011.0e−01 1.736297e − 011.2e−01 1.851661e − 011.0e−01

UF6 1.857803e − 018.4e−02 1.660392e − 011.0e−01 1.720137e − 018.3e−02

UF7 4.834219e − 015.2e−02 4.951684e − 012.6e−03 4.918281e − 018.7e−03

UF8 3.158450e − 012.6e−02 3.255501e − 014.0e−02 3.032140e − 018.0e−02

UF9 4.965614e − 016.8e−02 5.620449e − 019.7e−03 5.885163e − 015.4e−02

UF10 3.846684e − 022.6e−02 8.202228e − 023.5e−02 8.027631e − 024.1e−02

WFG1 6.353914e − 011.7e−04 6.350033e − 012.3e−04 6.353696e − 011.4e−04

WFG2 5.653623e − 012.9e−06 5.646976e − 012.3e−06 5.654117e − 014.9e−06

WFG3 4.982741e − 014.9e−06 4.980092e − 013.6e−06 4.987841e − 011.7e−05

WFG4 2.218733e − 017.9e−06 2.214039e − 011.0e−05 2.221528e − 014.8e−05

WFG5 1.990736e − 011.8e−03 1.993133e − 012.9e−03 1.993798e − 011.8e−03

WFG6 2.133075e − 013.9e−06 2.128778e − 013.0e−06 2.136229e − 019.6e−06

WFG7 2.133019e − 013.1e−06 2.128669e − 013.4e−06 2.136212e − 018.9e−06

WFG8 1.680864e − 012.2e−02 1.731327e − 012.6e−02 1.762630e − 012.7e−02

WFG9 2.444569e − 011.5e−04 2.439633e − 011.5e−04 2.447730e − 011.6e−04

DTLZ1 7.910644e − 012.2e−03 7.848877e − 012.4e−04 7.993489e − 018.5e−04

DTLZ2 4.200114e − 012.3e−03 4.184426e − 018.9e−04 4.275582e − 018.8e−04

DTLZ3 4.221261e − 012.2e−03 4.190582e − 011.0e−03 4.282988e − 018.1e−04

DTLZ4 4.145095e − 012.2e−03 4.159602e − 011.1e−03 4.241378e − 017.9e−04

DTLZ5 9.562550e − 026.0e−06 9.472234e − 026.1e−06 9.574149e − 021.1e−05

DTLZ6 9.656628e − 021.0e−05 9.566211e − 025.6e−07 9.676292e − 027.1e−06

DTLZ7 2.407067e − 013.4e−02 2.339938e − 012.6e−02 2.462745e − 013.2e−02

problems achieve the best state before 100 iterations. For IGD, WFG1

needs 1000 iterations to reach a state close to other problems, and with

this trend, if the number of iterations is increased, WFG1 can achieve

even better IGD.

For the UF dataset (Figures 2.16, 2.17), the results with HV are more

diverse than for other problems. While UF2, UF4, and UF6 reach a

balanced state, other problems still have a tendency to improve. For

IGD, except for UF5, which continues to improve at 1000 iterations,

other problems achieve a balanced state before 50 iterations.

From these charts, it can be seen that with the current number of

iterations, most problems have achieved their best state, with only a few

still having the potential to improve further.
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Table 2.17: Performance comparisons between DPPCP with DPPCP-Ap and DPPCP-Ad using the
IGD metric. The metric value with the highest mean is emphasized by being displayed in bold font

with a gray background.

DPPCP-Ap DPPCP-Ad DPPCP
ZDT1 4.485633e − 052.2e−07 5.530559e − 051.6e−07 3.187123e − 056.9e−07

ZDT2 4.583104e − 052.6e−07 4.662961e − 057.6e−09 3.175499e − 055.7e−07

ZDT3 3.215338e − 055.4e−07 8.807805e − 052.4e−07 2.664059e − 054.9e−07

ZDT4 4.468264e − 052.6e−07 5.901455e − 053.2e−07 3.138571e − 054.9e−07

ZDT6 4.397428e − 051.8e−07 4.627621e − 051.6e−09 3.142337e − 057.2e−07

UF1 5.465684e − 051.3e−06 6.231947e − 052.6e−06 3.484854e − 041.3e−03

UF2 2.682161e − 047.3e−05 2.575379e − 045.1e−05 3.626042e − 041.1e−04

UF3 3.703678e − 044.5e−04 3.300163e − 042.7e−04 7.198866e − 041.1e−03

UF4 1.728170e − 038.3e−05 1.719490e − 031.2e−04 1.792191e − 039.6e−05

UF5 9.393395e − 024.9e−02 9.658430e − 025.1e−02 9.217221e − 024.4e−02

UF6 1.702495e − 024.9e−03 1.887109e − 027.1e−03 1.715472e − 025.8e−03

UF7 1.034829e − 033.2e−03 3.049188e − 043.6e−04 4.723165e − 047.4e−04

UF8 1.068130e − 031.6e−04 1.199492e − 034.7e−04 1.427242e − 031.6e−03

UF9 2.177674e − 035.4e−04 2.194444e − 031.0e−04 1.860454e − 036.2e−04

UF10 5.692229e − 037.7e−04 4.920016e − 037.8e−04 4.756647e − 038.1e−04

WFG1 2.378909e − 041.5e−05 2.564765e − 042.0e−05 2.642254e − 049.2e−06

WFG2 9.553416e − 054.9e−06 6.077109e − 041.0e−06 8.645268e − 055.0e−06

WFG3 4.854589e − 058.6e−07 5.473958e − 055.1e−08 3.496741e − 055.4e−07

WFG4 4.186748e − 055.1e−07 6.152974e − 052.5e−07 3.327079e − 056.0e−07

WFG5 9.194347e − 045.2e−05 8.987365e − 048.3e−05 9.190031e − 045.1e−05

WFG6 7.328672e − 053.7e−06 9.137049e − 054.6e−08 5.268868e − 052.4e−06

WFG7 2.842715e − 052.2e−07 4.053810e − 051.8e−08 2.202683e − 053.0e−07

WFG8 2.972886e − 031.2e−03 2.690646e − 031.3e−03 2.447889e − 031.3e−03

WFG9 2.997811e − 052.6e−07 4.058226e − 051.7e−07 2.311125e − 056.5e−07

DTLZ1 3.199129e − 041.3e−05 3.470590e − 049.9e−07 2.666947e − 045.0e−06

DTLZ2 4.126831e − 048.9e−06 4.307759e − 042.0e−06 3.401370e − 045.6e−06

DTLZ3 6.701955e − 041.9e−05 7.209664e − 043.7e−06 5.485917e − 048.3e−06

DTLZ4 7.959802e − 045.7e−05 8.381398e − 046.4e−05 5.614028e − 045.8e−05

DTLZ5 4.629690e − 067.8e−08 1.514716e − 055.3e−08 3.817541e − 061.1e−07

DTLZ6 1.127554e − 052.9e−07 3.453401e − 053.1e−08 9.029561e − 063.2e−07

DTLZ7 1.923883e − 027.1e−03 2.005448e − 026.9e−03 1.836414e − 026.8e−03

2.7.8. CPU time comparison

To compare the runtime of the algorithms, this study analyzed the

CPU time cost of the proposed algorithm (DPPCP) with two base-

lines (NSGA-II and MOEA/D) and the co-evolutionary DPP algorithm.

This study conducted comparisons across 31 problems. To get the

most accurate assessment, all algorithms are implemented in jMetal5

(an integrated Java framework). It can be downloaded from http:

//jmetal.github.io/jMetal/. The author runs multithreading with

8 cores on computers configured as Intel Xeon E5-2620, 16 GB Ram.

Experimental results are shown in Figure.2.18-2.20. This study exper-

imented with two different generation parameters, which are 10 (Fig-

ure.2.18-2.19) and 1000 (Figure.2.20).

Suppose that M is the objective number, N is the population size, and

T is the neighbor size. The time complexity of MOEA/D in one genera-
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Figure 2.10: The HV values of ZDT problems in
different stages of evolution

Figure 2.11: The IGD values of ZDT problems in
different stages of evolution

Figure 2.12: The HV values of DTLZ problems in
different stages of evolution

Figure 2.13: The IGD values of DTLZ problems
in different stages of evolution

tion (iteration) is only O(NTM), where M, T≪N. Meanwhile, O(MN 2)

is the time complexity of the NSGA-II algorithm. The DPPCP and

DPP algorithms maintain two coevolving populations. The main run-

ning steps of these two algorithms are similar to those of the MOEA/D

algorithm. Thus, the complexity of these main steps is still O(NTM).

However, small steps in the algorithms often have to be processed twice

for two populations, so the calculation time will be longer than the base-

line algorithms. Results with CPU time show this clearly. As you can

see in Figure.2.18, the MOEA/D algorithm uses the least CPU time,

followed by the NSGA-II algorithm. These two baseline algorithms take
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Figure 2.14: The HV values of WFG problems in
different stages of evolution

Figure 2.15: The IGD values of WFG problems in
different stages of evolution

Figure 2.16: The HV values of UF problems in
different stages of evolution

Figure 2.17: The IGD values of UF problems in
different stages of evolution

less time than the two DPPCP and DPP algorithms. Figure.2.19 shows

the comparison of the two co-evolution algorithms. The white boxes in-

dicate that the DPPCP algorithm runs faster, and vice versa with the

black boxes. It is evident that with a loop count of 10, the DPPCP algo-

rithm runs faster than DPP in most test cases. The result is similar for

these two algorithms when the number of iterations increases to 1000,

as shown in Figure.2.20. The explanation for this result may be in the

step of updating the child solution in the Ad population. While DPPCP

updates with a limited number (K < T ) of neighborhood solutions (the

time complexity is O(K)), in DPP the author proceeds through all sub-
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Figure 2.18: CPU time comparisons between algorithms on different test instances (with the number
of generations is 10)

Figure 2.19: CPU time comparisons between DPPCP and ED/DPP for algorithms on different test
instances (with the number of generations is 10)

regions to calculate distances, find the nearest sub-region, and compare

the child solution with a solution in this sub-region to update (the time

complexity is O(NM)). This is the main reason for the difference in CPU

time between these two algorithms.

2.8. Summary

In this chapter, the author presents two DPP-based algorithms for bal-

ancing convergence and diversity in MOEAs. Specifically, a co-operative

co-evolutionary algorithm (DPP2) and a competitive co-evolutionary

(named DPPCP) algorithm are presented. The novelties of these algo-

rithms include a new restricted competitive mating selection mechanism
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Figure 2.20: CPU time comparisons between DPPCP and ED/DPP on different test instances (with
the number of generations is 1000)

Figure 2.21: Plots of final solutions found by the DPPCP algorithm on DTLZ test instances

(RMS2); a new neighborhood-based selection mechanism (NBSMS) for

choosing individuals for each population; a co-operative and compet-

itive mechanism to force two offspring to associate with one another.

By comparing DPPCP and DPP2 with baseline algorithms, the empir-

ical results pointed out the efficacy of the co-evolutionary methods in

balancing diversity and convergence for solving MOPs.

The proposed methods in this chapter were published in the IEEE

Access journal (SCIE, Q1) [J1], and the Asia Pacific Symposium on

Intelligent and Evolutionary Systems (IES) conference (Scopus) [C1].
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Figure 2.22: Plots of final solutions found by the DPPCP algorithm on UF test instances

Figure 2.23: Plots of final solutions found by the DPPCP algorithm on WFG test instances

Figure 2.24: Plots of final solutions found by DPPCP algorithm on ZDT test instancess
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Chapter 3

THE APPLICATION OF MULTI-OBJECTIVE

CO-EVOLUTIONARY OPTIMIZATION METHODS FOR

CLASSIFICATION PROBLEMS

In Chapter 2, a full explanation of dual-population methods for solving

standard multi-objective optimization problems is presented. The high-

light of DPP-based methods is the ability to find solution sets that have

both convergence and diversity factors. From the success of these algo-

rithms for basic multi-objective optimization problems, in this chapter,

the author continues to expand these algorithms into solving particular

machine learning challenges. In particular, a dual-population competi-

tive co-evolutionary algorithm (i.e., DPPCP) with the capability of gen-

erating optimal solutions that meet both convergence and diversity cri-

teria will be combined with an ensemble learning algorithm along with

resampling methods to make an algorithm named IBDPPCP for the

classification of imbalanced data. In addition, another new algorithm

(named IBMCCA) is proposed for the imbalanced data classification.

The idea of IBMCCA is inherited from the studies published in [J2] and

[C2, C3]. These two proposed methods are also improved versions of

the method published in [C6, C7]. The details of these algorithms are

presented in the following sections:

3.1. Introduction

The difficulty of imbalanced datasets for traditional machine learning

algorithms is that these algorithms often focus on optimizing accuracy
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as well as generalization. This makes them biased toward the majority-

class examples, and the minority ones are not well modeled into the final

system. As a result, the classification results for the minority classes are

often low. However, in reality, the minority classes often play vital roles

and are the most meaningful to explore. This can be seen clearly in

medical applications [113], finance [12], etc. The important point to

note here is that the imbalanced ratio is not the only factor affecting

the classification results; another factor that needs to be mentioned is

the problem of overlapping between classes. This overlap problem is

related to the number of redundant features in a dataset. When the

dataset has more redundant and irrelevant features, the overlap becomes

more complex, and the classification results are worse. Therefore, it is

necessary to handle both problems: imbalance and overlap between

classes.

The problem of overlap between classes can be effectively solved by

feature selection (FS) methods [3,32]. The purpose of FS is to make

overlapping areas simpler, hence making it easier to generate rules that

distinguish between classes. Meanwhile, by removing the instances of

the majority class, a mechanism of instance selection (IS) [83] is

well suited to tackle the imbalance problem. Additionally, the IS has

extra benefits. First, it helps to eliminate redundant, irrelevant, noisy,

and borderline instances that could affect the classification results [49].

Second, this method makes the training process more effective when

dealing with large problems, and the final model may also be simpler [80].

However, it must be emphasized that FS and IS cannot resolve all issues

relating to data imbalances. Instead, this data still needs to go through

the pre-processing step (e.g., upper or under-resampling).

Recent studies have demonstrated the effectiveness of Multi-Objective

Evolutionary Optimization (MOEA) [2] and ensemble learn-
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ing [48] for imbalanced classification. The non-dominated solutions of

the Pareto front from the MOEA can be directly combined into an en-

semble of classifiers. This is a key point that makes the combination

of MOEA and ensemble learning effective in solving imbalanced classi-

fication problems. In [42], Fernández et al. proposed a multi-objective

evolutionary algorithm (named EFIS-MOEA) that combines ensem-

ble learning, instance selection, and feature selection problems. This is

one of the typical case studies for using ensemble learning algorithms

to solve classification problems with imbalanced data utilizing a multi-

objective optimization approach. In this study, the authors proposed an

method to solve both problems at the same time: feature selection and

instance selection. By using a Pareto-based multi-objective optimization

algorithm (i.e., NSGA-II), a number of output optimal solutions are se-

lected to form a set of weak learners in ensemble learning. The base

algorithm used as the weak learner here is the decision tree algorithm

C4.5 [98]. This algorithm is not only capable of selecting features based

on the intrinsic characteristics of the data but has also been proven to

be a good choice when developing ensemble learning systems [101]. In-

spired by the success of this algorithm, this thesis proposes an

algorithm named IBDPPCP as an extension and further de-

velopment of this algorithm . The proposed algorithm differs from

the original work (i.e., EFIS-MOEA) in three key points:

• In the data preprocessing step, EFIS-MOEA only uses SMOTE to

generate more samples for the minority class. The noisy data in the

overlapping area will hopefully be eliminated through an instance

selection solution. This method has no control over how much of the

noise is removed. To overcome this phenomenon, in IBDPPCP, the

author uses a combination of upper and lower sampling techniques

(i.e., SMOTE-ENN). By using ENN, these noises will be actively
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eliminated with more certainty.

• In IBDPPCP, the author still uses the individual encryption solution

to solve both feature selection and instance selection problems, as

in EFIS-MOEA. However, the difference here is in the individual

encoding. While EFIS-MOEA utilizes binary encoding, IBDPPCP

uses real encoding, with each bit value representing the probability

that the bit will be selected. This encoding type is consistent with

the decomposition-based algorithm that IBDPPCP uses.

• Both EFIS-MOEA and IBDPPCP use a multi-objective optimiza-

tion algorithm to find optimal solutions that act as base learners

for the ensemble learning algorithm. However, there is a difference

here. In EFIS-MOEA, the multi-objective algorithm used is NSGA-

II. This algorithm prioritizes convergence over diversity, whereas the

IBDPPCP algorithm uses a DPP-based competitive co-evolutionary

algorithm (i.e., DPPCP). This algorithm has been proven to pro-

duce solutions that ensure both convergence and diversity. They are

the two decisive factors that help the ensemble learning algorithm

execute most effectively.

The co-operative co-evolution method is an efficient evolutionary al-

gorithm for solving the FS and IS in classification problems. In [111],

the authors used a single-objective co-evolutionary method (named CO-

CEA) to solve both feature selection and optimization problems of ANNs

simultaneously. In this study, two populations were employed: one for

selecting features and another for optimizing ANNs. In the feature pop-

ulation, the authors use a binary string to encode each individual and a

genetic algorithm (GA) to evolve, whereas the second population utilizes

real number encoding and the differential evolution algorithm (DE) to

evolve. The COCEA algorithm is tested on four different datasets. The

results show that the COCEA algorithm has high classification accu-
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racy. The weakness of the COCEA lies in its single-objective

function . Although the COCEA uses two different populations, one

for evolving the classifier and the other for evolving the feature set, both

populations use the same fitness function. This is the classification accu-

racy (MSE). This means both populations only focus on optimizing this

goal, and the criteria for feature selection are still secondary. This can-

not guarantee that the number of features selected will be reduced. This

is the main reason why the number of features retained by the COCEA

is often large and uncontrollable. An extended version of the COCEA

algorithm (named E-SOCA) is proposed in [109]. In this, the authors

have combined the co-evolutionary method with an ensemble learning

algorithm; the best individuals in each generation are stored in a list

called BestList during the co-evolutionary process. These individuals

are then used as weak learners for the Adaboost algorithm. Although

the classification results are better than COCEA, the shortcomings of

COCEA are still unresolved since both use a single-objective function.

This problem can be handled by applying a multi-objective optimiza-

tion algorithm instead of a single-objective algorithm. In [110], the au-

thors presented a multi-objective co-operative co-evolutionary algorithm

with dual populations for designing the artificial neural network (named

MCCA) with feature selection. In this research, the authors used a multi-

objective optimization algorithm with classification accuracy (ACC) and

feature subset size (FS) as the two main objectives to evaluate the fit-

ness of individuals. The authors have run experiments with three dif-

ferent remote sensing image datasets from the UCI and Statlog Repos-

itory [46]. Experimental results show that by using a multi-objective

optimization method, MCCA outperforms SOCA not only in classifica-

tion accuracy but also in the selected number of features. Inspired by

the work in [111] and [109], in this study, the author pro-
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poses a new multi-objective co-operative co-evolution method

with dual population for classification with imbalanced data

(named IBMCCA). In comparison with the COCEA and E-SOCA

algorithms, the proposed algorithm has the following similarities and

differences:

+ The feature individual encoding: Both IBMCCA and COCEA use

binary encoding to encode the individual of the feature population.

Meanwhile, MCCA uses real strings to represent an individual, then

uses a method to convert it to a binary string in order to calculate its

fitness as well as to know which features will be chosen.

+ The co-evolutionary algorithms : In COCEA, the authors used two

different single-objective evolutionary algorithms (the GA and DE algo-

rithms) to evolve two populations during a co-evolution process. The

objective function is the mean squared error (MSE) metric. In MCCA

and IBMCCA, the author utilizes a multi-objective evolutionary algo-

rithm (NSGA-II algorithms) to evolve each population. The difference

between IBMCCA and MCCA is in the objective functions used in each

population. While MCCA uses (ACC and FS) for the feature population

and (MSE and ACC) for the remaining population. IBMCCA utilizes

(AUC and FS) for the feature population and (AUC and IS) for the

other population.

+ The ensemble learning : While E-SOCA and IBMCCA utilize en-

semble learning, MCCA does not. The difference between E-SOCA and

IBMCCA is that S-COCA uses a boosting algorithm (i.e., Adaboost),

while IBMCCA utilizes a voting mechanism.

It can be seen that the co-evolutionary model in IBMCCA is

a combination of the multi-objective co-evolutionary model

in MCCA and the ensemble learning mechanism in E-SOCA.

Details of this proposed algorithm are presented in the following sections.
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3.2. A multi-objective competitive co-evolutionary method for

classification with imbalanced data (IBDPPCP)

The proposed algorithm model is shown in Figure 3.1 and the pseudo-

code for this algorithm is presented in Algorithm 14. There are three

main phases: Data pre-processing, the co-evolutionary process, and ensemble-

based decision-making. The general idea of the algorithm is as follows:

Encoding each individual into a couple of feature sets (FS) and instance

sets (IS) with the hope of finding the optimal ones that have both key

features as well as important instances to help solve the imbalanced

dataset problem. The author’s idea is to use a multi-objective competi-

tive co-evolutionary algorithm (i.e., DPPCP) to find the set of optimal

individuals, then combine these individuals with an ensemble learning

algorithm. It should be noted that to boost the performance of the

ensemble learning algorithm, the weak learners should satisfy two cri-

teria: having diversity as well as good classification performance. The

multi-objective optimization algorithm helps generate weak learners that

satisfy both of these two criteria. After the evolutionary process, all indi-

viduals in the final population are used as weak learners in the ensemble

learning algorithm. A voting mechanism is used to determine the final

result. This study uses a DPP-based algorithm (named IBDPPCP) as

the multi-objective optimization algorithm and utilizes the C4.5 algo-

rithm as the base learner to solve this problem.

3.2.1. Individual encoding

An individual stands for a problem-solving strategy. As stated at the

beginning of this section, we need to find solutions to solve two issues:

The first is class overlap, and the second is unequal class distributions.

Finding the boundary to separate becomes increasingly challenging for

the first issue as the number of features and dimensions rises. There
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are frequently redundant and unrelated features, and not all character-

istics accurately describe the problem’s data domain. The overlapping

phenomenon is further fueled by these data. The effective solution to

this problem is feature selection [32]. Therefore, this feature selection

problem must be solved by individual encoding.

In the second issue, the data imbalance is solved by either increasing

or decreasing the data until the proper ratio is achieved. There are

two straightforward strategies for this issue: The first way is to use a

combination with a sampling technique (such as SMOTE, ENN, etc.),

and the second one involves using the instance selection (IS) method. A

question arises here: if the sampling method has been used to bring the

data to equilibrium, is there a need to use more IS? The essence of IS is to

select different groups of data. However, this selection takes into account

the selection probability of the samples. That is, the samples that give

good classification results will be kept, and the other samples will be

discarded. IS facilitates two tasks for us: In addition to assisting in the

creation of more diverse sub-datasets, it also aids in the elimination of

patterns in the overlapping region. This will enhance the performance

of the ensemble learning method. As a result, even after doing data

sampling, IS should be implemented.

From the above arguments, this study shows that FS and IS are two

problems that need to be solved simultaneously. The author decides to

encode an instance as a sequence of two substrings (Figure 3.2):

• FS Substring : The representation of a feature set

• IS Substring : The representation of an instance set.

One point to note here is that instead of encoding IS and FS as binary

strings as traditional methods often do, these two strings in this situation

both contain real numbers between [0, 1]. These numbers show the

likelihood that a feature or sample will be chosen or not. The author
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chooses a threshold of 0.5 to assess whether a gene is kept or removed.

This implies that positions with values between 0.5 and 1 will be chosen,

and positions with values lower than 0.5 will be rejected. A new dataset

will be created for each of the encodings, which is then utilized to build

a decision tree to determine the classification outcome. The Figure 3.3

illustrates how to create a decision tree from an individual.

In Figure 3.3, X is the original training dataset with S rows (or sam-

ples) and D columns (or features); XF is the selected training dataset

(with S rows and F columns) after removing some columns (i.e., posi-

tions with a value of ’0’ on the FS substring); XF
I is XF dataset (with I

rows and F columns) after eliminating some rows (i.e., positions with a

value of 0 on the IS substring).

3.2.2. Objective functions

There are two key objectives the author wishes to accomplish with

this study. Increasing identification across all data classes (including

minority and majority) is the first one. The second is to minimize the

number of samples selected, or, in other words, to maximize the removal

of bad samples.

To solve the first goal, it is necessary to have a metric that can evaluate

the classifier’s ability in all classes, not just favor samples in the majority

or minority class. In common classification problems, the classification

accuracy (ACC) metric is often chosen to evaluate the results. However,

the disadvantage of this measurement is that it only evaluates the whole

data set and does not represent the classification results for each class.

Because of this feature, the ACC is not suitable for problems involving

imbalanced classification. Instead, the AUC index is often used. The

AUC [44] is calculated based on the ROC (receiving operating curve)

to assess how well the model’s classification ability is. The larger the

AUC value, the better the algorithm’s performance is. Therefore, here
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the author chooses AUC as an objective function and takes the opposite

sign to return to the problem of finding the minimum.

In the second objective, the removal of bad patterns not only makes

the execution speed faster but also better. This has a great effect when

solving problems with a large number of samples. However, removing

too many samples can have the opposite effect on the learning ability of

the model. How to delete to get the best execution performance? This is

not a trivial answer to the fact that the two objectives selected here were

in conflict. Through the above analysis, the author decided to choose

two objective functions as follows: OBJ1 = AUC

OBJ2 =
∑N−1

i=0 ISi

(3.1)

where N is the number of samples of the training dataset; ISi is a

binary value (0 or 1) converted from the probability of selection. The

task now is to minimize these two functions. This implies that for any

solution, the smaller the IS and the higher the AUC, the better it is.

3.2.3. The IBDPPCP algorithm

The pseudocode of the algorithm is presented in Algorithm 14. There

are three main steps: Data preprocessing, co-evolutionary processes, and

ensemble learning. In the data preprocessing step, the original data goes

through a process of re-sampling and cleaning. Since the original data is

unbalanced, the SMOTE-ENN algorithm helps generate more data for

the minority classes to make the data more balanced. After the sam-

pling step, duplicate data may appear. Therefore, it is necessary to clean

up these data so that they do not affect the training results. The data

after preprocessing is the input for the co-evolutionary process. The

DPPCP (Algorithm.10) is used to find a set of individuals (denoted
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Algorithm 14: The IBDPPCP algorithm

input : Dataset
output: FinalResult

1 BestArchive← Θ
2 #Step 1: Data preprocessing
3 Dataset ← DataSampling(DataSet);
4 Dataset ← DuplicateRemoving(DataSet);
5 #Step 2: The Co-evolutionary process
6 BestArchive= DPPCP (Dataset);
7 #Step 3: Ensemble learning
8 Classifiers = BuildTrees(BestArchive, Dataset)
9 FinalResult = EnsembleLearning(Classifiers, Dataset)

10 Return FinalResult;

BestArchive) that satisfy both convergence and diversity criteria. Each

individual is encoded as a couple of IS and FS substrings. Correspond-

ing to an individual is a new dataset that is generated from the input

dataset (Figure 3.3). A decision tree (i.e., C4.5) is constructed using

these new datasets. As a result, IBDPPCP generates a collection of

Classifiers. Additionally, these classifiers will be used as input for the

ensemble learning method to make the final decision using the voting

mechanism.

As mentioned above, there are two important factors determining the

success of ensemble learning algorithms: predictive performance and di-

versity. The first requires that classifiers (or weak learners) achieve a

certain level of performance rather than being randomly initialized. By

using an objective function of AUC, this factor can be guaranteed. With

the second factor, the classifiers are required to have a certain difference

to avoid premature convergence to local extremes as well as help make

the most diverse decisions. These factors help the voting method pro-

duce better results. In this study, the author encodes each individual

as a set of IS and FS. This is similar to creating subsets that differ in

both the number of rows and the number of columns of data. Thereby,

diversity is guaranteed.
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A highlight of the DPP-based solution, as mentioned in Chapter 2, is

the ability to find a set of solutions that ensure both convergence and

diversity. This gives the author the hypothesis that it may be more

suitable than the solution using NSGA-II for finding a set of individuals

(or models) that satisfy both criteria that an ensemble learning algorithm

requires. This is the reason to choose a DPP-based algorim for solving

the imbalanced data classification problem.

3.3. A multi-objective co-operative co-evolutionary method

for classification with imbalanced data (IBMCCA)

The IBDPPCP algorithm utilizes the DPPCP to find an optimal solu-

tion set. DPPCP helps to solve both FS and IS problems simultaneously.

There is another algorithm using dual populations to solve this problem

that will be introduced in this section (i.e., IBMCCA). There are two

main differences between these two algorithms. The first one is indi-

vidual encoding. In IBDPPCP, the individuals in the two populations

use the same encoding (i.e., the two substrings FS and IS). In IBM-

CCA, each individual is a separate substring. Objective functions are

the second difference. Because the role of each population is different,

in IBMCCA, each of them uses different objective functions, whereas,

in IBDPPCP, both populations use the same objective functions. The

flowchart of the proposed method is shown in Figure 3.4. There are

two populations that evolve simultaneously to solve two tasks: feature

selection and instance selection. The first population (called the feature

population or population 1) includes individuals representing different

ways of selecting features. The second one (called the instance popula-

tion or population 2) contains individuals that each represents a subset

of the original dataset. In the process of co-evolution, in order to calcu-

late the fitness value, each individual in the first population needs to be
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associated with the individual in the second population, and vice versa.

Undergoing a co-evolutionary process, the output is a combination of

the best individuals from two populations. A more detailed explanation

of the IBMCCA method is described in the following sections.

Algorithm 15: The IBMCCA algorithm

input : DataSet
output: FinalResult

1 #Step 1: Data preprocessing
2 DataSet ← PreProcessing(DataSet);
3 #Step 2: Population initiation
4 P1← InitializePopulation1(N)
5 P2← InitializePopulation2(N)
6 Elite1← [11. . . 1]
7 ElitePool← Θ;BestArchive← Θ
8 ElitePool.Add(Elite1);
9 CalculateFitness(P2, Elite1, DataSet);

10 Eltite2 ← Sort(P2);
11 Pool.Add(Elite2);
12 #Step 3: The Co-evolutionary process
13 while Stop condition false do
14 Reproduction(P1, Eltite2;
15 Eltite1 ← Sort(P1);
16 Pool.Update(Elite1);
17 Reproduction(P2, Eltite1);
18 Eltite2 ← Sort(P2);
19 Pool.Update(Elite2);

20 #Step 4: Ensemble learning
21 BestArchive= Union (Front0P1, (Front0P2));
22 Classifiers = BuildTrees(BestArchive, Dataset)
23 FinalResult = EnsembleLearning(Classifiers, Dataset)
24 Return FinalResult;

3.3.1. Individual encoding

Two populations have the same coding strategy. It is supposed that

the feature population has N individuals (Ind11, Ind12, ..., Ind1N). Each

individual Ind1i is encoded as a binary string. In particular, the binary

value is used to determine whether a feature is selected or not. If a

bit value is “1”, the corresponding feature is selected, and vice versa.
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For example, with individual Ind11 = [011000], the second and third

features are selected, and the other ones are eliminated.

3.3.2. Objective functions

The objective functions in the evolutionary algorithms are designed

to calculate fitness values, which can be used to evaluate individuals.

In this study, the author utilizes the multi-objective evolutionary algo-

rithm to evolve two populations. Because of the different purposes of

each population, the objective functions are varied. The purpose of the

feature population is to find individuals that have not only the least

number of selected features but also the highest AUC value. Therefore,

two chosen objectives for this population are the AUC and the number of

selected features. FS stands for feature set. FSi is a binary value (0 or 1)

converted from the probability of selection of a feature. Meanwhile, the

second population (i.e., the instance population) tries to find individuals

with the least number of selected instances as well as the highest AUC

value. Therefore, AUC and the number of selected samples are chosen

as two objectives for this population. IS stands for instance set, ISi is

a binary value (0 or 1) converted from the probability of selection of an

instance. Suppose D is the number of features and S is the number of

samples. The formula for the objective functions of the two populations

is as follows:

Population1 :

 OBJ1 = −AUC

OBJ2 =
∑D−1

i=0 FSi

(3.2)

Population2 :

 OBJ1 = −AUC

OBJ2 =
∑S−1

i=0 ISi

(3.3)
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3.3.3. The IBMCCA algorithm

The implementation of the whole procedure can be divided into the

following four main steps (Algorithm 15).

Step 1: Data preprocessing

Similar to the IBDPPCP algorithm, IBMCCA also uses a data resam-

pling method (i.e., SMOTE/ENN) as a preprocessing step to make the

data more balanced. This data is then cleaned by removing duplicate

records.

Step 2: Population initiation

In general, each individual in two populations is randomly assigned an

array of binary values. It is supposed that both populations are the

same size as N. The total number of features is D, and the size of the

samples is M. Then, N individuals with the length of D are randomly

generated with binary values to form the initial feature population, and

N individuals with the length of M are randomly generated with binary

values to create the initial instance population. It is noted that this

initialization process has to ensure two conditions: First, each individual

in both populations must contain at least one bit with the value “1” (to

ensure there is always at least one feature and one sample selected), and

both populations must always have an individual whose all values are

“1” (to ensure that all features and samples are selected). To begin, an

individual in population 1 with all of the values set to “1” will be used

to calculate the fitness values of the entire population 2. After that, a

ranking based on the fitness value is performed, and the best individual

is chosen as an elite (named Elite2 ) and put in a place that the author

named the Elite Pool (this pool contains the two best individuals found

from each population during the co-evolutionary process). Following

that, Elite2 is utilized to determine the fitness values of the individuals

in Population 1. After being ranked, the best one (named Elite1 ) is put
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into the Elite Pool.

Step 3: Co-evolutionary process

After the initialization step, Elite Pool consists of < Elite1,Elite2 >.

These elites are inputs for the process of co-evolution. This is an iterative

process, and basically, the steps are similar to the initialization step when

each population evolves and selects the best one to update to the Elite

pool. The elite in this population is then used as input for the other

population in the next iteration. The elitist selection mechanism is used

in both populations in order to keep the best solutions during the whole

co-evolution process. If there is an individual (denoted by Elite1t at

the loop t) dominating the corresponding elite in the pool (i.e., Elite1 ),

the Elite1 is substituted by Elite1t and the fitness of the new Elite1 is

updated as well. There are two main methods in this step: elite pool

selection and updating mechanisms.

+ Elite selection mechanism: In this study, the authors use the multi-

objective optimization algorithm NSGA-II to evolve populations. It is

difficult to find exactly the best individual, like in a single-objective

optimization algorithm. Instead, a set of non-dominated individuals

(called Pareto-optimal solutions) will be selected. In this study, the set

of solutions belonging to front 0 will be selected as candidates to find

the best individual to put into the Elite Pool. The author prioritizes the

AUC because this is the criteria used to evaluate the final classification

results. Then, the ACC is used as a criterion to find the best individual

from front 0.

+ Updating Elite pool mechanism: After selecting the best individual

of each generation, this individual will be compared to the elite in the

pool to check whether it will be updated or not. With population 1,

in order to be updated, the best individual must be better than Elite1

in terms of the AUC and SF criteria. Whereas in population 2, the
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condition is that the best individual is better than Elite2 in terms of

the AUC and SI criteria. In order to update Elite1, both the AUC and

the SF criteria must be considered. If the SF is the only one considered,

many individuals may have very low AUC values. This means the final

classification result will be poor. Similarly, if the authors only use the

AUC, there will be many individuals with good AUC values but large

SF. This does not guarantee that the result will always be good in terms

of the SF value (this is a drawback of the COCEA algorithm [111] and

the E-SOCA algorithm [109]).

Step 4: The ensemble learning

After the co-evolutionary process has ended, a list of the best individu-

als is found in the first two fronts (i.e., Front0 ) of two populations and

combined in the BestArchive list. A note here is that the individuals

on each Front0 of the two populations have been guaranteed diversity

(based on Crowding distance method) and convergence. The combina-

tion of two Fronts in two different populations helps to ensure these two

factors. Therefore, it can be seen that this selection mechanism helps

IBMCCA can find individuals with both convergence and di-

versity criteria . The question is, which individuals are selected to

calculate the final result? It is usually not easy to find a single indi-

vidual that gives good and stable results with many different data sets.

Because each individual is only best suited to certain types of data,

this is the reason why the author chose the ensemble learning solution.

The ensemble learning phase is fed by a set of individuals stored in the

BestArchive. Each individual in the BestArchive is used to create a sub-

set from the Dataset (Figure 3.3). Each subset is then used to build

a decision tree (i.e., C4.5), and each decision tree serves as a Classifier

in ensemble learning. Here, the author combines the Classifiers ’ results

with the hard voting method to make the final result.
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3.4. Experimental results

3.4.1. Experimental datasets

The experimental datasets consist of 42 standard imbalanced datasets.

These data sets are divided into two groups: imbalance ratios lower than

9 and imbalance ratios higher than 9. All these datasets can be down-

loaded from the KEEL dataset repository. The details of the dataset

parameters are described in Tables 3.2, 3.3. In which the #Ex param-

eter represents the number of samples, #Atts represents the number of

features, #IR represents the imbalanced rate, #FD represents the de-

gree of overlap between the classes. The smaller the FD value is, the

greater the overlap is and the harder it is to separate. FD and IR are two

parameters that represent the difficulty of classification. These datasets

can be further split into two smaller groups based on the values of the

FD metric: (1) a set of 22 problems with little overlap when FD > 1.5;

and (2) a set of 20 problems with a lot of overlap when FD < 1.5. The

hardest issues to solve are found in this second group. In this study,

each five-fold cross-validation is conducted twenty-five times to reflect

the stochastic character of the learning techniques. As a result, exper-

imental results are calculated using the average of 125 runs for each

algorithm and dataset.

3.4.2. Parameter setting

The details of the initial parameters for the algorithms are shown in

Table 3.1. These values are common for all test cases. They were selected

according to the recommendations of the corresponding authors, and it

is also the default setting of the parameters of the libraries.
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Table 3.1: Initial parameters

Algorithm Parameters Value

IBDPPCP and IBMCCA

Population size 100
The number of evaluations 1000
Crossover rate 0.8
Mutation rate 0.025

C4.5
Pruning True
Confidence 0.25
Instances Per Leaf 2

SMOTE Neighbors 5
ENN Neighbors 3

Table 3.3: Imbalance ratio higher than 9

No Name #Attributes (R/I/N) #Examples IR FD
Imbalance ratio higher than 9 - Part I

1 yeast-2 vs 4 8 (8/0/0) 514 9.08 1.5790
2 yeast-0-5-6-7-9 vs 4 8 (8/0/0) 528 9.35 1.0510
3 vowel0 13 (10/3/0) 988 9.98 2.4580
4 glass-0-1-6 vs 2 9 (9/0/0) 192 10.29 0.2692
5 glass2 9 (9/0/0) 214 11.59 0.3952
6 shuttle-c0-vs-c4 9 (0/9/0) 1829 13.87 0.3534
7 yeast-1 vs 7 7 (7/0/0) 459 14.3 12.970
8 glass4 9 (9/0/0) 214 15.47 1.4690
9 ecoli4 7 (7/0/0) 336 15.8 3.2470
10 abalone9-18 8 (7/0/1) 731 16.4 0.6320
11 glass-0-1-6 vs 5 9 (9/0/0) 184 19.44 1.8510
12 shuttle-c2-vs-c4 9 (0/9/0) 129 20.5 12.130
13 yeast-1-4-5-8 vs 7 8 (8/0/0) 693 22.1 0.1757
14 glass5 9 (9/0/0) 214 22.78 1.0190
15 yeast-2 vs 8 8 (8/0/0) 482 23.1 1.1420
16 yeast4 8 (8/0/0) 1484 28.1 0.7412
17 yeast-1-2-8-9 vs 7 8 (8/0/0) 947 30.57 0.3660
18 yeast5 8 (8/0/0) 1484 32.73 4.1980
19 ecoli-0-1-3-7 vs 2-6 7 (7/0/0) 281 39.14 1.9670
20 yeast6 8 (8/0/0) 1484 41.4 2.3020
21 abalone19 8 (7/0/1) 4174 129.44 0.5295

In this study, the author compares the two proposed algorithms (i.e.,

IBDPPCP and IBMCCA) against the state-of-the-art algorithms,

conventional machine learning algorithms, ensemble machine learning

methods, and evolutionary computation algorithms in order to assess

the performance of the suggested algorithm. Except for the proposed

algorithm, which is built in Java using the JMetal library [36], all of

these algorithms are written in the Python programming language. En-
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Table 3.2: Imbalance ratio lower than 9

No Name #Attributes (R/I/N) #Examples IR FD
Imbalance ratio between 1.5 and 9

1 glass1 9 (9/0/0) 214 1.82 0.1897
2 ecoli-0 vs 1 7 (7/0/0) 220 1.86 9.7520
3 wisconsin 9 (0/9/0) 683 1.86 3.568
4 pima 8 (8/0/0) 768 1.87 0.5760
5 iris0 4 (4/0/0) 150 2 16.8200
6 glass0 9 (9/0/0) 214 2.06 0.6492
7 yeast1 8 (8/0/0) 1484 2.46 0.2422
8 haberman 3 (0/3/0) 306 2.78 0.1850
9 vehicle2 18 (0/18/0) 846 2.88 0.1691
10 vehicle1 18 (0/18/0) 846 2.9 0.3805
11 vehicle3 18 (0/18/0) 846 2.99 0.1855
12 glass-0-1-2-3 vs 4-5-6 9 (9/0/0) 214 3.2 3.3240
13 vehicle0 18 (0/18/0) 846 3.25 1.1240
14 ecoli1 7 (7/0/0) 336 3.36 2.6500
15 new-thyroid1 5 (4/1/0) 215 5.14 3.5790
16 new-thyroid2 5 (4/1/0) 215 5.14 3.5790
17 ecoli2 7 (7/0/0) 336 5.46 2.6500
18 segment0 19 (19/0/0) 2308 6.02 1.7980
19 glass6 9 (9/0/0) 214 6.38 2.3910
20 yeast3 8 (8/0/0) 1484 8.1 2.7510
21 ecoli3 7 (7/0/0) 336 8.6 1.5790

semble learning algorithms are found in the imblearn library, whereas

machine learning methods are extracted from the sklearn library. In

contrast, algorithms for evolutionary computation are drawn from the

DEAP library [45]. The author uses default settings for machine learn-

ing methods. Whereas with evolutionary computation algorithms, the

author sets up parameters like population size, number of evolutionary

generations, etc. to be similar to the proposed method.

3.4.3. Test scenarios

To evaluate the performance of the two proposed algorithms, in this

study, the author conducts some experiments as follows:

+Scenario 1: Compare the proposed algorithm with the base-

line algorithms

In this part of the study, the two proposed algorithms are compared

with five other algorithms.
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+ IBDPPCP2 is another version of IBDPPCP; the difference is that

IBDPPCP2 does not use data sampling. The purpose of this comparison

is to check the effectiveness of using the data sampling method as well

as answer the question: Is the IBDPPCP capable of solving the problem

of imbalanced data if the sampling method is not used?.

+ IBDPP2 is another version of the IBDPPCP algorithm. The dif-

ference is that IBDPP2 uses DPP2 (Algorithm.5) instead of DPPCP in

the co-evolutionary process. In chapter 2, DPPCP and DPP2 are two

algorithms proposed for balancing diversity and convergence in multi-

objective optimization problems. The purpose of this comparison is to

check how efficient the two algorithms are then applied to the imbalanced

data classification problem?.

+ EFIS MOEA [42] is the premise algorithm chosen by the author

for improvement. This is one of the latest studies using the method of

solving classification problems with imbalanced data in a similar way

to this study. Comparing the two proposed algorithms to determine

whether the proposed algorithms are superior to the premise research?.

+ DEMOA [C6] is an algorithm that uses a decomposition mech-

anism for classification problems with unbalanced data like IBDPPCP.

Their difference is that DEMOA uses only one population and utilizes

MOEA/D as a decomposition algorithm. This comparison helps deter-

mine whether a dual population method is better than a single population

method?.

+ SMEN C45 is an algorithm that uses only the data sampling

method (i.e., SMOTE-ENN) to generate the balanced data without using

the co-evolutionary process or ensemble learning. This comparison shows

the effect of using co-evolution in combination with ensemble learning.

+ Scenario 2: Compare the proposed algorithms with ma-

chine learning algorithms
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There are five traditional algorithms (SVM, ANN, KNN, Naive Bayes,

and LDA) and a deep learning algorithm (CNN). This case study com-

pares the performance of the proposed method against some of the most

widely used machine learning algorithms, including conventional and

deep learning methods.

+Scenario 3: Compare the proposed algorithm with the en-

semble learning algorithms.

In the proposed algorithms, the author uses an ensemble learning

method. The main difference between the proposed methods and com-

mon ensemble learning algorithms is the way subsets are generated.

In the proposed algorithms, subsets are created from individuals found

through the co-evolutionary process; in the ensemble learning algorithm,

the subsets are created using sampling with replacement mechanisms.

This comparison illustrates how useful it is to use co-evolutionary solu-

tions to find subsets or decision trees?. There are two subgroups: Basic

Bagging, Basic AdaBoost, and Basic Randomforest are three examples

of traditional ensemble learning algorithms, and there are three other

versions that have been enhanced with sampling methods to handle im-

balanced data (i.e. BalancedBagging, Balanced Randomforest and RUS

AdaBoost).

+Scenario 4: Compare the proposed algorithm with the evo-

lutionary computational algorithms. It includes three single-objective

algorithms (GA, DE, and PSO) and a multi-objective algorithm (NSGA-

II).

The idea of this scenario is to compare how the performance of the pro-

posed solution using the co-evolutionary solution compares with other

CI algorithms. At the same time, since IBMCCA uses two popula-

tions using the same mechanism as NSGA-II, comparing them with each

other can clearly show the effect of the solution using multi-objective co-
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evolutionary methods.

3.4.4. Results and analysis

Scenario 1: Compare the proposed algorithm with the base-

line algorithms

The experimental results are shown in Tables 3.7 and 3.8. The ques-

tions posed in the previous section will be analyzed in detail in this

section.

+ Question 1: Is IBDPPCP algorithm capable of solving the problem

of imbalanced data if the sampling method is not used?

Through the comparison of the two algorithms, IBDPPCP and IB-

DPPCP2, this answer will be clarified. Table 3.7 and Figure 3.5 show

the comparison results between the two algorithms on the dataset with

a low IR imbalance rate (less than 9). Better values are highlighted.

It is easy to see that these two algorithms give better results than the

rest. While IBDPPCP gave the best results in 16 of 21 datasets, IBDP-

PCP2 gave the best results in 5 of 21 datasets. However, looking at the

average AUC results, it can be seen that the difference between these

two algorithms is not significant. While IBDPPCP results in an average

AUC of 0.9038, the value for IBDPPCP2 is 0.8999. The results from the

second dataset in Table 3.8 and Figure 3.6 with a greater imbalance rate

(IR > 9) demonstrate that IBDPPCP produces the best outcomes on 12

out of 21 data sets. Although IDPPCP2 produces the greatest results on

nine of the 21 datasets, these two algorithms still give the best results.

The average AUC result of IBDPPCP is better than that of IBDPPCP2,

the corresponding values for the two algorithms are 0.8520 and 0.8365.

In summary, it can be said that the data sampling method enhances the

outcomes. However, this difference is not significant. Even without data

sampling, the IDPPCP algorithm is capable of handling imbalanced data.

+Statistical test for comparing performance

113



To gain more insight into the reliability of comparing the proposed

algorithm with other algorithms, the author conducted a comparative

evaluation based on statistics. Two statistical methods used are Fried-

man and Wilcoxon tests. Both of them are non-parametric statistical

tests. While the Friedman test is a rank-based test that determines

whether there are any differences between the algorithms being com-

pared, the Wilcoxon test is used to compare two algorithms. It tests the

null hypothesis that the population median of the differences between

paired algorithms is zero.

Table 3.4 shows the results of the Friedman statistical test. For each

dataset, the Friedman test returns a chi-square statistic and a p-value.

The p-value is calculated based on the chi-square statistic and the de-

grees of freedom. The significance level is 0.05. The null hypothesis (i.e.,

Ho) assumes that there is no significant difference between the rankings

of the algorithms being compared. As can be seen, the p-value is less

than the significance level (3.17150e-08 and 3.41412e-12), so we can re-

ject Ho and conclude that there is evidence of a significant difference

among the algorithms.

Next, the author uses the Wilcoxon signed-rank test as a post-hoc

test to determine which algorithms differ significantly from each other.

The results of this statistical test are presented in Tables 3.5 and 3.6

for the two datasets, respectively. Each value in the tables represents

the p-value of the comparison between the proposed algorithm and the

corresponding algorithm. It is easy to see that most of the p-values are

smaller than the significance level (i.e., 0.05). This indicates that there is

strong evidence against the null hypothesis and that the two algorithms

are likely to be different.

+ Question 2: How efficient the two algorithms (IDPPCP and IDPP2)

are when applied to the imbalanced data classification problem?
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Table 3.4: The Friedman test results for IBDPPCP and the state- of-the-art algorithms on two
datasets , Chi2 is the Chi-square value

Dataset Chi2 P-value
Higher9 45.84983 3.17150e-08
Lower9 65.49744 3.41412e-12

Table 3.5: Wilcoxon test at a 0.05 significance level between the proposed algorithm and the
state-of-the-art algorithms on a dataset having an imbalance ratio lower than 9

Data IBDPP2 IBMCCA EFIS MOEA DEMOA SMEN C45
glass0123vs456 1.69544E-09 0.20377 0.28154 0.29925 1.33281E-09
yeast3 1.33281E-09 5.52429E-09 1.50351E-09 5.52429E-09 1.33281E-09
vehicle3 1.33281E-09 1.69544E-09 1.01408E-05 1.01408E-05 1.33281E-09
haberman 0.22525 1.2918E-06 5.25381E-08 2.66071E-05 1.33281E-09
segment0 2.4258E-09 8.09995E-08 1.50351E-09 1.33281E-09 1.33281E-09
new-thyroid2 1.33281E-09 1.50351E-09 1.33281E-09 1.33281E-09 1.33281E-09
ecoli1 7.27308E-08 0.002898167 3.03313E-08 4.37475E-09 1.33281E-09
glass0 1.33281E-09 4.3165E-07 0.00017 0.00027 1.33281E-09
ecoli2 1.33281E-09 2.71454E-08 6.20438E-09 6.52824E-08 1.33281E-09
glass1 1.33281E-09 0.00082 1.88302E-05 0.08956 1.33281E-09
pima 1.33281E-09 2.71454E-08 1.73513E-08 1.38013E-07 1.33281E-09
wisconsin 1.33281E-09 1.33281E-09 1.33281E-09 1.33281E-09 1.33281E-09
ecoli0vs1 1.69544E-09 0.00553 0.02905 0.00490 0.02905
Ecoli3 7.89176E-07 0.00032 6.44733E-06 5.28581E-07 1.33281E-09
iris0 2.73146E-09 0.00023 1.70367E-07 3.17669E-07 1.33281E-09
yeast1 1.33281E-09 1.23563E-08 9.01752E-08 4.3165E-07 1.33281E-09
glass6 3.07449E-09 1.33281E-09 1.91117E-09 1.33281E-09 1.33281E-09
vehicle2 1.33281E-09 1.33281E-09 4.71059E-08 3.89092E-09 1.33281E-09
vehicle1 1.33281E-09 2.15356E-09 8.71554E-07 1.01408E-05 1.33281E-09
vehicle0 1.33281E-09 5.25381E-08 3.69964E-06 3.17669E-07 1.33281E-09
new-thyroid1 1.33281E-09 3.01747E-07 1.50351E-09 1.91117E-09 1.33281E-09

Table 3.7 and Figure 3.7 show the comparison results between the two

algorithms on the dataset with a low IR imbalance rate (IR < 9). It can

be easily seen that in all these 21 experimental data sets, the IBDPPCP

algorithm gives better results than the IBDPP2 algorithm. The aver-

age AUC results for the two algorithms, IBDPPCP and IBDPP2, are

0.9038 and 0.8672, respectively. There are several datasets where IBDP-

PCP gives much superior results to IBDPP2, such as Yeast3 (0.9548 vs.

0.8827), Glass0123vs456 (0.9551 vs. 0.9098). Table 3.8 and Figure 3.8

show the comparison results between the two algorithms on the dataset

with a high IR imbalance rate (IR > 9). The results are similar to the

first data set. On all 21 experimental datasets, the IBDPPCP algorithm
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Table 3.6: Wilcoxon test at a 0.05 significance level between the proposed algorithm and the
state-of-the-art algorithms on a dataset having an imbalance ratio higher than 9

Data IBDPP2 IBMCCA EFIS MOEA DEMOA SMEN C45
yeast4 2.66071E-05 4.91693E-09 1.33281E-09 1.73513E-08 1.33281E-09
yeast1289vs7 1.32497E-05 0.001726994 0.000274727 5.22129E-05 1.33281E-09
shuttlec0vsc4 6.15877E-06 1 0.99226 0.08247 1.33281E-09
ecoli0137vs26 3.73798E-05 2.42853E-08 4.1024E-07 1.33281E-09 1.33281E-09
yeast5 1.33281E-09 1.33281E-09 8.7702E-09 6.52824E-08 1.33281E-09
yeast1vs7 0.00022 0.00448 0.00015 0.00077 1.33281E-09
glass5 1.56928E-06 1.32497E-05 0.00025 0.00076 1.33281E-09
vowel0 1.33281E-09 1.55004E-08 4.37475E-09 2.15356E-09 1.33281E-09
yeast6 9.6218E-07 1.69544E-09 1.33281E-09 1.69544E-09 1.33281E-09
yeast2vs4 6.20438E-09 6.46337E-07 2.3302E-07 0.01198 1.33281E-09
glass4 2.71454E-08 1.50351E-09 1.33281E-09 1.33281E-09 1.33281E-09
yeast1458vs7 0.09713 3.17669E-07 8.7702E-09 2.30576E-06 1.33281E-09
glass016vs5 3.73798E-05 0.00031 4.54136E-07 7.2514E-05 1.33281E-09
glass016vs2 2.78884E-06 3.02451E-05 0.06251 0.27296456 1.33281E-09
abalone918 7.06371E-06 0.00050 1.00354E-07 1.24151E-07 2.42853E-08
abalone19 0.03362 0.05353 0.01337 0.053535 1.33281E-09
glass2 0.00010 0.00421 0.12295 0.00019 1.33281E-09
yeast2vs8 2.09998E-07 0.105202641 0.45506 0.16535 1.33281E-09
yeast05679vs4 1.72868E-06 1.55004E-08 6.96565E-09 1.38013E-07 1.33281E-09
ecoli4 4.71059E-08 1.33281E-09 1.33281E-09 1.33281E-09 1.33281E-09
shuttlec2vsc4 0.00010 1 1 0.22525 1

outperformed IBDPP2. The average AUC results for the two algorithms

are 0.8520 and 0.8136, respectively. IBDPPCP outperforms IBDPP2 in

some datasets, such as Ecoli4 (0.9534 vs. 0.8845) and Yeast2vs.8 (0.8412

vs. 0.7488). Through the above analysis, it can be concluded that both

algorithms demonstrate the ability to solve the problem. In which the

IBDPPCP algorithm (using the DPPCP algorithm) proved to be more

efficient than the IBDPP2 algorithm (using the DPP2 algorithm).

+ Question 3: Are the proposed algorithms better than the premise

research?

The results of the comparison between the three methods on the

dataset with a low IR imbalance rate (IR < 9) are shown in Table 3.7

and Figure 3.9. It is clear that the IBDPPCP algorithm produces the

best results in all 21 experimental data sets. The IBMCCA algorithm

gives the second-best result. The average AUC and rank results for the

three algorithms, IBDPPCP, IBMCCA, and EFIS MOEA, are 0.9038

116



(1.29), 0.8908 (3.81), and 0.8890 (4.43), respectively. On datasets with

an IR greater than 9, the same outcomes were obtained (Table 3.8 and

Figure 3.10). The figures for IBDPPCP, IBMCCA, and EFIS MOEA

are 0.8520 (1.43), 0.8263 (3.76), and 0.8223 (4.38), respectively. There-

fore, it can be said that the two proposed algorithms are better than the

baseline method in terms of performance. This shows that these two al-

gorithms are capable of handling classification problems with imbalanced

data.

+ Question 4: Is the dual population method better than the single

population method?

The comparison of the two algorithms on the dataset with a low IR

imbalance rate is presented in Table 3.7 and Figure 3.11 and the results

on the second dataset are shown in Table 3.8 and Figure 3.12. It is

easy to see that the IBDPPCP algorithm beats the DEMOA algorithm

on all 42 experimental datasets. The figures for the two algorithms on

the two datasets are (0.9038 vs. 0.8906) and (0.8520 vs. 0.8253). This

demonstrates that the dual population co-evolution method is superior to

the single population method for finding the optimal sets of individuals

or subsets of data.

+ Question 5: How is the effect of using co-evolution in combination

with ensemble learning? This issue is clarified by the comparison of

the two proposed algorithms with the SMEN C45 algorithm. Table 3.7

and Figure 3.13 show the comparison results between the three algo-

rithms on the dataset with a low IR imbalance rate (IR < 9). It can

be easily seen that in all these 21 experimental data sets, the IBDP-

PCP algorithm gives the best results, and the IBMCCA gives better

results than the SMEN C45 algorithm on 19 of the 21 datasets except

newthyroid1 (0.9727 vs. 0.9794) and iris0 (0.9869 vs. 0.9887). Two algo-

rithms produce the same results on Yeast1458vs7 (0.9832). The average
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AUC and rank results for the three algorithms IBDPPCP, IBDPP2, and

SMEN C45 are 0.9038 (1.29), 0.8914 (3.33), and 0.8695 (5.48), respec-

tively. The results on the second dataset are similar. IBDPPCP gives

the best results on all data. IBMCCA beats SMEN C45 in 18/21 data.

There are five data sets where SMEN C45 gives better results: shut-

tlec0vsc4 (0.9989 vs. 0.9997), ecoli4 (0.9015 vs. 0.9084), ecoli0137vs26

(0.8211 vs. 0.8345), yeast1vs7 (0.7000 vs. 0.7572) and yeast1458vs7

(0.5566 vs. 0.5624). The average AUC and rank results for the three al-

gorithms IBDPPCP, IBDPP2, and SMEN C45 are 0.8520 (1.43), 0.8263

(3.76), and 0.8035 (5.48), respectively. These results show that the uti-

lization of co-evolution combined with ensemble learning is effective in

improving classification results.

Scenario 2: Compare the proposed algorithm with machine

learning algorithms

There are five traditional algorithms (SVM, ANN, KNN, Naive Bayes,

and LDA) and a deep learning algorithm (CNN). Experimental results

with each dataset are shown in tables 3.9, 3.10 and Figures 3.15, 3.16. It

can be easily seen that the two proposed algorithms give better results

in most of the test cases, except for the case of datasets with IR 9 ¿ 9,

where CNN gives a better result than IBMCCA. In the data set having

IR < 9, IBDPPCP and IBMCCA give superior results compared to

other algorithms. Meanwhile, the ANN algorithm gives the worst results

with 0.7081. The CNN algorithm gives the third-best result with an

AUC value of 0.7982. SVM, KNN, and LDA algorithms give results

that are not too different; the corresponding figures are 0.7504, 0.7753,

and 0.7477.

Switching to the more difficult datasets (with IR > 9). The results

of most algorithms are reduced, except for the cases of CNN and Näıve

Bayers where the results are even better than the previous data set. The
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Table 3.7: Experimental results of the proposed algorithm and the baseline algorithms with IR less
than 9. The values are presented in the form of mean ± standard deviation (rank)
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Table 3.8: Experimental results of the proposed algorithm and the baseline algorithms with IR
higher than 9. The values are presented in the form of mean ± standard deviation (rank)
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Table 3.9: Experimental results of the proposed algorithm and machine learning algorithms on
datasets with IR less than 9. The values are presented in the form of mean (rank)

Data IBDPPCP IBMCCA SVM ANN KNN Naive Bayes LDA CNN
yeast3 0.9548 (1) 0.9452 (2) 0.8377 (4) 0.6977 (7) 0.8300 (5) 0.6033 (8) 0.8257 (6) 0.9008 (3)
yeast1 0.7543 (1) 0.7397 (2) 0.6185 (6) 0.6013 (7) 0.6452 (4) 0.519 (8) 0.6286 (5) 0.7104 (3)
wisconsin 0.9823 (1) 0.9709 (2) 0.9211 (3) 0.9064 (5) 0.8573 (7) 0.8875 (6) 0.8458 (8) 0.9206 (4)
vehicle3 0.8205 (1) 0.7984 (2) 0.5000 (3) 0.5000 (3) 0.5000 (3) 0.4976 (8) 0.4992 (6) 0.4988 (7)
vehicle2 0.9815 (1) 0.9689 (2) 0.5000 (5) 0.5000 (5) 0.5000 (5) 0.5056 (3) 0.5000 (5) 0.5029 (4)
vehicle1 0.8054 (1) 0.7842 (2) 0.5061 (6) 0.5 (8) 0.5099 (4) 0.5039 (7) 0.5099 (4) 0.5125 (3)
vehicle0 0.9678 (1) 0.9597 (2) 0.5000 (5) 0.5000 (5) 0.5000 (5) 0.5054 (3) 0.5000 (5) 0.5032 (4)
segment0 0.9958 (1) 0.9934 (2) 0.9907 (4) 0.9544 (7) 0.9889 (5) 0.8936 (8) 0.9757 (6) 0.9909 (3)
pima 0.7889 (1) 0.7753 (2) 0.722 (4) 0.6412 (8) 0.6959 (7) 0.7204 (6) 0.7206 (5) 0.7568 (3)
newthyroid2 0.9885 (1) 0.9727 (2) 0.8802 (5) 0.8143 (7) 0.9516 (4) 0.8087 (8) 0.8286 (6) 0.9662 (3)
newthyroid1 0.9953 (1) 0.9869 (2) 0.8687 (5) 0.8229 (8) 0.9659 (4) 0.8258 (7) 0.8429 (6) 0.9667 (3)
iris0 0.9976 (7) 0.9908 (8) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1)
haberman 0.6394 (1) 0.6142 (2) 0.5000 (4) 0.5000 (4) 0.4879 (8) 0.5000 (4) 0.5000 (4) 0.5118 (3)
glass6 0.950 (1) 0.9191 (2) 0.8406 (6) 0.8341 (8) 0.8379 (7) 0.8911 (4) 0.9086 (3) 0.8709 (5)
glass1 0.7966 (1) 0.7817 (2) 0.5591 (6) 0.5393 (8) 0.7488 (3) 0.6709 (5) 0.5430 (7) 0.7376 (4)
glass0 0.8622 (1) 0.8391 (2) 0.6085 (8) 0.6281 (7) 0.8027 (3) 0.7001 (5) 0.6980 (6) 0.7652 (4)
glass0123vs4565 0.9551 (1) 0.9522 (2) 0.8934 (5) 0.8676 (8) 0.9086 (4) 0.8689 (7) 0.8773 (6) 0.9392 (3)
ecoli3 0.9102 (1) 0.8996 (2) 0.7833 (6) 0.5508 (8) 0.7086 (7) 0.8436 (4) 0.8355 (5) 0.8742 (3)
ecoli2 0.9249 (2) 0.9103 (3) 0.9049 (4) 0.7630 (7) 0.9358 (1) 0.6074 (8) 0.8235 (6) 0.9020 (5)
ecoli1 0.9246 (1) 0.9219 (2) 0.8443 (6) 0.8046 (7) 0.885 (3) 0.7363 (8) 0.8481 (5) 0.8827 (4)
ecoli0vs15 0.9841 (1) 0.9832 (2) 0.9800 (4) 0.9702 (7) 0.9733 (5) 0.9077 (8) 0.9832 (2) 0.9721 (6)
AVERAGE 0.9038 (1.333) 0.8908 (2.333) 0.7504 (4.762) 0.7081 (6.429) 0.7753 (4.524) 0.7087 (6) 0.7477 (5.095) 0.7982 (3.714)

figures for this algorithm are 0.844 and 0.762, respectively. IBDPPCP

still gives the highest result, with an AUC value of 0.8520. IBMCCA

gives the 3rd best result with 0.8263. CNN now takes second place with

0.8366. The KNN also gives a good result with 0.7542. The rest of the

algorithms are pretty much the same, except that ANN continues to give

the worst results with 0.5832.

Let’s look at some data with a small FD in all the data. With

Yeast1458vs7, the smallest FD index is 0.1757. It can be seen in Ta-

ble 3.10 that the results of the algorithms with this set are relatively

low, while IBDPPCP and CNN continue to give the two best results

(respectively, 0.6054 and 0.6148), and the algorithms are still all giving

results of approximately 0.5. With Vehicle2 (FD = 0.1691) witnessed

the two proposed algorithms give completely superior results compared

to other algorithms. While the IBDPPCP and IBMCCA give 0.9815 and

0.9689, all remaining algorithms give results slightly better than random

level (i.e. 0.5).

From the above experimental results, it can be concluded that the

proposed algorithms and the CNN algorithm give more stable and better

121



Table 3.10: Experimental results of the proposed algorithm and machine learning algorithms on
datasets with IR higher than 9. The values are presented in the form of mean (rank)

Data IBDPPCP IBMCCA SVM ANN KNN Naive Bayes LDA CNN
vowel0 0.9810 (4) 0.9700 (5) 0.9667 (6) 0.8555 (8) 0.9883 (2) 0.9883 (2) 0.8572 (7) 0.9894 (1)
shuttlec2vsc4 1.0000 (1) 1.0000 (1) 0.9500 (3) 0.7987 (8) 0.9500 (3) 0.9500 (3) 0.9418 (7) 0.9500 (3)
shuttlec0vsc4 0.9999 (1) 0.9989 (2) 0.9960 (3) 0.9960 (3) 0.9960 (3) 0.9960 (3) 0.9960 (3) 0.9960 (3)
glass5 0.9110 (2) 0.8907 (5) 0.5000 (7) 0.5000 (7) 0.8927 (3) 0.8927 (3) 0.6427 (6) 0.9126 (1)
glass4 0.9483 (1) 0.8857 (3) 0.5667 (7) 0.5667 (7) 0.7659 (4) 0.7659 (4) 0.5851 (6) 0.9214 (2)
glass2 0.7921 (1) 0.7646 (2) 0.5000 (6) 0.5000 (6) 0.5712 (4) 0.5712 (4) 0.4949 (8) 0.6472 (3)
glass016vs5 0.9380 (1) 0.8978 (3) 0.5000 (7) 0.5000 (7) 0.8386 (4) 0.8386 (4) 0.5914 (6) 0.9267 (2)
glass016vs2 0.7515 (1) 0.7068 (2) 0.5000 (6) 0.5000 (6) 0.5690 (4) 0.569 (4) 0.4943 (8) 0.6113 (3)
ecoli4 0.9534 (1) 0.9015 (4) 0.9000 (5) 0.6333 (8) 0.8484 (6) 0.8484 (6) 0.9187 (2) 0.9018 (3)
ecoli0137vs26 0.8570 (1) 0.8211 (6) 0.8500 (2) 0.5000 (8) 0.8445 (3) 0.8445 (3) 0.8445 (3) 0.8063 (7)
yeast6 0.8894 (1) 0.8623 (3) 0.5000 (7) 0.5000 (7) 0.7520 (4) 0.7520 (4) 0.6955 (6) 0.8764 (2)
yeast5 0.9745 (1) 0.9613 (2) 0.6229 (7) 0.5064 (8) 0.8479 (4) 0.8479 (4) 0.7993 (6) 0.9519 (3)
yeast4 0.8414 (1) 0.8064 (3) 0.5000 (7) 0.5000 (7) 0.5846 (5) 0.5846 (5) 0.6088 (4) 0.8202 (2)
yeast2vs8 0.8412 (1) 0.8334 (2) 0.7739 (4) 0.725 (8) 0.7739 (4) 0.7739 (4) 0.7739 (4) 0.8224 (3)
yeast2vs4 0.9392 (1) 0.9225 (2) 0.7933 (7) 0.5000 (8) 0.8395 (4) 0.8395 (4) 0.8282 (6) 0.8831 (3)
yeast1vs7 0.7258 (2) 0.7000 (3) 0.5000 (7) 0.5000 (7) 0.5574 (5) 0.5574 (5) 0.5608 (4) 0.7557 (1)
yeast1458vs7 0.6054 (2) 0.5566 (3) 0.5000 (4) 0.5000 (4) 0.4947 (7) 0.4947 (7) 0.5000 (4) 0.6148 (1)
yeast1289vs7 0.7200 (1) 0.6992 (3) 0.5000 (7) 0.5000 (7) 0.5317 (5) 0.5317 (5) 0.5328 (4) 0.7101 (2)
yeast05679vs4 0.8488 (1) 0.8275 (2) 0.5600 (7) 0.5000 (8) 0.6829 (5) 0.6829 (5) 0.7309 (4) 0.7973 (3)
AVERAGE 0.852 (1.32) 0.8263 (2.95) 0.6568 (5.74) 0.5832 (6.95) 0.7542 (4.16) 0.7542 (4.16) 0.7051 (5.16) 0.8366 (2.53)

classification results than other algorithms on the datasets. However, in

terms of the overlapping factor, the proposed algorithms give superior

results to all. Thereby proving that the proposed algorithms are capable

of handling the overlapping phenomenon of imbalanced data. Scenario

3: Compare the proposed algorithm with ensemble learning

algorithms

The detailed experimental results are shown in tables 3.11, 3.12 and

Figures 3.17, 3.18. There are two different groups. The first one includes

traditional ensemble algorithms such as bagging, boosting, and random

forest. The second one includes three algorithms that combine the tradi-

tional ensemble algorithms with sampling techniques: BalancedRandom-

Forest is a random forest algorithm that applies random undersampling

to balance the different bootstraps. RUSAdaboost is an AdaBoost clas-

sifier where each bootstrap is balanced using random undersampling at

each round of boosting. Balancedbagging is a bagging classifier applying

random-under sampling to balance.

Observing the results in Figure 3.17, it is clear that the algorithms

using the sampling solution give better results than the traditional algo-

rithms. The difference is significant. The figures for bagging, Random-
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Table 3.11: Experimental results of the proposed algorithm and ensemble learning algorithms on
datasets with an IR lower than 9. The values are presented in the form of mean (rank)

Data IBDPPCP IBMCCA Basic Bagging BalancedBagging Basic RF Balanced RF Basic AdaBoost RUS AdaBoost
yeast3 0.9548 (1) 0.9452 (2) 0.8396 (7) 0.9198 (5) 0.7983 (8) 0.9292 (3) 0.8603 (6) 0.9227 (4)
yeast1 0.7543 (1) 0.7397 (2) 0.6622 (7) 0.7147 (4) 0.6525 (8) 0.7107 (5) 0.6803 (6) 0.7317 (3)
wisconsin 0.9823 (1) 0.9709 (2) 0.9106 (8) 0.9168 (6) 0.9127 (7) 0.9211 (3) 0.9211 (3) 0.9211 (3)
vehicle3 0.8205 (1) 0.7984 (2) 0.4992 (3) 0.4961 (8) 0.4992 (3) 0.4977 (7) 0.4992 (3) 0.4987 (6)
vehicle2 0.9815 (1) 0.9689 (2) 0.5000 (6) 0.5032 (4) 0.5000 (6) 0.5032 (4) 0.5000 (6) 0.5051 (3)
vehicle1 0.8054 (1) 0.7842 (2) 0.5076 (6) 0.5099 (3) 0.5076 (6) 0.5099 (3) 0.5053 (8) 0.5099 (3)
vehicle0 0.9678 (1) 0.9597 (2) 0.5000 (6) 0.5054 (3) 0.5000 (6) 0.5039 (5) 0.5000 (6) 0.5049 (4)
segment0 0.9958 (1) 0.9934 (3) 0.9833 (8) 0.9919 (6) 0.9921 (5) 0.9927 (4) 0.9911 (7) 0.9935 (2)
pima 0.7889 (1) 0.7753 (2) 0.6885 (7) 0.7321 (4) 0.6877 (8) 0.7246 (5) 0.7115 (6) 0.7479 (3)
newthyroid2 0.9885 (1) 0.9727 (2) 0.9401 (7) 0.9575 (5) 0.9401 (7) 0.9631 (4) 0.9544 (6) 0.9635 (3)
newthyroid1 0.9953 (1) 0.9869 (2) 0.9032 (8) 0.9548 (6) 0.9202 (7) 0.9718 (5) 0.9774 (4) 0.9775 (3)
iris0 0.9976 (7) 0.9908 (8) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1)
haberman 0.6394 (1) 0.6142 (2) 0.5000 (5) 0.5094 (3) 0.5000 (5) 0.4831 (8) 0.5000 (5) 0.5078 (4)
glass6 0.9500 (1) 0.9191 (6) 0.8692 (8) 0.9311 (2) 0.8892 (7) 0.9225 (4) 0.9252 (3) 0.9224 (5)
glass1 0.7966 (1) 0.7817 (5) 0.7396 (6) 0.7874 (2) 0.7819 (4) 0.785 (3) 0.6916 (8) 0.7343 (7)
glass0 0.8622 (1) 0.8391 (2) 0.7979 (6) 0.8060 (5) 0.7797 (7) 0.8244 (3) 0.7594 (8) 0.8190 (4)
glass0123vs4565 0.9551 (1) 0.9522 (2) 0.8717 (7) 0.9033 (5) 0.8793 (6) 0.937 (4) 0.8566 (8) 0.9441 (3)
ecoli3 0.9102 (1) 0.8996 (2) 0.712 (7) 0.8628 (5) 0.7169 (6) 0.8748 (3) 0.6785 (8) 0.8693 (4)
ecoli2 0.9249 (1) 0.9103 (3) 0.8605 (7) 0.9120 (2) 0.8729 (6) 0.8967 (4) 0.8461 (8) 0.8950 (5)
ecoli1 0.9246 (1) 0.9219 (2) 0.8457 (8) 0.9095 (3) 0.8633 (7) 0.8873 (4) 0.8787 (5) 0.8752 (6)
ecoli0vs15 0.9841 (1) 0.9832 (2) 0.9795 (5) 0.9796 (4) 0.9831 (3) 0.9657 (8) 0.9766 (6) 0.9686 (7)
AVERAGE 0.9038 (1.286) 0.8908 (2.714) 0.7726 (6.333) 0.8063 (4.095) 0.7759 (5.857) 0.8064 (4.286) 0.7739 (5.762) 0.8051 (3.952)

forest, and Adaboost are (0.77263 vs. 0.8063), (0.7759 vs. 0.8064), and

(0.7739 vs. 0.8051), respectively. Looking at this figure also shows the

complete superiority of the proposed algorithms over the rest of the al-

gorithms when they reach the values of 0.9038 and 0.8908 for IBDPPCP

and IBMCCA, respectively. This is the result of a small dataset with an

imbalanced ratio.

Next, observe the results in Table 3.12 and Figure 3.18 to see how the

experimental results with a more difficult data set will be. This data set

witnessed the fairly evenly good classification ability of the algorithms.

While IBDPPCP still gives the best results, the ensemble learning algo-

rithms combined with the sampling method give slightly better results

than the IBMCCA algorithm. The BalanceRF algorithm reaches a value

of 0.8438, while the figure for IBMCCA is 0.8263. Algorithms that do

not use sampling solutions also give relatively good results, reaching ap-

proximately 0.74 with the two algorithms Bagging and Adaboost. The

Randomforest algorithm gave the worst results with a value of 0.6946.

Through this experimental scenario, the following conclusions can be

drawn: Algorithms using sampling solutions give better and more stable

results than conventional algorithms. The proposed algorithm still gives
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Table 3.12: Experimental results of the proposed algorithm and ensemble learning algorithms on
datasets with an IR higher than 9. The values are presented in the form of mean (rank)

Data IBDPPCP IBMCCA Basic Bagging BalancedBagging Basic RF Balanced RF Basic AdaBoost RUS AdaBoost
vowel0 0.9810 (1) 0.9700 (2) 0.9589 (5) 0.9488 (6) 0.9389 (7) 0.9666 (4) 0.9033 (8) 0.9668 (3)
shuttlec2vsc4 1.0000 (1) 1.0000 (1) 0.9500 (7) 0.9500 (7) 1.0000 (1) 1.0000 (1) 1.0000 (1) 0.9833 (6)
shuttlec0vsc4 0.9999 (7) 0.9989 (8) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1)
glass5 0.9110 (3) 0.8907 (5) 0.7976 (7) 0.8939 (4) 0.6951 (8) 0.9220 (2) 0.8476 (6) 0.9374 (1)
glass4 0.9483 (1) 0.8857 (4) 0.6542 (8) 0.9175 (2) 0.6808 (7) 0.8518 (5) 0.7950 (6) 0.8967 (3)
glass2 0.7921 (1) 0.7646 (2) 0.4847 (8) 0.6460 (5) 0.5205 (7) 0.7094 (3) 0.6155 (6) 0.6889 (4)
glass016vs5 0.9380 (1) 0.8978 (3) 0.8443 (6) 0.8929 (4) 0.6971 (8) 0.8914 (5) 0.8305 (7) 0.9371 (2)
glass016vs2 0.7515 (1) 0.7068 (3) 0.5412 (7) 0.6564 (5) 0.5276 (8) 0.7340 (2) 0.5660 (6) 0.6776 (4)
ecoli4 0.9534 (1) 0.9015 (4) 0.8405 (6) 0.8747 (5) 0.8234 (7) 0.9339 (3) 0.8171 (8) 0.9434 (2)
ecoli0137vs26 0.8570 (3) 0.8211 (4) 0.7391 (5) 0.9252 (1) 0.65 (7) 0.8663 (2) 0.6409 (8) 0.6983 (6)
yeast6 0.8894 (1) 0.8623 (3) 0.7115 (8) 0.8701 (2) 0.7122 (6) 0.8505 (5) 0.7119 (7) 0.8568 (4)
yeast5 0.9745 (1) 0.9613 (2) 0.8483 (6) 0.9597 (3) 0.7573 (8) 0.9563 (4) 0.8368 (7) 0.9500 (5)
yeast4 0.8414 (1) 0.8064 (5) 0.6429 (6) 0.8129 (4) 0.5566 (8) 0.8296 (2) 0.6194 (7) 0.8187 (3)
yeast2vs8 0.8412 (1) 0.8334 (2) 0.7478 (5) 0.7545 (4) 0.6250 (8) 0.7407 (6) 0.6978 (7) 0.7808 (3)
yeast2vs4 0.9392 (2) 0.9225 (4) 0.8328 (7) 0.949 (1) 0.8091 (8) 0.9190 (5) 0.8439 (6) 0.9343 (3)
yeast1vs7 0.7258 (4) 0.7000 (5) 0.6608 (6) 0.7494 (3) 0.5453 (8) 0.76600 (2) 0.5751 (7) 0.7661 (1)
yeast1458vs7 0.6054 (3) 0.5566 (4) 0.5152 (6) 0.5535 (5) 0.5000 (7) 0.6721 (1) 0.4985 (8) 0.6342 (2)
yeast1289vs7 0.7200 (2) 0.6992 (3) 0.6257 (6) 0.7209 (1) 0.5478 (8) 0.6391 (5) 0.5645 (7) 0.6820 (4)
yeast05679vs4 0.8488 (1) 0.8275 (2) 0.7020 (6) 0.7860 (3) 0.6098 (8) 0.7841 (4) 0.6908 (7) 0.7673 (5)
AVERAGE 0.8520 (1.89) 0.8263 (3.47) 0.742 (6.11) 0.8348 (3.47) 0.6946 (6.84) 0.8438 (3.26) 0.7397 (6.32) 0.8379 (3.26)

the best results when compared to these ensemble learning algorithms.

This proves that selecting subsets from the original dataset by using the

co-evolutionary methods is better than the sampling with replacement

mechanism that is commonly used by ensemble machine learning algo-

rithms.

Scenario 4: Compare the proposed algorithms with the evo-

lutionary computational algorithms(ECAs)

These algorithms can be divided into two groups: single-objective

algorithms (i.e., GA, DE, and PSO) and multi-objective algorithms (i.e.,

NSGA-II). Detailed experimental results with the data are shown in

tables 3.13, 3.14, and figures 3.19, 3.20.

The first data set (IR < 9) witnesses a complete superiority of the pro-

posed algorithms compared to the remaining algorithms. While ECAs

give fairly uniform results, fluctuating around 0.77, the proposed algo-

rithms reach 0.9038 and 0.8908. Looking at this chart, it can be seen

that in the case of the small imbalanced rate data, the single-objective

and multi-objective algorithms do not have much difference.

In the second dataset (IR > 9), the results are similar to the first

dataset. There is still a big difference between the proposed algorithms

and the rest. The DE algorithm gives the worst result with a value of
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Table 3.13: Experimental results of the proposed algorithm and evolutionary computation learning
algorithms on datasets with an IR lower than 9. The values are presented in the form of mean (rank)

Data IBDPPCP IBMCCA GA DE PSO NSGA-II
yeast3 0.9548 (1) 0.9452 (2) 0.8471 (6) 0.8526 (4) 0.8478 (5) 0.8567 (3)
yeast1 0.7543 (1) 0.7397 (2) 0.6340 (5) 0.6279 (6) 0.6451 (4) 0.6469 (3)
wisconsin 0.9823 (1) 0.9709 (2) 0.9135 (5) 0.9127 (6) 0.9194 (3) 0.9160 (4)
vehicle3 0.8205 (1) 0.7984 (2) 0.4997 (6) 0.5008 (5) 0.5016 (3) 0.5016 (3)
vehicle2 0.9815 (1) 0.9689 (2) 0.5000 (3) 0.5000 (3) 0.5000 (3) 0.5000 (3)
vehicle1 0.8054 (1) 0.7842 (2) 0.5085 (4) 0.5080 (5) 0.5080 (5) 0.5099 (3)
vehicle0 0.9678 (1) 0.9597 (2) 0.5000 (3) 0.5000 (3) 0.5000 (3) 0.5000 (3)
segment0 0.9958 (1) 0.9934 (2) 0.9854 (5) 0.9833 (6) 0.9862 (3) 0.9859 (4)
pima 0.7889 (1) 0.7753 (2) 0.6517 (6) 0.6565 (5) 0.6751 (3) 0.6625 (4)
newthyroid2 0.9885 (1) 0.9727 (2) 0.9409 (3) 0.9340 (5) 0.8998 (6) 0.9346 (4)
newthyroid1 0.9953 (1) 0.9869 (2) 0.9192 (5) 0.9222 (4) 0.9273 (3) 0.9119 (6)
iris0 0.9976 (5) 0.9908 (6) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1)
haberman 0.6394 (1) 0.6142 (2) 0.4997 (5) 0.4993 (6) 0.5001 (4) 0.5098 (3)
glass6 0.9500 (1) 0.9191 (2) 0.8755 (3) 0.8475 (5) 0.8588 (4) 0.8248 (6)
glass1 0.7966 (1) 0.7817 (2) 0.7477 (3) 0.7062 (6) 0.7253 (5) 0.7414 (4)
glass0 0.8622 (1) 0.8391 (2) 0.7664 (6) 0.7852 (4) 0.7767 (5) 0.7878 (3)
glass0123vs4565 0.9551 (1) 0.9522 (2) 0.8860 (6) 0.8975 (5) 0.9014 (3) 0.9002 (4)
ecoli3 0.9102 (1) 0.8996 (2) 0.7768 (3) 0.7694 (4) 0.7550 (5) 0.7539 (6)
ecoli2 0.9249 (1) 0.9103 (2) 0.8577 (4) 0.8596 (3) 0.8508 (5) 0.8417 (6)
ecoli1 0.9246 (1) 0.9219 (2) 0.8668 (3) 0.8500 (4) 0.8443 (5) 0.8297 (6)
ecoli0vs15 0.9841 (1) 0.9832 (2) 0.9694 (5) 0.9706 (4) 0.9692 (6) 0.9732 (3)
AVERAGE 0.9038 (1.19) 0.8908 (2.19) 0.7745 (4.286) 0.7713 (4.476) 0.7719 (4) 0.772 (3.905)

0.7713; the difference with the ICDPPCP algorithm is 13.25%. This

result shows that using the co-evolution methods give much better results

than using other single EAs.

3.5. Summary

In this chapter, the authors propose a competitive co-evolutionary al-

gorithm named IBDPPCP and a co-operative co-evolutionary algorithm

(named IBMCCA) for imbalanced data classification. The proposed al-

gorithms take advantage of their strengths in creating sets of individuals

that have both convergence and diversity factors to generate a collec-

tion of subsets of data that are used to generate classifiers in ensemble

learning algorithms. Combined with hybrid data sampling solutions,

IBDPPCP and IBMCCA have shown a good ability to handle prob-

lems related to imbalanced data. Experimental results on 42 datasets

and comparisons with many other algorithms have clearly demonstrated
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Table 3.14: Experimental results of the proposed algorithm and evolutionary computation learning
algorithms on datasets with IR higher than 9. The values are presented in the form of mean (rank)

Data IBDPPCP IBMCCA GA DE PSO NSGA-II
vowel0 0.9810 (1) 0.9700 (2) 0.9586 (4) 0.9600 (3) 0.9427 (7) 0.9458 (5)
shuttlec2vsc4 1.0000 (1) 1.0000 (1) 0.9833 (5) 0.9987 (3) 0.9167 (7) 0.9667 (6)
shuttlec0vsc4 0.9999 (6) 0.9989 (7) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1)
glass5 0.9110 (3) 0.8907 (5) 0.9476 (1) 0.7776 (7) 0.8943 (4) 0.9142 (2)
glass4 0.9483 (1) 0.8857 (2) 0.8033 (5) 0.8597 (3) 0.7889 (7) 0.8034 (4)
glass2 0.7921 (1) 0.7646 (2) 0.5667 (6) 0.5883 (4) 0.6413 (3) 0.5772 (5)
glass016vs5 0.9380 (1) 0.8978 (3) 0.8681 (4) 0.8238 (7) 0.8581 (5) 0.8329 (6)
glass016vs2 0.7515 (1) 0.7068 (2) 0.5906 (6) 0.6056 (3) 0.5840 (7) 0.5913 (5)
ecoli4 0.9534 (1) 0.9015 (2) 0.8118 (6) 0.7618 (7) 0.8389 (4) 0.8290 (5)
ecoli0137vs26 0.8570 (1) 0.8211 (5) 0.7903 (6) 0.7712 (7) 0.8372 (3) 0.8378 (2)
yeast6 0.8894 (1) 0.8623 (2) 0.6982 (7) 0.7324 (4) 0.7438 (3) 0.7223 (5)
yeast5 0.9745 (1) 0.9613 (2) 0.8485 (7) 0.8633 (4) 0.8660 (3) 0.8519 (5)
yeast4 0.8414 (1) 0.8064 (2) 0.6611 (7) 0.6798 (3) 0.6663 (5) 0.6677 (4)
yeast2vs8 0.8412 (1) 0.8334 (2) 0.7318 (5) 0.7311 (6) 0.7346 (4) 0.7311 (6)
yeast2vs4 0.9392 (1) 0.9225 (2) 0.8358 (5) 0.8293 (7) 0.8346 (6) 0.8528 (4)
yeast1vs7 0.7258 (1) 0.7000 (2) 0.647 (4) 0.6266 (6) 0.6733 (3) 0.6290 (5)
yeast1458vs7 0.6054 (1) 0.5566 (3) 0.5523 (4) 0.5456 (5) 0.5584 (2) 0.5159 (7)
yeast1289vs7 0.7200 (1) 0.6992 (2) 0.5892 (7) 0.6182 (6) 0.6347 (3) 0.6209 (5)
yeast05679vs4 0.8488 (1) 0.8275 (2) 0.6820 (5) 0.6666 (6) 0.7226 (3) 0.6603 (7)
AVERAGE 0.852 (1.33) 0.8263 (2.57) 0.7666 (4.81) 0.76 (4.67) 0.7756 (4.1) 0.7658 (4.52)

this statement. The novelties of these algorithms include an algorithm

that combines a DPP-based approach (i.e. DPPCP) and an ensemble

learning that allows solving both feature selection and instance selection

problems simultaneously, as well as the proposal of a multi-objective co-

operative co-evolutionary algorithm with dual population. Both of these

methods are capable of discovering a collection of classifiers that have

both convergence and diversity aspects for ensemble learning algorithms.

The proposed methods in this chapter were published in the jour-

nal of Research and Development on Information and Communication

Technology [J2], NAFOSTED Conference on Information and Computer

Science [C2], the 11th International Conference on Knowledge and Sys-

tems Engineering (KSE)(Scopus- C3), the 15th KSE [C6] and the Na-

tional Science Workshop 2021 - Some selected issues of Information and

Communication Technology [C7].
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Figure 3.1: The general model of the proposed method. There are three main phases: Data
pre-processing; the co-evolutionary process; and ensemble-based decision-making

Figure 3.2: Individual encoding. Each individual is encoded as a sequence of real-valued numbers
representing the probability of being selected. There are two sub-sequences, one representing the FS

set and the other representing the IS set.
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Figure 3.3: The way to build a decision tree from an individual. From the original dataset, use the
FS encoding string to eliminate columns corresponding to bits with a probability of selection less

than 0.5, and use the IS encoding string to eliminate rows corresponding to bits with a probability of
selection less than 0.5.
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Figure 3.4: The multi-objective co-operative co-evolutionary method for classification with
imbalanced data
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Figure 3.5: Experimental results of the IBDPPCP and IBDPPCP2 on datasets with IR less than 9.
For each pair, the column that has a higher value is considered better.

Figure 3.6: Experimental results of the IBDPPCP and IBDPPCP2 on datasets with IR higher than
9. For each pair, the column that has a higher value is considered better.
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Figure 3.7: Experimental results of the IBDPPCP and IBDPP2 on datasets with IR less than 9. For
each pair, the column that has a higher value is considered better.

Figure 3.8: Experimental results of the IBDPPCP and IBDPP2 on datasets with IR higher than 9.
For each pair, the column that has a higher value is considered better.
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Figure 3.9: Experimental results of the two proposed methods and the premise research on datasets
with IR less than 9. The column that has a higher value is considered better.

Figure 3.10: Experimental results of the the two proposed methods and the premise research on
datasets with IR higher than 9. The column that has a higher value is considered better.
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Figure 3.11: Experimental results of IBDPPCP and DEMOA on datasets with IR less than 9

Figure 3.12: Experimental results of IBDPPCP and DEMOA on datasets with IR higher than 9

Figure 3.13: Experimental results of the proposed methods with SMEN C45 on datasets with IR less
than 9
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Figure 3.14: Experimental results of the proposed methods with SMEN C45 on datasets with IR
higher than 9

Figure 3.15: Experimental results of the proposed algorithm and machine learning algorithms on
datasets with IR less than 9. The column that has a higher value is considered better.
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Figure 3.16: Experimental results of the proposed algorithm and machine learning algorithms on
datasets with IR higher than 9. The column that has a higher value is considered better.

Figure 3.17: Experimental results of the proposed algorithm and ensemble learning algorithms on
datasets with IR lower than 9. The column that has a higher value is considered better.

Figure 3.18: Experimental results of the proposed algorithm and ensemble learning algorithms on
datasets with IR higher than 9. The column that has a higher value is considered better.
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Figure 3.19: Experimental results of the proposed algorithm and Evolutional computation learning
algorithms on datasets with IR lower than 9. The column that has a higher value is considered

better.

Figure 3.20: Experimental results of the proposed algorithm and Evolutional computation learning
algorithms on datasets with IR higher than 9. The column that has a higher value is considered

better.

136



CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDIES

This section summarizes the contributions of the thesis and presents

some open problems for future studies.

A. Conclusions

In this thesis, the author discussed the essential theory of co-evolutionary

algorithms, multi-objective optimization, as well as some of its current

applications. This thesis focuses on addressing the following two major

issues. The first involves developing algorithms to improve in balancing

convergence and diversity in multi-objective optimization problems, and

the second is using those methods to resolve classification issues. Fol-

lowing is a summary of the major contributions made in this thesis.

(*) Balancing convergence and diversity in multi-objective op-

timization problems

• Proposing a DPP-based co-operative co-evolutionary approach for

balancing the convergence and diversity. Key improvements of the

algorithm include a new restricted mating selection mechanism (named

RMS2); a new solution-alternative selection strategy as well as a new

mechanism for instance updates[C1].

• Proposing a DPP-based competitive co-evolutionary approach for

balancing the convergence and diversity. The novelties of this study

include: Proposing a mechanism for selecting individuals for each

population (named NBSM selection) and proposing a competitive

co-evolutionary mechanism to make two offspring interact with each
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other instead of using the co-operative co-evolutionary mechanism

[J1].

(*) Applying multi-objective co-evolutionary methods for clas-

sification with imbalanced data

• Proposing a multi-objective competitive co-evolutionary approach

for imbalanced dataset classification (named IBDPPCP). The main

contribution of this study is to propose an approach that combines

a DPP-based method (i.e.DPPCP) and an ensemble learning that

allows solving both feature selection and instance selection prob-

lems simultaneously. The DPPCP algorithm helps to find a set of

solutions (corresponding to different sub-data sets) to serve as the

basis for building classifiers of ensemble learning that satisfy both

convergence and diversity criteria. This approach helps to solve

both challengers of imbalanced classification problems: imbalance

and overlapping problems.[C7].

• Proposing a multi-objective co-operative co-evolutionary approach

(named IBMCCA) for solving classification with imbalanced data.

The main contribution of this study is to propose an multi-objective

cooperative co-evolutionnary model with dual population. This model

can find a set of individuals (or sub-datasets) that have both con-

vergence and diversity factors to solve both of instance and feature

selection in imbalanced dataset classification.[J2, C2, C3, C6].

Along with the models mentioned in the thesis, the author has also

developed a few additional co-evolution models such as: a new multi-

objective competitive co-evolutionary approach with a Prey-Predator

model for solving with classification problems [C3];a multi-population

co-evolutionary approach for software defect prediction [C5]; a multi-

swarm co-evolutionary approaches time series forecasting problems [C8].
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B. Future Studies

Although the Co-evolution was studied widely in the literature, there

are still several possible open problems which require further investiga-

tions in order to have a full understanding about their applicability as

follows.

- Developing the DPP-based models using both of co-operative and

competitive for multi-objective optimization problems.

- Developing a multi-objective multi-population for machine learning

problems.

- Developing Spatial-based co-evolutionary algorithms for solving spa-

tial challenges such as spatial forest planning, groundwater management,

etc.
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Appendix 4

Benchmark test problems

Table 4.1: ZDT Problems. Two objectives f1(
−→x ) and f2(

−→x ) have to be minimize. The function
g(−→x ) can be thought of as the function for convergence.

MOP POF

ZDT1 :

f1(
−→x ) = x1,

f2(
−→x , g) = g(−→x ).(1 −

√
f1(

−→x )

g(−→x )
),

g(−→x ) = 1 +
9

n − 1

n∑
i=2

xi.

where n = 30, and xi ∈ [0, 1]; g(−→x ) = 1. The Pareto-optimal front (POF)

is convex.
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ZDT2 :

f1(
−→x ) = x1,

f2(
−→x , g) = g(−→x ).(1 − (

f1(
−→x )

g(−→x )
)
2
),

g(−→x ) = 1 +
9

n − 1

n∑
i=2

xi.

where n = 30, and xi ∈ [0, 1]; g(−→x ) = 1. The POF is non-convex.
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ZDT3 :

f1(
−→x ) = x1,

f2(
−→x , g) = g(−→x ).(1 −

√
f1(

−→x )

g(−→x )
−

f1(
−→x )

g(−→x )
. sin(10πf1(

−→x ))),

g(−→x ) = 1 +
9

n − 1

n∑
i=2

xi.

where n = 30, and xi ∈ [0, 1]; g(−→x ) = 1. The POF is disconnected.
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MOP POF

ZDT4 :

f1(
−→x ) = x1,

f2(
−→x , g) = g(−→x ).(1 −

√
f1(

−→x )

g(−→x )
),

g(rrightarrowx) = 1 + 10.(n − 1) +

n∑
i=2

(x
2
i − 10 cos(4πxi)).

where n = 10, x1 ∈ [0, 1] and x2, ..., xn ∈ [−5, 5]; g(−→x ) = 1. The POF is

convex. This problem has a large number of local Pareto-optimal solutions

(As a result, algorithms are prone to become trapped in a local optimum). 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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ZDT6 :

f1(
−→x ) = 1 − exp(−4x1). sin

6
(6πx1),

f2(
−→x , g) = g(−→x ).(1 − (

f1(
−→x )

g(−→x )
)
2
),

g(−→x ) = 1 + 9(
1

9
.

n∑
i=2

(xi)).

where n = 10, xi ∈ [0, 1]; g(−→x ) = 1. The POF is non-convex. The

Pareto-optimal region has non-uniform distribution of solution density.
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.8

0.9

1
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F
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Table 4.2: DTLZ Problems

MOP POF

DTLZ1 :

f1(
−→x ) =

1

2
x1x2...xM−1(1 + g(−→x M )),

f2(−→x ) =
1

2
x1x2...(1 − xM−1)(1 + g(−→x M )),

...,

fM−1(
−→x ) =

1

2
x1(1 − x2)(1 + g(−→x M )),

fM (−→x ) =
1

2
(1 − x1)(1 + g(−→x M )).

subject to 0 ≤ xi ≤ 1, ∀i = 1, 2, ..., n where: −→x M = xM , xM+1, ..., xn and

g(−→x M ) = 100[|−→x M | +
∑

xi∈
−→x M

(xi − 0.5)2 − cos(20π(xi − 0.5))].

The Pareto-optimal solution corresponds to −→x ∗
M = 0.5 and the objective

function values on the linear hyper-plane:
∑M

m=1 fi = 0.5. Convergence to

the Pareto-optimal hyper-plane is the problem’s only challenge. There are

(11k − 1) local POFs in the search space where a MOEA may be drawn be-

fore reaching the global POF. The POF is linear, separable and multi-modal.

0
0.1

0.2
0.3

0.4
0.5

0
0.1

0.2
0.3

0.4
0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

f1

f2

f3

DTLZ2 :

f1(
−→x ) = (1 + g(−→x M )) cos(x1

π

2
) cos(x2

π

2
)...

cos(xM−2
π

2
) cos(xM−1

π

2
),

f2(
−→x ) = (1 + g(−→x M )) cos(x1

π

2
) cos(x2

π

2
)...

cos(xM−2
π

2
) sin(xM−1

π

2
),

f3(
−→x ) = (1 + g(−→x M )) cos(x1

π

2
)cos(x2

π

2
)...sin(xM−2

π

2
),

...,

fM−1(
−→x ) = (1 + g(−→x M )) cos(x1

π

2
)sin(x2

π

2
),

fM (−→x ) = (1 + g(−→x M ))sin(x1
π

2
).

subject to 0 ≤ xi ≤ 1, ∀i = 1, 2, ..., n where: −→x M = xM , xM+1, ..., xn and

g(−→x M ) =
∑

xi∈
−→x M

(xi − 0.5)2

The Pareto-optimal solutions corresponds to xi = 0.5 for all

xi ∈ −→x M , ∀i = M,M + 1, ..., n and all objective function values must

satisfy:
∑M

i=1(fi)
2 = 1. The POF is concave, scalable and multi-modal.
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MOP POF

DTLZ3 :

f1(
−→x ) = (1 + g(−→x M )) cos(x1

π

2
) cos(x2

π

2
)...

cos(xM−2
π

2
) cos(xM−1

π

2
),

f2(
−→x ) = (1 + g(−→x M )) cos(x1

π

2
) cos(x2

π

2
)...

cos(xM−2
π

2
) sin(xM−1

π

2
),

f3(
−→x ) = (1 + g(−→x M )) cos(x1

π

2
)cos(x2

π

2
)...

sin(xM−2
π

2
),

...,

fM−1(
−→x ) = (1 + g(−→x M )) cos(x1

π

2
)sin(x2

π

2
),

fM (−→x ) = (1 + g(−→x M ))sin(x1
π

2
).

subject to 0 ≤ xi ≤ 1, ∀i = 1, 2, ..., n where: −→x M = xM , xM+1, ..., xn and

g(−→x M ) = 100[|−→x M | +
∑

xi∈
−→x M

(xi − 0.5)2 − cos(20π(xi − 0.5))]

A global POF and (3k − 1) local POFs are introduced by the g function.

An MOEA can become stuck at any of the local POFs that are parallel to

the global POF before convergent reaching the global POF .
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0.05
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0.3
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0.45

0.5
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f2
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DTLZ4 :

f1(
−→x ) = (1 + g(−→x M )) cos(x

α
1

π

2
) cos(x

α
2

π

2
)...

cos(x
α
M−2

π

2
) cos(x

α
M−2

π

2
),

f2(
−→x ) = (1 + g(−→x M )) cos(x

α
1

π

2
) cos(x

α
2

π

2
)...

cos(x
α
M−2

π

2
) sin(x

α
M−1

π

2
),

f3(x) = (1 + g(−→x M )) cos(x
α
1

π

2
) cos(x

α
2

π

2
)...

sin(x
α
M−2

π

2
),

...,

fM−1(x) = (1 + g(−→x M )) cos(x
α
1

π

2
) sin(x

α
2

π

2
),

fM(x) = (1 + g(−→x M )) sin(x
α
1

π

2
).

subject to 0 ≤ xi ≤ 1, ∀i = 1, 2, ..., n where: −→x M = xM , xM+1, ..., xn and

g(−→x M ) =
∑

xi∈
−→x M

(xi − 0.5)2.

This is another version of the DTLZ2 problem with a modified para-

metric variable mapping to examine a MOEA’s capability to preserve a

good distribution of solutions. Here, the parameter α = 100 is recommended.
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MOP POF

DTLZ5 :

f1(
−→x ) = (1 + g(−→x M )) cos(θ1

π

2
) cos(θ2

π

2
)...

cos(θM−2
π

2
) cos(θM−1

π

2
),

f2(
−→x ) = (1 + g(−→x M )) cos(θ1

π

2
) cos(θ2

π

2
)...

cos(θM−2
π

2
) sin(θM−1

π

2
),

f3(
−→x ) = (1 + g(−→x M )) cos(θ1

π

2
)cos(θ2

π

2
)...

sin(θM−2
π

2
),

...,

fM−1(
−→x ) = (1 + g(−→x M )) cos(θ1

π

2
)sin(θ2

π

2
),

fM (−→x ) = (1 + g(−→x M ))sin(θ1
π

2
).

subject to 0 ≤ xi ≤ 1, ∀i = 1, 2, ..., n

where: θi = π
4(1+g(−→x M ))

(1 + 2g(−→x M )xi),

for i = 2, 3, ..., (M − 1) and

g(−→x M ) =
∑

xi∈
−→x M

(xi − 0.5)2.

An MOEA’s capacity to converge on a curve will

be examined in this problem. This challenge may

be simple for an algorithm to handle because there

is a natural bias toward solutions that are near to

this Pareto-optimal curve.
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DTLZ6 :

f1(
−→x ) = (1 + g(−→x M )) cos(θ1

π

2
) cos(θ2

π

2
)...

cos(θM−2
π

2
) cos(θM−1

π

2
),

f2(
−→x ) = (1 + g(−→x M )) cos(θ1

π

2
) cos(θ2

π

2
)...

cos(θM−2
π

2
) sin(θM−1

π

2
),

f3(
−→x ) = (1 + g(−→x M )) cos(θ1

π

2
)cos(θ2

π

2
)...

sin(θM−2
π

2
),

...,

fM−1(
−→x ) = (1 + g(−→x M )) cos(θ1

π

2
)sin(θ2

π

2
),

fM (−→x ) = (1 + g(−→x M ))sin(θ1
π

2
).

subject to 0 ≤ xi ≤ 1, ∀i = 1, 2, ..., n where: θi =
π

4(1+g(−→x M ))
(1 + 2g(−→x M )xi), for i = 2, 3, ..., (M − 1) and

g(−→x M ) =
∑

xi∈
−→x M

(xi)
0.1.

The size of the xM vector is set to 10, and the overall number of variables

is the same as in the DTLZ5 problem. Because of the aforementioned

modification to the problem, some MOEAs find it challenging to reach the

same true POF as DTLZ5.
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MOP POF

DTLZ7 :

f1(
−→x ) = x1,

f2(
−→x ) = x2,

...,

fM−1(
−→x ) = −→x M−1

fM (−→x ) = (1 + g(−→x M )).h(f1, f2, ..., fM−1g(x))

subject to 0 ≤ xi ≤ 1, ∀i = 1, 2, ..., n where: g(x) = 1+ 9
|−→x M | .

∑
xi∈

−→x M
xi,

h(f1, f2, ..., fM−1, g) = M −
∑M−1

i=1
fi

1+g(x)
(1 + sin(3πfi)).

There are 2M−1 unconnected Pareto-optimal regions in the search space

for this test problem. The maintenance of sub-populations in various

Pareto-optimal locations will be tested by this task.
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Table 4.3: UF Problems

MOP POF

UF1 :

f1(
−→x ) = x1 +

2

|J1|
∑
j∈J1

[xj − sin(6πx1 +
jπ

n
)]

2
,

f2(
−→x ) = 1 −

√
x1 +

2

|J2|
∑
j∈J2

[xj − sin(6πx1 +
jπ

n
]
2

where J1 = {j|j is odd and (2 ≤ j ≤ n} and J2 = {j|j is even and

2 ≤ j ≤ n}. The search space is [0, 1] × [−1, 1]n−1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1

F
2

UF2 :

f1(
−→x ) = x1 +

2

|J1|
∑
j∈J1

y
2
j ,

f2(
−→x ) = 1 −

√
x1 +

2

|J2|
∑
j∈J2

y
2
j

where J1 = {j|j is odd and (2 ≤ j ≤ n} and J2 = {j|j is even and

2 ≤ j ≤ n} and

yj =

{
xj − [0.3x2

1 cos(24πx1 + 4jπ
n ) + 0.6x1] cos(6πx1 + jπ

n )j ∈ J1

xj − [0.3x2
1 cos(24πx1 + 4jπ

n ) + 0.6x1] sin(6πx1 + jπ
n )j ∈ J2

The search space is [0, 1] × [−1, 1]n−1.
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1
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F
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UF3 :

f1(
−→x ) = x1 +

2

|J1|
(4

∑
j∈J1

y
2
j − 2

∏
j∈J1

cos(
20yjπ√

j
) + 2),

f2(
−→x ) = 1 −

√
x1 +

2

|J2|
(4

∑
j∈J2

y
2
j − 2

∏
j∈J2

cos(
20yjπ√

j
) + 2)

where J1 and J2 are the same as those of UF1, and

yj = xj − x
0.5(1.0+

3(j−2)
n−2

)

1 , j = 2, ..., n,. The search space is

[0, 1]n.
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MOP POF

UF4 :

f1(
−→x ) = x1 +

2

|J1|
∑
j∈J1

h(yj),

f2(
−→x ) = 1 − x

2
1 +

2

|J2|
∑
j∈J2

h(yj)

where J1 = {j|j is odd and (2 ≤ j ≤ n} and J2 = {j|j is even and

2 ≤ j ≤ n}
yi = xj − sin(6πx1 + jπ

n ), j = 2, ..., n and h(t) =
|t|

1+e2|t|
. The search space

is [0, 1] × [−2, 2]n−1. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3
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UF5 :

f1(
−→x ) = x1 + (

1

2N
+ ϵ)| sin(2Nπx1)| +

2

|J1|
∑
j∈J1

h(yj),

f2(
−→x ) = 1 − x1 + (

1

2N
+ ϵ)| sin(2Nπx1)| +

2

|J2|
∑
j∈J2

h(yj)

where J1 = {j|j is odd and (2 ≤ j ≤ n} and J2 = {j|j is even and

2 ≤ j ≤ n}
yi = xj − sin(6πx1 + jπ

n ), j = 2, ..., n and h(t) = 2t2 − cos(4πt) + 1. The

search space is [0, 1] × [−1, 1]n−1. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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MOP POF

UF6 :

f1(
−→x ) = x1 + max{0, 2(

1

2N
+ ϵ) sin(2Nπx1)}

+
2

|J1|
(4

∑
j∈J1

y
2
j − 2

∏
j∈J1

cos(
20yjπ√

j
) + 2),

f2(
−→x ) = 1 − x1 + max{0, 2(

1

2N
+ ϵ) sin(2Nπx1)}

+
2

|J2|
(4

∑
j∈J2

y
2
j − 2

∏
j∈J2

cos(
20yjπ√

j
) + 2)

where J1 = {j|j is odd and (2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}
yi = xj − sin(6πx1+

jπ
n ), j = 2, ..., n. The search space is [0, 1]× [−1, 1]n−1.
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F1

F
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UF7 :

f1(
−→x ) = 5

√
x1 +

2

|J1|
∑
j∈J1

y
2
j ,

f2(
−→x ) = 1 − 5

√
x1 +

2

|J2|
∑
j∈J2

y
2
j

where J1 = {j|j is odd and (2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}
yi = xj − sin(6πx1+

jπ
n ), j = 2, ..., n. The search space is [0, 1]× [−1, 1]n−1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.9

1

F1

F
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UF8 :

f1(
−→x ) = cos(0.5x1π) cos(0.5x2π)+

2

|J1|
∑
j∈J1

(xj − 2x2 sin(2πx1 +
jπ

n
))

2
,

f2(
−→x ) = cos(0.5x1π) sin(0.5x2π)+

2

|J2|
∑
j∈J2

(xj − 2x2 sin(2πx1 +
jπ

n
))

2
,

f3(
−→x ) = sin(0.5x1π) +

2

|J3|
∑
j∈J3

(xj − 2x2 sin(2πx1 +
jπ

n
))

2
,

where J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3},
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3}. The search space is

[0, 1]2 × [−2, 2]n−2.
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MOP POF

UF9 :

f1(
−→x ) = 0.5[max{0, (1 + ϵ)(1 − 4(2x1 − 1)

2
)} + 2x1]x2

+
2

|J1|
∑
j∈J1

(xj − 2x2 sin(2πx1 +
jπ

n
))

2
,

f2(
−→x ) = 0.5[max{0, (1 + ϵ)(1 − 4(2x1 − 1)

2
)} − 2x1 + 2]x2

+
2

|J2|
∑
j∈J2

(xj − 2x2 sin(2πx1 +
jπ

n
))

2
,

f3(
−→x ) = 1 − x2 +

2

|J3|
∑
j∈J3

(xj − 2x2 sin(2πx1 +
jπ

n
))

2

where J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3},
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3} and ϵ = 0.1. The search

space is [0, 1]2 × [−2, 2]n−2.
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UF10 :

f1(
−→x ) = cos(0.5x1π) cos(0.5x2π) +

2

|J1|
∑
j∈J1

[4y
2
j − cos(8πyj) + 1],

f2(
−→x ) = 0 cos(0.5x1π) sin(0.5x2π) +

2

|J2|
∑
j∈J1

[4y
2
j − cos(8πyj) + 1],

f3(
−→x ) = sin(0.5x2π) +

2

|J3|
∑
j∈J1

[4y
2
j − cos(8πyj) + 1]

where J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3},
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3} and

yj = xj − 2x2 sin(2πx1 + jπ
n ), j = 3, ..., n. The search space is [0, 1]2 ×

[−2, 2]n−2.
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and Gagné, C. (2012). Deap: Evolutionary algorithms made easy. The

Journal of Machine Learning Research, 13(1):2171–2175.

[46] Frank, A. (2010). Uci machine learning repository. http://archive.

ics. uci. edu/ml.

[47] Freund, Y., Schapire, R. E., et al. (1996). Experiments with a new

boosting algorithm. In icml, volume 96, pages 148–156. Citeseer.

[48] Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., and Her-

rera, F. (2011). A review on ensembles for the class imbalance prob-

156



lem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 42(4):463–484.
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coevolutionary instance selection for multilabel problems. Knowledge-

Based Systems, 234:107569.
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