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INTRODUCTION

Motivation

In recent years, along with the rapid development of industry revolu-

tion 4.0, electronic devices have been applied to many categories of con-

sumer electronics, including home appliances, telecommunication, trans-

port, and important domains such as military, healthcare, and banking.

To ensure data confidentiality, integrity, and validity of such devices,

cryptographic algorithms are increasingly being applied, which make use

of a secret key to turn conventional information (plaintext) into an un-

intelligible form (ciphertext).

Cryptographic algorithms can be either software implementation in

microprocessors, microcontrollers, smart cards, or hardware implemen-

tation in Field Programmable Gate Array (FPGA) and Application Spe-

cific Integrated Circuit (ASIC) platforms. For some specific application

processors, cryptographic functions are often available as a built-in accel-

erator, accessible through an Application Programming Interface (API).

However, any computation is eventually performed by a part of the hard-

ware, which leaks symptoms of its operations like power consumption,

electromagnetic radiation, or temperature variations. By utilizing such

leakage information, adversaries can mount the so-called Side-Channel

Attacks (SCA) to reveal the secret information of the system. Since the

first work in the late 1990s [2], Kocher et al. have raised the awareness
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of the fact that “provably secure” cryptography is potentially vulnerable

to SCA.

In general, SCAs are categorized into two main groups: profiled and

non-profiled attacks [3]. Regarding profiled attacks, Template attack

(TA) [4] and Deep learning (DL) based attacks [5], are considered a

worst-case security risk as an attacker has full access to a copy version

of the target device. The attacker is able to characterize the side-channel

leakage of the target device by exploiting side-channel information col-

lected from the reference device prior to the attack. In contrast, Differ-

ential Power Analysis (DPA) [2], Correlation Power Analysis (CPA) [6],

and Differential DL Analysis (DDLA) [7] are the non-profiled SCA tech-

niques, which perform without any prior knowledge about the expected

side-channel leakage that is directly used for key extraction.

From a technical point of view, SCA can be classified into statistic-

based attacks (CPA, DPA, TA, etc.) and machine learning (ML) based

attacks (DL-based attacks, DDLA, etc.). In the machine learning do-

main, DL-based attacks have received a special attention from the re-

search community because of their superiority over statistic-based at-

tacks. Concretely, statistic-based attacks require pre-processing tech-

niques on side-channel data in the case of common countermeasures

applied [8–11]. It leads to a high cost and a time-consuming evalua-

tion process. In contrast, DL-based attacks could reveal the secret key

without any pre-processing techniques [12]. From the above analysis, an

efficient SCA can be achieved by improving the existing statistic tech-

niques or applying appropriate DL architectures.

The past twenty years have seen various investigations on the threats

from SCA. Different countermeasures have been proposed in order to
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improve hardware security against SCA. However, regardless of the type

and soundness of the deployed countermeasures, the real attacks must

be repeatedly performed in order to clarify their effectiveness in the early

stage of the product. In addition, it is nearly impossible for a designer

to predict a priori the SCA resistance of their design before its detailed

implementation and subsequent in-depth analysis. Consequently, coun-

termeasures against SCA are often developed and implemented in an

additional step at the end of the design process of a device. Therefore,

research on efficient SCA is crucial for designing provably secure coun-

termeasures, validating the effectiveness of protected schemes as well as

detecting potential vulnerabilities.

Research Objectives

The thesis focuses on proposing efficient SCA techniques to speed

up and enhance the success rate of attacks on cryptographic devices

applying different SCA-protected schemes.

The specific objectives of this research can be summarized as follows:

� To propose low complexity SCA techniques based on CPA for both

unprotected and protected cryptographic devices applying masking

and noise injection countermeasures.

� To break different SCA countermeasures by advanced deep learning

(DL) techniques without pre-processing methods and to improve the

efficiency of DL-based attacks in terms of attack time and success

rate.
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Research areas

� Block cipher (focused on AES algorithm), cryptography for embed-

ded systems, and Microprocessor architecture (focused on RISC-V).

� Hardware security, non-profiled SCA using power consumption data,

SCA countermeasures.

� Statistical methods, single-output deep learning, and multiple-output

deep learning.

Research method

In this thesis, both the theoretical analysis and hardware-based ex-

periments are implemented to evaluate the performance of the proposed

techniques.

� The analytical methods are used to process the side-channel data,

the correlation function, and the parameters of the proposed meth-

ods.

� The hardware-based experiments are conducted to collect side-channel

data on the device under test (DUT), perform DL training to reveal

the secret key, and compare the performance of the proposed and

other previous works.

Thesis contribution

In this thesis, new SCA techniques are proposed to reduce the com-

putation time and enhance the success rate. Concretely, the proposed

techniques focus on enhancing the efficiency of the most commonly used

non-profiled SCA techniques like CPA and DDLA in different evaluation

conditions, such as high dimensional data, imbalanced datasets, and the
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presence of SCA countermeasures. The major contributions of the thesis

can be summarized as follows.

� To propose low-complexity CPA techniques (P-CPA and BP-CPA)

based on the distribution of sampling correlation and the power trace

biasing technique. The proposed techniques have been used to speed

up the SCA attacks and enhance the success rate against different

SCA protected schemes, such as masking and noise injection. The

thesis also suggests countermeasures based on the disadvantages of

the proposed techniques. This contribution is presented in [C1], [J1].

� To propose a dimensional reduction technique for DLSCA in a non-

profiled context using the P-CPA method. Furthermore, a novel

labeling technique, namely Significant Hamming Weight (SHW), is

proposed to solve imbalanced dataset problems and reduce SCA data

size. The efficiency of proposed methods is investigated on different

DL architectures, such as Multi-layer perceptron (MLP) and Con-

volutional neural network (CNN). This contribution is presented in

[C2, C3], [J3, J5] and [P1]

� To propose new non-profiled SCA based on multi-output and multi-

loss deep neural networks (MO-DLSCA). The proposed techniques

mitigate the drawbacks of DDLA attacks and enhance the perfor-

mance of non-profiled DLSCA regarding the attack time and the

success rate. Significantly, the attack time is from several hours to

less than half an hour in some cases. The security solutions against

MO-DLSCA itself are also presented. This contribution is presented

in [J2, J4], and [C4].
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Thesis structure

The thesis is organized into four chapters as follows:

� Chapter 1: Side-channel attacks.

This chapter briefly introduces SCA. Specifically, the background of

SCA, side-channel data, measurement setups, and the data used in

the thesis are shown in this chapter. Then, the general knowledge

of SCA methods, SCA countermeasures, and applications of SCA

for hardware security is provided. Finally, a comprehensive review

of recent research on the non-profiled SCA is presented along with

some research directions that promote the contribution of this work

in the subsequent chapters.

� Chapter 2: Low complexity correlation power analysis attacks.

This chapter presents a theoretical analysis of the sampling distri-

bution of the correlation coefficient and proposes a new POI extrac-

tor technique named partial correlation power analysis (P-CPA).

By combining P-CPA and power trace biasing technique, another

POI extractor called power trace biasing based P-CPA (BP-CPA)

is proposed in order to improve the probability of taking the cor-

rect samples and reduce the number of needed traces. Based on the

proposed POI extractors, two auto-CPA algorithms that automat-

ically perform the POI selection, together with key recovering, are

introduced. Details analysis of experimental results is also provided

to clarify the efficiency of the proposed techniques in SCA security

testing regarding execution time and success rate.

� Chapter 3: Dimensionality reduction and labeling methods for effi-
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cient deep learning based non-profiled SCA.

In this chapter, non-profiled DLSCA techniques are investigated in

different security testing scenarios. Regarding the high dimensional

data issue, the P-CPA technique is applied to select the most infor-

mative sample points and reduce the size of input data significantly.

Related to the imbalanced dataset problem, a new labeling technique

called SHW based on Hamming weight is proposed. In this chapter,

various DLSCA attacks are performed, which clarify the efficiency of

SCA evaluation using SHW in comparison with to 9-HW and LSB

labeling techniques on unprotected and protected datasets. This

chapter also provides the attack results on cryptographic devices

that applied noise injection and de-synchronized countermeasures.

� Chapter 4: Multi-output deep learning based non-profiled SCA.

This chapter proposes two novel deep learning architectures based

on multi-output classification and multi-output regression. Simulta-

neously, the details of reconstructed dataset methods corresponding

to the proposed models are also provided. The experimental results

are presented and analyzed to demonstrate the efficiency of proposed

models for SCA on secure platforms that apply different countermea-

sures. Finally, the main drawback of the proposed techniques as well

as the resistance methods are discussed.
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Chapter 1

SIDE-CHANNEL ATTACKS

1.1. Introduction

1.1.1. Attacks on cryptographic devices

In recent years, several kinds of attacks on cryptographic devices have

been launched. The goal of all these attacks is to reveal the secret

keys of cryptographic devices. However, the techniques that are used to

achieve such goal are manifold. Attacks on cryptographic devices differ

significantly in terms of cost, time, equipment, and expertise needed [1].

In general, the attacks fall into two large groups, as depicted in Fig. 1.1.

This classification depends on whether an adversary observes some pa-

rameters of the implementation or influences its execution.

Attacks on 

cryptographic devices

Active Passive

Invasive Semi-invasive

Side-channel

Logical

Electromagnetic Power Timing

Fault
Physical penetration 

and modification

Non-

invasive

Figure 1.1: Classification of attacks on cryptographic devices [1]. The yellow parts
indicate the attacks that are covered in this thesis.
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The first group is active attacks, which exploit results of influencing

an implementation, or manipulating it, such that it behaves abnormally.

They comprise fault attacks where errors are introduced into the exe-

cution of a cryptographic algorithm or a protocol. Other active attacks

do not directly exploit the properties of a cryptographic algorithm or a

protocol, such as dumping the device’s memory that contains the secret

key.

The second group is passive attacks. This group exploits the results of

observing an implementation while it works (largely) as intended. The

adversary can feed inputs but does not interfere with the execution of

an algorithm or a protocol. In particular, passive non-invasive attacks

have received a lot of attention from the hardware research community.

These attacks are usually referred to as side-channel attacks (SCA),

where physical leakage of a device during an algorithm execution is ob-

served. Other passive attacks are based on higher-level logic, where

some parameters of a protocol execution, for instance, error messages,

are observed.

1.1.2. Side-channel attack

The basic idea of SCA is to reveal the secret key of a cryptographic

device by analyzing its side-channel data. As shown in Fig. 1.1, the

leakage data that are usually exploited to attack are timing [13], power

consumption [2], and electromagnetic (EM) radiation [14], because they

are relatively easy to be acquired from various electronic devices. Other

more specific side-channel data types were exploited in SCA, for instance,

acoustic [15], optical [16], and thermal [17], but they are rarely used in

practice for implementing SCA.
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In practice, power consumption and electromagnetic data are linked

since moving electric charges in the device is a source of electromagnetic

radiation. Consequently, the power consumption of a cryptographic de-

vice can be measured directly by inserting a power measurement circuit

or indirectly by an EM probe [18]. This thesis, therefore, focuses on SCA

using power consumption data as indicated by the parts highlighted in

yellow in Fig. 1.1. The concept “side-channel data” will refer to power

consumption data for the rest of the thesis. It is worth noting that the

attacks that perform successfully on power consumption are also applied

successfully to EM data used in this thesis.

1.1.3. Classification of SCA

Basically, SCA attacks can be classified into two approaches: profiled

and non-profiled attacks. Profiled attacks use a reference device, which

is identical (or very close) to the target device, to build a database stock-

ing power consumption information dedicated to a type of device [3], as

depicted in Fig.1.2. This class of attack was initially proposed in [19]

and then developed under the well-known “Template attack” [4]. In par-

ticular, profiled attacks take place in two stages: the profiling stage and

the key extraction stage. In the profiling stage, a large number of power

traces recorded from the reference device are used to build a template for

each hypothesis key based on multivariate-Gaussian distribution. Then,

the key extraction stage uses a small number of power traces (very small

compared to the profiling stage) collected from the target device to find

the correct key based on the template, which has been pre-built in the

profiling stage. Such detection method is based on the maximum likeli-

hood metric.
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Non-profiled attacks Profiled attacks
Target device

(Closed)

Profiling device

(Open)

Target device

(Closed)

Fixed secret key Secret key can be changed Fixed secret key

Figure 1.2: Non-profiled and profiled attack categories.

Even though profiled attacks are the most powerful of the SCAs, they

have also been considered the worst-case security analysis, and the condi-

tion of this method is sometimes difficult to satisfy in practice, especially

when the targets are flexible and highly customizable, such as FPGA-

based designs or open-source architectures. Another case is closed prod-

ucts like smart cards running banking applications. The attacker does

not have control of the keys and is usually limited by a transaction

counter. In such cases, profiled attacks can not be performed. However,

the secret device is still threatened by a method called a non-profiled

SCA attack.

Non-profiled attacks are based on the relationship between the power

consumption model and real measurements. In this case, the leakage in-

formation is exploited at the same point in time over different operations

of devices. By computing the correlation of the ground-truth models and

the measurements recorded from the target device, the non-profiled SCA

can recover the secret key. Therefore, the non-profiled attacks do not

require any reference device. On the one hand, it is suitable to ease

the evaluation and low-cost testing process (no reference device needed).
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On the other hand, non-profiled SCA can be considered a high-security

scenario compared to profiled SCA since the attackers do not have any

extra information from the target device except input/output data. For

these reasons, this thesis place importance on investigating non-profiled

SCA techniques with respect to both statistic-based and DL-based.

To mount an SCA attack, side-channel data is of prime importance.

In the next section, a basic knowledge of side-channel data and measure-

ment setup are briefly introduced.

1.2. Side-channel data and measurement setup

Digital circuits consume power whenever they perform computations.

The current from a power supply is drawn and then dissipated as heat.

The power consumption of digital circuits is a important topic. It de-

termines whether a device needs to be cooled or not and which kind of

supply is necessary. More importantly, in the case of cryptographic de-

vices, it determines whether a device can be attacked or not. Therefore,

power consumption is usually exploited for evaluating the safety of a

designed circuit.

1.2.1. Power consumption of CMOS circuit

It is commonly known that digital circuits (ASIC or FPGA) are built

based on logic cells. The most commonly used logic cell technology is

Complementary meta-oxide semiconductor (CMOS), which is based on

a complementary pull-up and pull-down network. Fig 1.3. illustrates a

CMOS inverter cell, P1 is conducting, and N1 is insulating if the input a

is set to GND. In contrast, P1 is insulating, and N1 is conducting if the

input a is set to VDD. The logic cells in the circuit process the input signal
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q
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DD

L

Figure 1.3: Lumped-C model of a CMOS inverter.

and draw the current from the power supply. Therefore, the total power

consumption of a CMOS circuit is the sum of the power consumption

of logic cells making up the circuit. Let iDD(t) and pcir(t) denote the

instantaneous current and power consumption of the circuit, respectively.

The average power consumption Pcir over time T is calculated as follows:

Pcir =
1

T

T∫
0

pcir (t) dt =
VDD

T

T∫
0

iDD (t) dt (1.1)

Digital systems usually draw both dynamic and static power [20].

Dynamic power is used for charging the capacitance as signals change

between 0 and 1. On the other hand, static power is used even when sig-

nals do not change and the system is idle. In the SCA domain, dynamic

power consumption is considered to exploit in most cases.

At a fixed moment of time, an output state of a logic cell normally

falls into one of four transitions, such as 1 → 1, 0 → 0, 1 → 0, and

0→ 1. In the two cases 1→ 1, 0→ 0, there are no switching activities.

Therefore, the power consumption contains only static power, whereas

switching activities are detected in the case of 1 → 0 and 0 → 1. As a

result, dynamic power consumption occurs. In other words, the dynamic
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power consumption depends on the data processed by the CMOS circuit.

There are two reasons for a CMOS cell’s dynamic power consumption.

The first one is that the load capacitance of the cell needs to be charged.

Let Pchrg be the power consumption caused by charging current. The

average charging power Pchrg that is consumed by a cell during the time

T can be calculated by the formula 1.2.

Pchrg =
1

T

T∫
0

pchrg (t) dt = λ× f × CL × V 2
DD (1.2)

where CL and f denote the output capacitance and the clock frequency,

respectively. λ is the so-called activity factor of the cell, which corre-

sponds to the average number of 0 → 1 transitions occurred each clock

cycle on the output of a logic cell.

The second component of dynamic power consumption is caused by

the temporary short circuit that occurs in a logic cell during the switch-

ing of the output, denoted as Psc. The average of Psc during the time T

can be calculated as follows:

Psc =
1

T

T∫
0

psc (t) dt = λ× f × Ipeak × tsc (1.3)

where tsc denotes the time for short circuit exits, Ipeak denotes the value

of the current peak that is caused by a short circuit during the switching.

Unlike the charging current, a short circuit happens in both cases of

1→ 0 and 0→ 1. Therefore, we can conclude that the power consump-

tion of 0→ 1 transition is greater than 1→ 0 one.
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Figure 1.4: Power consumption measurement setups.

1.2.2. Measurement setups

For power analysis attacks, it is necessary to measure the power con-

sumption of a cryptographic device while it executes cryptographic al-

gorithms. This subsection briefly introduces the power measurement

procedure, including setups and the needed components.

Fig 1.4 depicts a typical measurement setup that requires some com-

ponents, such as a personal monitoring computer (PC), the device under

test (DUT), and a digital oscilloscope.

Device under test : In practice, DUT is a cryptographic device that

usually provides an interface to communicate with a monitoring PC and

produces the trigger signal for a digital oscilloscope. The DUT can be

an embedded device performing encrypt/decrypt data or hardware im-

plementing the cryptographic algorithm on FPGA or ASIC. In order to

measure the power consumption, a very small register (typical resistance

values are 1 Wto 50 W) is inserted into the GND or VDD line of DUT.

The measurement points are then determined as depicted in Fig.1.4.

Digital oscilloscope : A digital oscilloscope is employed to measure

the power side-channel data when the target operates the cryptographic

algorithm. The oscilloscope is configured with two analog channels. Two
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passive probes are used to gather power traces from the target device in

the experimental workplace. One probe is applied to acquire the analog

signal from the core VDD node of DUT. The second one detects the trigger

signal provided by the target through a GPIO pin. The oscilloscope is

remotely controlled by a monitoring PC.

Monitoring PC : The monitoring PC is utilized to operate the whole

auto-measuring system. It communicates with the oscilloscope through

the LAN port and with the target device through a USB port.

The numbers in Fig 1.4 illustrate in which sequence the component

interact with each other when a power trace is recorded. Firstly, the PC

sends a plaintext to the target device (1) and commands the oscilloscope

to capture the power traces (2). In this setup, the digital oscilloscope is

configured in TRIGGER MODE (measure data when trigger occurred).

When the target SoC executes encryption/decryption, a trigger signal

is emitted (3). Subsequently, the oscilloscope records the measurement

data when the trigger is on (4). After completing encryption, the mon-

itoring PC receives the ciphertext/plaintext corresponding to the input

(5). Finally, the measured data from the oscilloscope are transferred to

PC (6).

Power side-channel data can be seen as a vector of values proportioning

to the device’s drawn current. These data are recorded by a digital

oscilloscope and so-called “power trace.” For the rest of the thesis, the

concept “power trace” will be used to describe the power side-channel

data.
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Figure 1.5: Test platform: RISC-V power traces acquisition on Sakura-G board.

1.2.3. The data used in thesis

The datasets used in this thesis are divided into unprotected and pro-

tected ones. Based on the wide range of applications and the number of

related publications published in the SCA domain [7, 21–28], the AES-

128 algorithm is selected to perform the power consumption data ac-

quisition. Regarding unprotected AES-128, the side-channel data were

recorded from ChipWhisperer (CW) [29] and Sakura-G board [30], which

are popular platforms in the SCA research community. To investigate

the SCA attacks on protected AES algorithm, the thesis uses the pub-

lic ASCAD [12] and CHES2018-CTF [31] datasets. Simultaneously, two

other simulated datasets are created to investigate different SCA coun-

termeasures.

Unprotected dataset

-RISC-V MCU on Sakura-G: An experimental system is set up to col-

lect power traces automatically as described in Section 1.2.2. As depicted

in Fig.1.5, the experimental system consists of a Keysight DSOX6004A

oscilloscope, a monitoring PC, and a Sakura-G FPGA board, in which

Sakura-G FPGA board is the test platform. It is worth noting that the
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target device is a 32-bit Murax RISC-V MCU operating at 48 MHz. This

MCU is implemented on the Sakura-G board and then programmed an

AES-128 software in C language. For all encryption processes, the secret

key is fixed, and the plaintexts are chosen randomly. To record power

consumption of the target, one probe of the DSOX6004A oscilloscope

is applied to acquire the analog signal from the core VDD node of the

Spartan-6 chip at 125 MSa/s sample rate. The second one detects the

trigger signal provided by the RISC-V target through pin GPIO2. A

monitoring PC remotely controls the oscilloscope through Python soft-

ware and a VISA COM library. The power traces and ciphertexts cor-

responding to the plaintexts are saved to NumPy files for later analysis.

As a result, 10,000 power traces of the Sakura-G board are collected.

Each power trace contains 9,919 samples.

- ChipWhisperer board: Similar to the RISC-V target, we set up an

automatic system using CW to acquire power traces. CW is an all-in-one

platform, including a 10-bit 105MSa/s ADC chip, a Spartan-6 FPGA for

controlling, and an Atmel Xmega chip that serves as the target device.

CW is controlled by a personal computer using Python software, which

repeatedly sends the plaintexts to the CW board and receives the side-

channel data along with corresponding ciphertexts via the USB port. All

capturing processes are automatically done by Spartan-6 FPGA and an

ADC chip. Accordingly, 10,000 power traces have been collected from

the CW board. Each power trace contains 10,000 samples, which record

the power consumption of approximately two first rounds of the AES-128

algorithm as depicted in Fig. 1.6.
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Figure 1.6: An example of CW power trace divided into different parts corresponding
to different functions of AES-128 encryption.

Protected dataset

- Noise generation countermeasure: To simulate noise generation coun-

termeasure in this case study, different levels of Gaussian noise were

added to each sample of unprotected power traces (CW or Sakura-G) as

follows:

tnoise (i,m) = t(i,m) + σ × randn (1,m) + mean (1.4)

where randn returns a vector of numbers drawn from the standard nor-

mal distribution, σ and mean are the standard deviation and mean value

of Gaussian noise (mean= 0), respectively.

The values of σ depend on the standard deviation of all samples (σpt)

in a set of power traces. Regarding RISC-V data, the σpt is in range

[0.001;0.08]. Therefore, the range of σ [0.004;0.01] is chosen. Similarly,

different ranges of σ are selected for other data as shown in Table 1.1.

It is noted that the selected values are also determined based on the

results of the actual attacks. It means that the typical methods, such

as CPA and DDLA, can not attack the noisy data successfully, or the

performance of these attacks (e.g., success rate) decreases significantly.



20

Table 1.1: The values of standard deviation of Gaussian noise (σ) added on different
data.

Data
σpt

[min,max]

σ

[min,max]
Step

RISC-V [0.001,0.08] [0.004,0.01] 0.002

ASCAD [0.5,6.4] [0.5,1.5] 0.5

CW [0.003,0.06] [0.025,0.075] 0.025

- De-synchronized countermeasure: Regarding the de-synchronized

power traces countermeasure, these protected data can be achieved by

using the random delay technique on software AES implementation,

as illustrated [32]. To simulate this countermeasure, each power trace

recorded from CW or Sakura-G is shifted randomly to a constant value

as described in Algorithm 1.

Algorithm 1 Creating de-synchronized power traces

Input: N power traces T, shift value = ψ, number of samples = β
Output: Shifted power traces: Tshifted

1: for i ∈ 1 : N do
2: sh= randi([1:ψ])
3: Tshift = T(i, sh: sh+β);
4: Tshifted(i,:) = Tshift;
5: sh= 0;
6: end for
7:

- Boolean masking countermeasure:

ASCAD (ANSSI SCA Database): This is a set of databases that aims

at providing a benchmarking reference for the SCA community: the pur-

pose is to have something similar to the MNIST database that the Ma-

chine Learning community has been using for quite a while now to eval-

uate the classification algorithm’s performance. This dataset provides

electromagnetic radiation data of an 8-bit ATMega8515 board with the

first-order protected software AES implementation. This thesis uses the

first version of the ASCAD dataset, which is captured at a sampling rate
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of 2GSa/s. The length of these power traces is 100,000 samples. This

dataset consists of two sets of traces: a profiling set of 50,000 traces to

train DL networks and an attack set of 10,000 traces to test the efficiency

of the trained models in a profiled context. It is worth noting that 700

samples corresponding to the output of the 3rd S-box processing during

the first round are taken to construct the ASCAD.h5 file. Additional

bytes can be generated automatically using the provided Python script.

The data and scripts are available on the ASCAD GitHub repository1.

CHES-CTF 2018: This dataset refers to the CHES Capture-the-flag

(CTF) AES-128 trace set, released in 2018 for the conference on Crypto-

graphic Hardware and Embedded Systems (CHES). This database con-

tains 45,000 power traces that record the masked AES-128 encryption

on a 32-bit STM microcontroller. This thesis considers a pre-processed

version of the dataset, which includes a fixed key for all power traces,

and each trace consists of 2200 samples. The pre-processed dataset is

available at http://aisylabdatasets.ewi.tudelft.nl/.

1.3. Non-profiled SCA methods

1.3.1. Attack strategy

There exists a general attack strategy that is applied for all non-

profiled attacks. Most of them follow the “divide-and-conquer” strategy.

It independently recovers the individual chunks of the secret key. This

is possible because small chunks of the secret key would be processed

independently at some point in a cryptographic algorithm (AES, DES,

etc.). The goal of non-profiled attacks is to reveal the secret key of the

secure device based on a large number of power traces that have been
1https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA AES v1
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recorded while the devices encrypt or decrypt different data blocks. It

can be described as following steps:

Step 1: Selecting an intermediate results of cryptographic algorithm.

Intermediate results of the cryptographic algorithm are the results of

the function f (d, k), where it depends on both known non-constant data

d and a chunk (a byte) of the secret key k. In most attack scenarios, d

is ether the plaintext of the ciphertext.

Step 2: Measuring power consumption.

Let us assumes that the target device processes N consecutive func-

tions f di
n while simulated with random input data di. During each run,

while the functions are processed, the power consumption ti is recorded,

and the corresponding output is gotten back. The processing in the

device can be represented by the matrixes

F =

f d1
1 f d1

2 . . . fn . . . f d1
N

f d2
1 f d2

2 . . . . . . f d2
N

f d3
1 f d3

2 . . . . . . f d3
N

f d4
1 f d4

2 . . . . . . f d4
N

...
... . . .

...
...

f dD
1 f dD

2 . . . . . . f dD
N





; (1.5)

T =

t1,1 t1,2 . . . tn . . . t1,S

t2,1 t2,2 . . . . . . t2,S

...
... . . . . . .

...

ti
...

... . . . . . .
...

tD,1 tD,2 . . . . . . tD,S




. (1.6)

Each column vector fn of F executes the same functions. The matrix
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T contains the corresponding recorded trace ti with respect to the D

runs. Each trace consists of S > N samples, such that each function fn

is described by at least one sample.

Step 3: Calculating hypothetical intermediate value.

Hypothetical intermediate values are the intermediate values that are

calculated for every possible choice of k. These possible choices are

denoted by vector k = (k1, . . . , kK), where K denotes the total number of

possible choices for k. Given the data vector d and the key hypotheses k,

an attacker can easily calculate hypothetical intermediate values f (d, k)

for all D encryption runs and for all K key hypotheses. This calculation

(1.7) results in a matrix V of size D ×K.

V = vi,j = f (di, kj) i = 1, . . . , D j = 1, . . . , K (1.7)

Step 4: Calculating hypothetical power consumption value.

Hypothetical power consumption hi,j are the values, which are calcu-

lated by a predict function fprd(.) with respect to hypothetical interme-

diate value as follows:

hi,j = fprd (vi,j) (1.8)

The quality of predict function strongly depends on the attacker’s knowl-

edge of the analyzed device. The better the attacker’s prediction function

matches the device’s actual power consumption characteristic, the more

effective the attack becomes. The prediction function is also known as

the power consumption model, which is discussed in the next part.

Step 5: Determining the correct key.

Regardless of whether the attacks are statistic or DL based, the goal

of non-profiled attacks can be achieved by comparing the hypotheti-

cal power consumption values of each key hypothesis with the recorded
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traces at every position.

In the case of CPA, for example, the values of correlation ρk will be

used to determine the correct key kcr. The attacks rest on the following

fact: if the power traces and fprd(.) are well-chosen, then V is highly

correlated to power traces, and thus the coefficient ρkcr corresponding to

the correct key guess must be greater than every coefficient ρkj where

kj ̸= kcr. Especially, the coefficient ρkcr achieves the highest value at

the sample tct. This sample contains the power consumption values that

depend on the intermediate values vck.

In the case of DLSCA, the model tries to approximate a function

Net(ti, hi,j), which is used to predict the value of hi,j in correspondence

with key hypothesis kj from unseen power traces ti. Then the training

metrics such as accuracy or loss are used instead of ρk.

Attack point selection

To reveal the correct key from a set of key hypotheses, one usually

assumes a very low correlation between correct and incorrect guesses.

This assumption which depends on the structure of f is fairly realistic if

f is highly non-linear [33]. The Sbox function of block cipher based on

substitution–permutation network is an example. A one-bit difference

at an Sbox input leads to a difference of several bits at the output. Con-

sequently, even if a key hypothesis is only wrong in one bit, the output

of the Sbox is different in several bits. When attacking the output of the

Sbox, the correlation for all wrong key guesses is therefore significantly

smaller then the correlation for the correct one [20]. In contrast, for the

linear part correlated with the plaintext, the linear operations tend to

give a poor separation between correct and incorrect keys. As a result,
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it tends to be giving the “ghost peaks” [6]. Various works have demon-

strated the efficiency of non-linear output (e.g Sbox output) on different

algorithms DES [6, 34], AES [6, 7, 26, 34–36], GIFT64, PRESENT or

PICCOLO algorithm [37].

Plaintexts

n-bit Sbox

Sbox Output

DUT

Power trace

measuring Power  traces 

HW, HD, LSB, ID

Hypothetical 

values/ Labels

+ Statistic methods

(DPA, CPA, PPA..) Determining

Correct key

, ,.. 

+ Training metrics 

(accuracy)

n-bit Sbox
2n

Key guesses

(2 )n m

(  samples)m + Deep learning

(DDLA)

Secret key

Figure 1.7: Non-profiled SCA procedure on Sbox output of block cipher

Fig 1.7 illustrates the SCA attacks on Sbox output. It is noted that

the attackers usually chose the first-round Sbox, which is directly related

to the original secret key. For example, the secret key of the first round

of AES algorithm [7,12,26] can be taken by SCA attacks. It is also true

for other block ciphers like SM4 or DES [38]. Based on the efficiency of

Sbox output in SCA attacks, the thesis considers the first round Sbox

output as the main attack position for all proposals. In addition, our

approach is independent of the chosen block cipher algorithm.

1.3.2. Power consumption models

In reality, most embedded devices set the bus lines to a ‘precharge’

state which is halfway between a high and a low state before setting the

bus lines to the final state. Thus, on every clock cycle, we can measure

the current flow in the VCC line, and the value of this current would

be expected to be linearly related to the number of lines going from the

precharge state to the high state: the higher the current peak, the more

lines switched high [39]. In other words, the instantaneous power usage
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is highly dependent on the processed intermediate data.
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Figure 1.8: Example of power consumption trace of a pre-charged bus

In the non-profiled SCA context, the most important thing determin-

ing the success of an attack is power consumption models. This is due to

the fact that attackers usually have only very limited knowledge about

the implementation of the target device [18]. Therefore, it is often nec-

essary to use a power model to simulate the power consumption related

to processed data. This part briefly introduces some generic power con-

sumption models, which are commonly used for power analysis attacks.

- Hamming distance: Hamming Distance (HD) model is usually

used to map the transitions that occur at the output of cells of a netlist

to power consumption values. Therefore, the HD model is appropriate

to describe the power consumption of buses and registers on hardware

implementation. However, the attacker must determine the consecutive

data values v0 and v1 that are processed by these components of a circuit.

The power measurement that is recorded from the process of changing

the bus or register value is proportional to the number of bit transitions,

which is calculated as follows:

HD (v0, v1) = HW (v0 ⊕ v1) (1.9)

where HW denotes Hamming Weight (HW) of a value, which corre-
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sponds to the number of bits that are set to one. It is worth noting that

if the attacker has no information about the netlist at all or the consec-

utive data values for some known part of the netlist, the HD model can

not be applied [18]. In this case, another power model based on HW is

selected.

- Hamming weight: The HW model is simpler than the HD model

and is used in the case that only one data value transferred over a bus is

known. The attacker assumes that power consumption is proportional

to the number of bits that are set in the processed data value [18, 39].

As illustrated in Fig. 1.8, the HW model is useful if a pre-charged bus

is used. It means that the HW model is particularly well applicable to

software implementations and can be calculated as below:

hi,j = HW (f (di, kj)) (1.10)

For example, the HW model of ASCAD data on the third Sbox can

be expressed as follows:

hp3i ,k
= HW

(
Sbox

[
p3i ⊕ k3

])
(1.11)

where p3i and k3 are the third byte of plaintext number i and the key,

respectively. Similarly, the HW model of RISC-V or CW data can be

calculated straightforwardly.

- Least significant bit/Most significant bit: The power mod-

els presented above are commonly used in traditional statistical SCA

techniques. In DLSCA attacks, power models are usually used to la-

bel the training data. The Least Significant Bit/Most Significant Bit

(LSB/MSB) is a popular model used in the non-profiled DLSCA [7, 21,

40]. By taking LSB/MSB as a power model, we can calculate the label



28

Lj,i of each power trace according to the following formula:

Li,j = LSB/MSB(f (di, kj)). (1.12)

- Indentity: The last model is also the simplest model. Identity ex-

ploits directly the output values of intermediate calculus g for simulating

the power consumption, as shown in Eqs. (1.13). This power model is

commonly used in profiled attacks [12,41,42].

Li,j = f (di, kj) (1.13)

1.3.3. Attack methods

This part describes the most common non-profiled SCA techniques,

such as DPA, PPA, CPA, and DDLA.

Differential power analysis (DPA)

Differential power analysis (DPA) was introduced by Kocher et al. [2].

This analysis is based on the fact that the power consumption to manip-

ulate one bit to 1 is different from the power consumption to manipulate

it to 0. To test different key hypothesis kj, DPA use D plaintexts (or

cipher text) di and a boolean function F (di, b, kj). This boolean func-

tion computes the value of an examined bit b. For example, a bit of

Sbox output hi,j = LSB(Sbox(di ⊕ kj)). DPA computes a differential

trace ∆F (b) as the difference between the average of the traces for which

F (di, b, kj) is 1 and the average of the traces for which F (di, b, kj) is 0.

According to [2], ∆F (b) is calculated as follows:

∆F (b) =

∑D
i=1 F (di, b, kj) ti∑D
i=1 F (di, b, kj)

−
∑D

i=1 (1− F (di, b, kj)) ti∑D
i=1 (1− F (di, b, kj))

(1.14)

If the bits calculated during the cryptographic algorithm are statis-

tically uniformly distributed and if the number of power traces is suffi-
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cient, ∆F (b) tends to become 0 for the wrong hypothesis key, whereas

∆F (b) ̸= 0 for the correct key kcr. Especially at the instant tct where the

bit b is handled, this is the DPA peak.

Partitioning power analysis (PPA)

In the previous attack, only one bit was used to estimate the power

consumption. To enhance the original DPA, some authors have intro-

duced m-bit DPA attacks which mean that m bits are used instead of

only one-bit [43–45]. In order to generalize the multi-bit DPA meth-

ods, Thanh-Ha Le et al. have proposed the Partitioning Power Analysis

(PPA) method based on the Hamming distance [34].

They consider m-bit set β = b1b2 . . . bm and divide D power traces ti

into (m + 1) partitions (classes) G0, G1, . . . , Gm.

Gc = {ti;i=1...D|HD (di, β, kj) = c} (1.15)

where HD (di, β, kj) denotes the Hamming distance between a previous

state and the actual state of β, corresponding to the plaintext di and the

hypothesis key kj. The decision signal of PPA is given as follows:∑
H

(β) =
m∑
j=0

γc

∑
Gc
ti

Nc

(1.16)

where γc denotes the chosen weights, Nc denotes the cardinality of each

class Gc.

Correlation Power Analysis (CPA)

Correlation power analysis (CPA) was proposed by Brier et al. in [6],

and can be considered a special form of the PPA attack [34]. CPA

exploits the correlation between the real power consumption and the

power consumption model Hamming weight [46,47] or Hamming distance

[6] of manipulated data.
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a) b)

Figure 1.9: Attack results of CPA and online CPA.

In the CPA attack, the Pearson correlation coefficient is the com-

mon measure to determine the linear relationship between two variables.

The definition of the Pearson correlation coefficient r is shown in equa-

tion (1.17). r estimates the correlation ρ between two variables based on

D power traces. hj and ts are the average values of the power consump-

tion model and real power consumption at the instant ts (1 ≤ s ≤ S),

respectively.

rj,s =

∑D
i=1 (hi,j − h̄j)(ti,s − t̄s)√∑D

j=1 (hi,j − h̄j)
2 ∑D

j=1 (ti,s − t̄s)2
(1.17)

The Pearson correlation between the power consumption model and

the real power consumption is calculated for every value of k and ts. It

results in the matrix R = r1...K,1...S of correlation coefficients. There is

an alternative form of the correlation equation for online calculations,

and it allows us to add one trace per time without re-summing all of the

past data. This form is presented in (1.18).

rj,s =
D

∑D
i=1 hi,jti,s −

∑D
i=1 hi,j

∑D
i=1 ti,s√((∑D

i=1 hi,j

)2

−D
∑D

i=1 h
2
i,j

)((∑D
i=1 ti,s

)2

−D
∑D

i=1 t
2
i,s

)
(1.18)
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Fig. 1.9 illustrates the attack results using the conventional CPA and

the online calculation CPA. In addition to performing attacks without re-

summing all of the past data, online CPA allows the attacker determines

the minimum power traces needed for a successful attack, as depicted

in Fig. 1.9.b. In contrast, conventional CPA estimates the correlation of

all samples over a given set of power traces. As illustrated in Fig. 1.9.a,

the correlation values of approximately 10,000 samples were calculated

over 200 power traces. As expected, a clear peak was detected between

the correlation of correct and incorrect keys. It is noted that the peak

value has exactly the same value as that of online CPA at 200th sample

(peak value: 0.431).

Deep learning based non-profiled SCA

a) Deep learning

The main objective of deep learning is to classify some data x ∈ RS

based on their labels z (x) ∈ Z, where S is the dimension of the data

to classify, and Z is the set of classification labels. The goal of DL is to

produce a function Net : RS → R|Z| which takes as input data to classify

x ∈ RS, and outputs a score vector y = Net(x) ∈ R|Z|. In other words,

the final results are the score vector y based on Net(x) and updating the

trainable parameters θ. Typically, prior to performing DL, the values of

trainable parameters θ are randomly chosen from a normal distribution,

like the Xavier scheme. Two main operations, forward and backward

propagation, are performed to obtain the expected results.

Forward propagation : Each neuron in hidden and output layers
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takes as input a vector x and outputs a weighted sum as formula (1.19).

Wsum = b +
S∑
i=1

wixi (1.19)

where wi are called the weights and b the bias of a neuron, the calculated

weighted sum Wsum is then passed to the activation function, which adds

non-linearity to the network. There are some commonly used and pop-

ular activation functions such as Sigmoid, Hyperbolic tangent (Tanh),

ReLU, ELU, and Softmax. To this end, the trainable parameters θ have

not been updated yet. Therefore, the achieved results might not be

optimum.

Backward propagation : This is the core of DL because each weight

can be updated to obtain the expected results. First, an error function

E : RS → R such as the Euclidean distance 2 between the output of the

network DL(x) and the expected output Z:

E(x) =

 |Z|∑
i=1

(Z(x)[i]−DL(x)[i])
2


1
2

(1.20)

The error function computes the gap between the network output and

the expected results. To quantify the error of the network over a whole

set of training data X = (xi)1⩽i⩽D, a loss function is defined as follows:

LX =
1

D

D∑
i=1

E (xi) (1.21)

This lost function can be seen as a function LX(θ), which depends on

the trainable parameters θ. For successful training, deep learning needs

to find the optimal minimizing of the loss function LX , and the value

calculated by this function is referred to as simply “loss.” In DL, the
2The error and loss functions presented here are given only as examples. There exist actually many different error/loss

functions which can be used in Deep Learning.
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preferred method is the Gradient Descent technique. DL model will do

a series of iterations, and in each iteration, the gradient of loss function

∇LX (θ) is computed. After that, θ is updated by using the following

formula:

θ(t+1) = θ(t) − η∇LX

(
θ(t)

)
(1.22)

where η is called the learning rate. This parameter control how quickly

the model is adapted to the problem and has a small positive value, often

in the range between 0 and 1.

When all the training samples have been used, they are shuffled, and

the process, including forward propagation and backward propagation,

is repeated. Each iteration over all sets of training data is called an

epoch. Many epochs will be run until the loss converges and reaches its

minimum. On each epoch, the number of correctly predicted will be used

to calculate another important metric called “accuracy” as follows [48]:

accuracy =
C

A
(1.23)

where C denotes the number of samples predicted correctly, and A is the

number of total predicted samples.

b) Differential deep learning analysis (DDLA)

To apply DL in a non-profiled context, the main idea is similar to the

PPA method. The authors in [7] introduced a new non-profiled SCA

attack based on deep learning called differential deep learning analysis

(DDLA). Accordingly, the attackers divide the given traces into differ-

ent partitions corresponding to the value of partition function h. For

example, h can be defined as the Hamming Weight (HW) of the target

function Sbox(di ⊕ kj). Then, for each guess key kj ∈ k, the attacker
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computes a series of hypothesis intermediate values and groups the traces

corresponding to the values hi,j = HW (Sbox(di ⊕ kj)). This step is sim-

ilar to labeling the data (power trace) in deep learning. Finally, attacker

performs a DL training using the traces (ti)1⩽i⩽D as training data, and

the series (hi,j)1⩽i⩽D as the corresponding classification labels.

Algorithm 2 Differential Deep Learning Analysis (DDLA) [7]

Input: D traces (ti)1≤i≤D, corresponding plaintexts (di)1≤i≤D, andK key hypotheses. A network
Net and number of epochs ne

Output: kcr ∈ k

1: Set training data as X = (ti)1≤i≤D.
2: for kj ∈ k do
3: Re-initialize trainable parameters of Net
4: Compute the series of hypothetical values (hi,j)1≤i≤D

5: Set training labels as Yi = (hi,j)1≤i≤D

6: Perform Deep Learning training: DL (Net,X, Yi, ne)
7: end for
8: return key kcr which leads to the best DL training metrics

Unlike profiled DLSCA, DDLA detects the correct key by evaluating

the consistency of the partitioned power traces using different hypothesis

keys. Algorithm 2 summarizes the DDLA procedure to perform a non-

profiled attack using deep learning. When the correct hypothesis key

kcr ∈ k is used, the series of intermediate results (labels) Ycr = (hi,cr)1≤i≤D

will be correctly computed (assigned).

Figure 1.10: An example of attack results using DDLA algorithm.

Consequently, the training metrics (loss, accuracy) achieved by the
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DL-based model trained on the dataset that is constructed from the

correct key will be high because the input data are correlated to the

labels. In the case of incorrect guess keys, the labels used for the training

will be incompatible with the input data. Fig. 1.10 provides an intuitive

example of attack results using DDLA. Accordingly, the training metrics

of the model training on datasets that are created by the incorrect key

will be low and chaotic (blue curve in the graph), whereas the accuracy

of the model training on datasets reconstructed from the correct key (red

curve) is high and stable.

1.3.4. Side-channel attack metrics

Number of traces

SCA starts from the physical observables of a device. Therefore the

number of measurements is the most common metric to evaluate side-

channel security. Several certification bodies and governmental agencies

have integrated this metric into their guidelines, for instance, the current

ISO/IEC 17825:2016. In addition, various proposals of SCA attack use

this metric to quantify their efficiency [12, 49–52]. In this thesis, the

number of traces is considered the main metrics to illustrate the data

complexity of the proposals.

Number of epochs

In machine learning, an epoch means one complete pass of the entire

training dataset through the algorithm. Therefore, with the same size as

the training dataset, the number of epochs can be used to evaluate the

efficiency of DL-based SCA in terms of computation time. However, it

is only useful in the case of the early stopping technique being applied.

This is a regularization technique for deep neural networks that stops
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training when parameter updates no longer begin to yield improvements

on a validation set [53,54]. In this case, translating the number of epochs

into the side-channel field results in the metric of time complexity.

Success rate

The success rate metric requires the correct key to be known and is

computed in the following way [55]. Let vector [guess1, guess2, . . . , guessk]

denote the output of an SCA attack, and let us assume that the correct

key is equal to kc. The success rate of the SCA experiment number i

(i.e., SRi) is equal to 1 if the best guess is equal to the correct key, that

is if guess1= kc. Otherwise, the success rate is equal to 0, as described

in the following formula.

SRi =

 1, if (kcr = guess1)

0, otherwise
(1.24)

SR =
1

p

p∑
i=1

SRi (1.25)

To ensure statistical stability, it is common practice to repeat the SRi

computation using multiple experiments and various keys. The final

success rate metric (SR) is estimated with formula 1.25.

Partial Guessing Entropy

Similar to SR, a key guessing vector [g1, g2, . . . , gk] in decreasing order

of probability is the output of an attack, where g1 denotes the most

likely and gk the least likely key candidate. Guessing Entropy (GE) is a

popular SCA metrics in the SCA research community [56,57]. However,

the partial guessing entropy (PGE) is prefer in some case. The “partial”

refers to the fact that we are finding the guessing entropy on each subkey.

This gives us a PGE for each of the 16 subkeys. A PGE of 0 indicates
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the subkey is perfectly known, a PGE of 10 indicates that 10 guesses

were “incorrectly” ranked higher than the correct guess. To improve

consistency the PGE for each subkey is averaged over several attacks

(trials) [58].

Attack time

Apart from the number of traces and success rate, the attack time is an

important metric in SCA evaluation. This metric is widely used in many

works to quantity the efficiency of SCA attacks [7, 40, 59]. The attack

time is considered as the execution time from starting analysis/train

(i.e., CPA/DDLA) of the data to the time when the secret key is taken

successfully. In this thesis, the attack time is used as the primary metric

to evaluate the efficiency of SCA evaluation.

1.4. SCA for hardware security

1.4.1. Developing appropriate countermeasures

To develop a defense technique, an attack method must be known in

detail. Therefore, research on SCA methods is crucial for developing

SCA countermeasures. Numerous countermeasures have been developed

and applied to counteract the power analysis attacks. The goal of these

countermeasures is to eliminate the dependency on the intermediate val-

ues and the power consumption of a cryptographic device. They are

categorized into two main groups: masking countermeasures and hiding

countermeasures. This current subsection presents general knowledge

about these countermeasures and discusses how they work.
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Masking

Masking countermeasures can defend power analysis by randomizing

the intermediate values v that are processed by the cryptographic device.

The randomizing of v can be achieved by concealing it with a random

value m called a mask, which the attacker does not know. In practice,

several masks can be used to conceal v. Therefore, masking can be called

secret sharing with d shared and presented as follows:

v = m1 ∗m2 . . . ∗md (1.26)

the operation ∗ is typically defined according to the operations that are

used in the cryptographic algorithm (e.g. the exclusive or for the most

popular Boolean masking already proposed in [60]).

The soundness of the masking countermeasure is implied by the fact

that the complexity of recovering a secret key by power analysis on v

shared into several pieces grows exponentially with the number of d

shares [61]. From the implementation point of view, the primary advan-

tage of masking countermeasures is that the device’s power consumption

characteristics do not need to be altered. In addition, masking counter-

measures can be deployed easily at the software level of cryptographic

systems.

Despite having many advantages, the drawback of masking counter-

measures is that they require modifications to cryptographic algorithms.

This requirement causes an increment in the computational complexity

of the cryptographic algorithm, decreases the performance, and enlarges

the resource usage of the algorithm’s implementation on a secret device.
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Hiding

Apart from masking techniques, another well-known group of coun-

termeasures is hiding countermeasures. The main purpose of the hiding

method is to break or at least reduce the dependencies of processed in-

termediate values and the real power consumption. To achieve these

requirements, two approaches are commonly used, as described below:

The first is to randomize the power consumption of the target de-

vice on each clock cycle by performing the operations of the executed

cryptographic algorithm at different moments of time during each exe-

cution. These methods consequently only affect the time dimension of

the power traces. This can be done by randomly inserting dummy op-

erations [62,63], clock randomization [64], shuffling [65] or other [66–69]

The second is to make the power consumption consumes an equal

amount of power for all operations and all processed data values. There-

fore, this approach affects the amplitude dimension of the power con-

sumption [70–73].

Different from masking countermeasures, hiding techniques do not

modify the cryptographic algorithm and are free of unexpected math-

ematical vulnerabilities. The drawback of hiding methods is that, in

practice, the data dependency cannot be entirely eliminated. Therefore,

applying a hiding countermeasure only increases the amount of power

consumption traces that an attacker must analyze in order to effectively

reveal the secret key. Hiding countermeasures cannot completely prevent

power analysis attacks.



40

Testing for side-channel vulnerabilities 

Conformance-based Attack-based

Test Vector 

Leakage Assessment 

(TVLA) Statistic based 

attacks

Deep learning 

based attacks

Profiled attacks Non-profiled attacks

Deep learning 

based attacks
(Template attacks) (DDLA)(CNN, MLP, ...) (DPA, CPA, ...)

Statistic based 

attacks

This work

Figure 1.11: Classification of side-channel security evaluation

1.4.2. Hardware security evaluation

To go against the side-channel threats, the designers must provide

guaranteed security on their designs. The goal of hardware security

evaluation is to evaluate the effectiveness of countermeasures and detect

the potential SCA threat. In this context, efficient validation and eval-

uation methodology for testing side-channel vulnerability has gathered

significant interest in the research community. In particular, there exist

today two popular security certification programs “conformance-based”

and “attack-based” testing, as depicted in Fig. 1.11.

Conformance-based evaluation

Conformance-based testing aims to develop cost-effective procedures

to verify minimum properties for secure side-channel implementations.

Examples include the FIPS 140-3 standard [74], and the popular TVLA

methodology [75]. This testing employs a simplified approach for merely

detecting the presence of any leakage, independent of the attack method

and leakage models. Therefore, the conformance-based testing mecha-

nism can only detect the presence of side-channel vulnerability. As men-

tioned above, SCA countermeasures cannot completely prevent power

analysis attacks. Therefore, it is important to know more than the an-

swer “yes or no” of the presence of SCA leakage. In other words, the
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side-channel vulnerabilities need to be quantified in more detail, such as

the data complexity, the right leakage model, or the attack time.

Attack-based evaluation

Unlike conformance-based evaluation, attack-based testing rather aims

at defining a common framework for evaluating implementations by an-

alyzing different attack strategies. Obviously, the efficiency of the SCA

evaluation process depends on the computational complexity of SCA

attacks corresponding to applied SCA countermeasures. This testing

needs a significant effort required to keep track of all existing SCA at-

tacks. However, the advantage of this methodology is that it can quantify

side-channel susceptibility while also finding applications in comparing

the vulnerability of two designs.

1.4.3. The related works and research directions

From the analysis above, research on SCA techniques is crucial for

hardware security. Especially in the case of side-channel security evalu-

ation. Various works have been published in the SCA domain to intro-

duce efficient SCA techniques, which can be applied for SCA evaluation

as well as propose potential countermeasures. This part provides a re-

view of the related works and indicates the potential research directions

with respect to two main groups: statistic-based attacks and DL-based

attacks.

Statistic-based attacks

In terms of the statistic-based non-profiled SCA techniques, DPA and

CPA are the common attacks used in SCA evaluation. They have demon-

strated the efficiency in attacking both unprotected and protected de-
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vices. Especially, the CPA technique has been used to break differ-

ent block ciphers such as DES, AES [34], PRESENT, PICCOLO, and

GIFT [37]. In addition, it is also the most commonly used technique to

clarify the efficiency of SCA countermeasures [52, 62, 76–78]. Therefore,

improving the efficiency of CPA has received significant interest in recent

years.

Kim et al. [35] proposed a method to extract a small set of traces

with a high signal-to-noise ratio (SNR) distributed in both tails of the

distribution range. This method aims to enlarge the variance of the

exploitable consumption component in the power trace. Similarly, an

empirical method uses the adaptive chosen-plaintext CPA attacks (ACP-

CPA) [36]. The authors tried to resolve the drawback of discarding too

many traces in the extractor proposed by Yongade et al. [35]. However,

this technique requires many requests to choose adaptive plaintexts for

all bytes. Hence, it makes SCA security testing a time-consuming pro-

cess.

Recently, an improvement in the power traces extractor presented by

Ou et al. [51] called Maximizing Estimated SNR First (MESF). Unlike

the proposed in [35], the novelty of this work is that this technique ex-

tracts the subset of power traces with the smallest estimated noise and

maximizes the variance of the data-dependent power consumption. Con-

sequently, by using the high SNR samples, the computation complexity

of the attacks can be reduced instead of increasing the success rate (SR).

However, Ou’s techniques are based on the mean power consumption of

plaintext byte values. This constraint limits these techniques to scenar-

ios where the attacker has a large number of traces to estimate the mean

values. Hence, it leads to the high computational cost of performing an
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attack with a large number of power traces.

In summary, the power trace extractor is an efficient pre-processing

technique that improves correlation in power analysis attacks. However,

in terms of computational complexity, it is not an optimal way since

the correlation coefficient needs to be calculated on all samples of power

trace. Based on this drawback, a new SCA technique was proposed in

this thesis, which automatically selects a small subset of useful sample

points (Point of Interest: POI) together with key recovery. This proposal

will be described in Chapter 2.

DL-based attacks

As presented previously, statistic-based attacks have been performed

successfully on both unprotected and protected devices. However, in the

case of SCA countermeasures added, a dedicated pre-processing tech-

nique is required for each specific attack. It leads to an increment cost

and time-consuming process of SCA evaluation. Fortunately, by apply-

ing DL techniques in the SCA domain, pre-processing techniques are no

longer required. However, DL techniques are usually considered an al-

ternative to profiling attacks. Research on DL-based non-profiled SCA

is still quite a new field.

Indeed, Timon introduced the first DL-based attacks, namely Dif-

ferent Deep Learning Analysis (DDLA), in a non-profiled scenario in

TCHES 2019 [7]. The main idea of DDLA is to observe the trend of

training metrics, such as “loss”, and “accuracy,” to discriminate the cor-

rect key from a set of hypothesis keys. Accordingly, to reveal one byte

key, the attacker/evaluator must repeatedly perform the training pro-

cess for each hypothesis key. Following Timon’s approach, some other
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works have been presented to investigate the performance or enhance

the efficiency of DDLA-based attacks. In [21], the author investigated

the performance of DDLA attacks on the datasets by applying different

countermeasures such as masking and correlated noise generation. The

experimental results of their work indicated that a hiding countermea-

sure might provide higher protection against non-profiled DLSCA. Simi-

larly, the authors in [23] reported on the results of DDLA attacks against

AES software implementation protected with two types of masking coun-

termeasures. One is the table re-computation masking countermeasure,

and the other is the Rotating Sboxes Masking (RSM) countermeasure.

Additionally, the authors proposed using regularization in DDLA. They

concluded that using L1/L2 regularization has a significant advantage

on the performance of DDLA compared to results without it.

Overall, the mentioned non-profiled SCA techniques have demon-

strated the efficiency of deep learning in SCA evaluation without ref-

erence devices. In addition, DDLA could break the different protected

schemes without any pre-processing techniques. However, there is no

report on some complex conditions, such as high-dimension data input

or different labeling techniques. Especially in the case of HW labeling,

the imbalanced dataset occurs. These issues will be investigated in chap-

ter 3. A dimensionality reduction and new labeling techniques will be

proposed to deal with these problems.

Most recently, Kwon et al. [40] have indicated a major issue of the

original DDLA and introduced a new approach based on a multi-label

neural network. The main drawback of DDLA is the requirement of

a training process for each key hypothesis. It means that the original

DDLA technique is not optimized in terms of execution time. The au-
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thors have introduced a parallel architecture to mitigate the mentioned

issue. Accordingly, their proposed models can simultaneously predict

a total of 256 hypothesis keys. Kwon’s work can be considered as a

multi-label SCA approach as in [25]. Despite being a very fast attack

technique, the parallel architecture requires high memory usage. They

have also introduced a shared-layer-based model to mitigate the draw-

back of parallel architecture. However, the important SCA metric, such

as the success rate of attacks, has not been investigated, especially in

applying noise injection countermeasures.

An alternative and often more effective approach in the DL domain is

to develop a single neural network model that can learn multiple related

tasks (i.e., outputs) at the same time, called multiple-output learning

(MOL) [79–81]. From the point of view of the SCA domain, MOL is

a promising technique that could increase the performance of the SCA

evaluation process. However, most of the proposed techniques only work

in profiled contexts [25–27]. There is no report of non-profiled DLSCA

using multi-output (multi-loss) architecture. Therefore, this approach

will be investigated in Chapter 4.

In Viet Nam, there are only a few publications on the SCA domain,

and most of them are published by the research teams from the Viet-

nam Academy of Cryptography Techniques, Vietnam National Univer-

sity, Hanoi or Le Quy Don Technical University. In addition, their recent

works focus on profiled attacks.

In [82, 83], the authors proposed a preprocessing method for select-

ing POI based on the combination of variational mode decomposition

(VMD) and Gram-Schmidt orthogonalization (GSO). VMD is used to

decompose the power traces into sub-signals (modes), and POIs selec-
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tion process based on GSO is conducted on these sub-signals. Selected

POIs are then used for the Support Vector Machine (SVM) classifier to

conduct profiled attacks.

In [41], the authors introduced an efficient CNN-based profiled attack.

The novelty of their work is using the swarm-based method called Grey

Wolf Optimizer (GWO) to automatically fine-tune the CNN hyperpa-

rameter.

Apart from proposing new SCA attacks, various works proposed se-

cured designs and used attack-based testing methods to verify the se-

curity of their designs. The authors from Vietnam National University,

Hanoi, performed CPA attacks to evaluate their proposed secure pro-

cessor [77]. Most recently, K.-H Pham et al. have used first-order CPA

attacks to demonstrate the efficiency of the new masking method for

hardware-based AES implementation [78]. These works have shown that

attack-based testing is the popular methodology for hardware security

evaluation.

1.5. Summary

Based on the analysis of different SCA approaches, non-profiled SCA

attacks are considered to be the most suitable and efficient techniques

for evaluating the security level of modern electronic devices, which are

flexible and highly customizable. This chapter presents the background

knowledge of SCA, leakage data, and SCA for hardware security. In

particular, it presents a comprehensive review of recent works on non-

profiled SCA methods as well as outlines some research directions that

promote the contributions of this work. Each issue will be dealt with in

turn in the next chapters of the thesis.
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Chapter 2

LOW COMPLEXITY CORRELATION POWER ANALYSIS
ATTACKS

In scenarios (such as masked implementations [84, 85]) where sensi-

tive data dependencies have been successfully eliminated from individual

leakage points, the leakage information still persists in joint distributions

of multiple points. However, the direct estimation of this information be-

comes exponentially hard as the number of shares in the masking scheme

increases (just as the expected security level). Numerous previous works

which aim to reduce the computation complexity of the CPA technique

or enhance the results of attacks were discussed in the previous chapter.

However, most of the previous works focused on improving first-order

CPA [35, 36, 49], or only increasing the success rate of second-order at-

tacks as in [51].

This chapter introduces improved CPA techniques, which can deal

with either first-order or second-order leakages. The proposed techniques

could be applied to any preprocessed second-order data. In addition, the

proposals outperform non-profiled DLSCA in terms of data complexity

and attack time, especially in the case of performing security testing

on a noise-generation countermeasure. The results of this chapter were

presented in the papers [C1], [J1].
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2.1. The complexity of CPA attacks

In order to enhance the efficiency of CPA, this section presents the

complexity of the CPA attacks on both unprotected and protected de-

vices using masking countermeasure. Then, an important factor that

impacts the complexity of CPA attacks will be indicated. This factor is

the base for the proposals in this chapter.

As discussed in Section 1.3, the power traces correspond to the power

consumption of the device while it executes a cryptographic algorithm

using different data inputs and a fixed key kcr. In addition, the inter-

mediate value is a part of this algorithm. Therefore, the device needs to

calculate the intermediate values vcr using kcr during the different exe-

cutions of the algorithm. Consequently, the recorded traces depend on

these intermediate values at same position. This position of the power

traces, namely correct sample, is denoted as ct (i.e. the column tct of the

matrix T contains the power consumption values that depend on the in-

termediate values vcr). By calculating hypothetical power consumption

hcr based on kcr, the correlation between hcr and tct is the strongest. In

fact, they lead to the highest value in R (i.e. the highest value of the

matrix R is rcr,ct).

It is clear that the number of correlation coefficients of a CPA attack

needs to calculate is the size of matrix R. Therefore, the complexity of

CPA is proportional to K ∗ S. In other words, the complexity of CPA

depends on the length S of the power traces. As depicted in Fig. 2.1,

only one sample (in 10,000 samples) results in the highest correlation

value (rcr,ct) at the correct sample tct. It means that most correlation

calculations on other samples are redundant. This problem becomes
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more severe for second-order attacks. Indeed, the authors in [9] have

shown that the complexity of second-order CPA is the square order in

comparison to a standard CPA attack on an interval with the length of S.
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Accordingly, the length of each power trace will increase from S to S(S−1)

2
.

Therefore, the computations of the second-order CPA is proportional to

S(S−1)

2
∗ K. Fig. 2.2 shows an intuitive example. Second-order attacks

can reveal the secret key from only one correct sample (tct) from more

than 244,000 samples of the processed power traces.

In practice, it is impossible to figure out the correct sample before

mounting the attacks. However, the attacker can point out a group of

samples, namely Points of Interest (POI) [86], which contains the correct

sample tct for SCA attacks (the number of POI is very small compared to

S). It is clear that performing CPA on POI will reduce significantly the

number of computations. Therefore, extracting POI is crucial to speed

up the CPA attack. In the next section, two efficient POI extractors

based on the distribution of sample correlation are introduced.

2.2. Distribution of sampling correlation coefficients in CPA

2.2.1. Leakage characteristics of samples

According to [87], the power consumption of a single sample tτ can be

expressed as the sum of a data-dependent component td (τ), an operation-

dependent component to (τ), switching noise tsw.noise (τ), electronic noise

tel.noise (τ), and the constant component tconst (τ). All components are

independent with each other as shown in (2.1).

t(τ) = to (τ) + td (τ) + tsw.noise (τ) + tel.noise (τ) + tconst (τ) (2.1)

Let texp (τ) denote the exploitable component including the operation-

dependent component to (τ) and data-dependent component td (τ), see

2.2. Let tnoise (τ) denote the noise component consist of the switching
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noise tsw.noise (τ) and the electronic noise tel.noise (τ), as in (2.3).

texp (τ) = td (τ) + to (τ) (2.2)

tnoise(τ) = tsw.noise (τ) + tel.noise (τ) (2.3)

The SNR of the sample tτ is the ratio of the variance of exploitable

power consumption texp (τ) to the variance of noise component tnoise (τ).

Therefore, the formula of SNR can be simplified as:

SNR =
σ2 (texp(τ))

σ2 (tnoise(τ))
(2.4)

The correlation coefficient of a sample is estimated by formula (1.17),

as indicated in Section 1.3.3. Based on SNR, the authors in [87] provided

another correlation calculation method as follows:

ρ (hk, t) =
ρ (hk, texp)√

1 + 1
SNR

(2.5)

For a conventional CPA, the correlation ρ (hk, texp) between the power

consumption model and the data-dependent component is a constant for

a time sample. From equation (2.5), it is clear that the SNR determines

the correlation ρ (hk, t), and ρ (hk, t) approaching a constant when the

number of power traces used in attack is large enough.

2.2.2. Distribution of sampling correlation

According to Equation 1.17, the correlation coefficients are calculated

at every point of power traces for each key hypothesis. In this case, S

different values of r correspond to S points are calculated using n power

traces. Therefore, the distribution of values of r on each point after

repeated samples of n power traces is the sampling distribution [88].

By applying Fisher’s transformation (if n ≥ 30), the correlation co-

efficient ρ can be mapped to a random variable Z that has a normal
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distribution, as in the equation (2.6). The mean of Z is then given by µ

in (2.7) and the variance in (2.8).

R 7→ Z =
1

2
ln

1 + R

1−R
(2.6)

µ = E(Z) =
1

2
· ln 1 + ρ

1− ρ
(2.7)

σ2 = V ar(Z) =
1

n− 3
(2.8)

In SCA security testing, the number of traces needed in a CPA attack

is commonly used to measure the resistance of a design against these

attacks. In order to reveal the correct subkey kc, the number of power

traces needs to be increased in an attack until a significant peak ρmax is

visible in the correlation matrix R. Based on Fisher’s transformation,

the authors in [87] have proposed a method to calculate the lower bound

of the number of power traces only based on the peak correlation. Con-

cretely, they assume that the peak is determined by the distance between

the sampling distribution with ρ = 0 and ρ = ρmax. Apply the formulas

2.6, 2.7 and 2.8, the distribution of two sampling distribution with ρ = 0

and ρ = ρmax can be described as follows:

R0 7→ Z0 = 1
2

ln 1+R0

1−R0

µ0 = E (Z0) = 1
2

ln 1+0
1−0

+ 0
2·(n−1)

σ2 = V ar(Z0) = 1
n−3

R1 7→ Z1 = 1
2

ln 1+R1

1−R1

µ1 = E (Z1) = 1
2

ln 1+ρmax

1−ρmax
+ ρmax

2·(n−1)

σ2 = V ar(Z1) = 1
n−3

(2.9)
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it is noted that the fraction ρmax/(2 · (n− 1)) approaches zero for large

n and the ρmax is small. In order to measure the distance between the

distributions, the authors calculate the probability α that a value drawn

from the distribution with ρ = ρmax (Z1) is bigger than the one that is

drawn from the distribution with ρ = 0 (Z0). According to [87], the

number of traces n that is necessary to assert with a confidence of α

that the two normal distributions Z0 and Z1 are different is given by:

n = 3 + 8 · z2α(
ln 1+ρmax

1−ρmax
− ln 1+ρ0

1−ρ0

)2 (2.10)

where zα is the quantile of the probability α. Since ρ0 = 0, then the

equation 2.10 becomes to:

n = 3 + 8

 zα

ln
(

1+ρmax

1−ρmax

)
2

(2.11)

In [20], the authors perform further analysis and provide several com-

prehensive examples of CPA attacks. Especially, the authors elaborate

on issues like the simulation of CPA attacks and the calculation of the

number of power traces that are needed to perform CPA attacks success-

fully. Table 6.1 in [20] provides the results to illustrate the relationship

between ρmax and the calculated number of traces according to (2.11).

Especially, the authors indicate that since σ = 1
/√

n− 3 ≈ 1/
√
n with

the large enough value of n, the estimators for all correlation coefficients

before and after the attacked intermediate results is processed are essen-

tially located in the interval ±4σ = 4/
√
n. Moreover, the authors also

indicated the relationship between n and ρcr,ct as follows:
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n ≈ 28

ρ2cr,ct
. (2.12)

where ρcr,ct denotes the correlation value that is calculated by formula

1.17 at position tct of power traces and the intermediate value hcr using

the correct key kcr. In this case, ρcr,ct equals to ρmax. The purpose of the

proposals in this chapter is not to find the lower bound of the number

of power traces. Assuming the n is already sufficient and used in total

to implement the CPA efficiently. The proposed techniques for reducing

the complexity of CPA attacks on n power traces will be discussed in

the next section.

2.3. Partial correlation power analysis (P-CPA)

As mentioned in the previous section, all values of the matrix R are

drawn from one of two sampling distributions. By using Fisher’s trans-

formation, we assume that all values of the matrix R → Z will be

drawn from two normal distributions N1 (0, σn) and N2 (µρmax, σn), where

σn = 1√
n

as illustrated in Fig. 2.3. From the equation (2.8), it is clear

that an attacker can decrease the overlap between these two normal

distributions by increasing the number of traces.

As explained in [20], the recorded traces are quite long compared to

the interval during which the attacked intermediate results are processed.

Usually, many operations are executed during the recording and are

completely independent of the attacked intermediate values. Therefore,

most correlation values ρk ̸=cr,s̸=tc are usually zero in practice. Indeed, it

can assume that all values of ρ, except ρcr,tc, will be distributed in the

form of N1(0, σn), and values of ρcr,tc will be distributed in the form of

N2 (µρmax, σn). Hence, there are some observations as follows.
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traces: a) n and n/2; b) n and n/3.

Firstly, if the number of traces reduces from n to n/2 and n/3, the

standard deviation of the normal distribution N1(0, σn) will be changed

from σn to σn/2, σn/3, respectively. The shape of distribution N1(0, σn)

will be changed to N3(0, σn/2), N5(0, σn/3), respectively, as illustrated in

Fig. 2.3.

Secondly, from the equation (2.5), the correlation ρcr,tc will be a stable

value when the number of traces is large enough. In this case, assuming
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that the ρcr,tc will distribute around and near the mean µρmax = 1
2

ln 1+ρmax

1−ρmax

and then keeps consistent. Therefore, the value of mean µρmax will be used

to determine the interval of POI.

Thirdly, if n is replaced by n/2, the correlation coefficients are located

in new range 4σn/2 = 4
√
2√
n

. In addition, from Eqs. (2.12), we have ρmax ≈
√
28√
n

. Therefore, it is easy to obtain:

4σn/2 > ρmax (2.13)

In this context, ρmax is small (ρmax < 0.2), therefore µρmax ≈ ρmax. It

means that the right tail of distribution N3(0, σn/2) is larger than µρmax.

This larger interval (LI) can be calculated as LI = 4σρ0−µρmax, where σρ0

denotes standard deviation of zero mean normal distribution in Fig. 2.3.

The same calculations can be done for n/3. As a result, if LI containing

the samples which have the highest correlation are taken, the correct

samples ttc can be detected. In other words, the POI can be taken based

on the right tail of N3(0, σn/2), N5(0, σn/3).

Let’s consider an intuitive example of an 8-bit Sbox output of a popu-

lar block cipher to illustrate the observations about the correlation. It is

noted that with the non-linear property, Sbox function of AES-128 can

be selected but not limited to other versions like AES-256 as well as other

block ciphers such as PRESENT or GIFT. In this case, the ASCAD data

containing the power consumption data of a boolean masking AES-128

implementation is selected. An online 2-order CPA is performed on the

first 1200 power traces of ASCAD database. Then, the maximum cor-

relation of each hypothesis key is taken. In this context, assume that

the secret key is known and illustrated by a red line in Fig. 2.4. Two

remarkable positions in which the numbers of traces are n
2

and n
3

are
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Figure 2.4: The remarkable positions to perform P-CPA.

determined, respectively.

In addition, the diameter of the red circle is used to illustrate the LI

for taking POI. It is clear that at the position n′ = n
2
, the red circle is

very small, and the maximum correlation of the correct key is higher

than almost all other hypothesis keys. It means that if the top-down ε

POIs, which have the highest correlation at n′ = n
2

are taken, the correct

samples ttc could be detected. In contrast, at the position n′ = n
3
, the

red circle is larger, and the correlation is very low compared with other

hypothesis keys. Therefore, a larger number of POIs must be taken to

reveal the correct samples ttc. It is noted that the correlation matrix has

the size of K × S. Therefore, taking the sample ttc when n′ = n
3

is very

challenging.

With ε selected POIs where ε is very small in comparison to S, the

CPA computation complexity can be reduced proportionally with S
ε
. The

first proposal is completed by Algorithm 3. Suppose that Algorithm 3

is employed to perform an auto-CPA on matrix power traces T that has

the size of n × S, corresponding to a set of plaintexts which has a size

of n× 16, n′ is set as n′ = n
2

and ε = 100.
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Algorithm 3 is divided into two phases. Firstly, a subset of power

trace, which has a size of n′×S (Steps 1, 2) is taken. Then, the standard

CPA is performed using the function StandardCPA() on this subset of

power traces. As a result, the matrix correlation R is achieved, and

it is also the end of phase 1 (Step 4). Next, top-down 100 samples

corresponding to the first 100 highest correlation values of the matrix R

(Steps 7,8,9) are taken. After that, the second subset of power traces

is selected with the size of n × 100 and the corresponding subset of

plaintexts (Steps 11, 12). Finally, phase 2 is performed (Step 14). The

standard CPA is implemented again on the newest subset of power traces

and plaintexts. The output of Algorithm 3 is the correct byte of the

secret key.

Algorithm 3 Auto-CPA based on partial correlation power analysis: P-CPA

Input: tracen×S , plaintextn×16, attack byte B, n′ = n
2 , ε = 100

Output: k[B]

1: Plt0 = plaintextn
′×16

2: Tr0 = tracen
′×S

3: for k from 0 to K do ▷ Phase 1
4: R← StandardCPA(Plt0, T r0)
5: end for
6: while ii ≤ ε do ▷ Taking POIs
7: ii = ii+ 1
8: S̄[ii] = smax ← argmax(R) ▷ smax: the index of the column containing max value
9: smax = 0

10: end while
11: Plt1 = plaintextn×16

12: Tr1 = tracen×S̄ ▷ S̄ has size of (1× ε)
13: for k from 0 to K do ▷ Phase 2
14: R← StandardCPA(Plt1, T r1)
15: end for
16: k[B] = linemax ← argmax(R) ▷ linemax: the index of the line containing max value

2.4. Partial correlation power analysis based on power trace
biasing (BP-CPA)

As indicated previously, taking the sample ttc when n′ = n
3

is very

challenging. Therefore, this section proposes another method based on
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Figure 2.5: Probability distribution of the HW of a uniformly distributed 8-bit value.
a) All HW; b) High variance HW.

the power trace biasing technique.

For each sample tτ , the operation on all power traces is usually the

same. Therefore, the variance of the operation-dependent power con-

sumption σ2(to(τ)) = 0. Consequently, the SNR value in (2.4) can be

further simplified as:

SNR =
σ2(td(τ))

σ2(tnoise(τ))
(2.14)

In the conventional CPA, it is clear that if the plaintexts are chosen

randomly, the intermediate values are uniformly distributed. In addi-

tion, each bit of the intermediate value is independent of the other bits,

and the probability of each bit is 0.5. Therefore, HW follows a binomial

distribution. Consequently, the HW with a big deviation appears with

low probability. For example, the probability of each HW of 8-bit Sbox

output is distributed as expressed in Fig 2.5.a. It is noted that HW of

other bit-length Sbox output (such as 4-bit of DES or PRESENT algo-

rithms) is also followed the binomial distribution. In this case, assume

that V ar(td(τ)) proportions to V ar(HW ). It means that the high val-

ues of the variance σ2(td(τ)) could be taken if the adaptive plaintexts
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are chosen. Consequently, SNR increases, ρcr,tc will increase according

to formula 2.5, if the plaintexts corresponding to high V ar(HW ) are se-

lected as depicted in Fig 2.5.b. Based on this observation, a method for

selecting the adaptive plaintexts which give the high SNR values is pro-

posed. However, unlike the previous works [36], the proposal’s novelty

is that the plaintexts are selected from a given set.

Using the 8-bit Sbox as an example, if n′ plain-texts which have the

intermediate values corresponding to HW = {0, 1, 2, 6, 7, 8} are taken,

n′ is approximately 28.9% of n. In other words, if the CPA is calculated

on n′ = n
3

for taking POI as the phase 1 of P-CPA, the probability

of taking the correct sample ttc is very high. The previous intuitive

example is used again with further experiments. Fig. 2.6.(a) illustrates

the correlation at the first 350 power traces of a given set of power traces

(one-third of the previous example). Meanwhile, Fig. 2.6.b presents the

correlation of 350 power traces selected by biasing technique. It clearly

shows that the correlation of the correct key in Fig. 2.6.(b) is higher and

more consistent than that in Fig. 2.6.(a). Therefore, it is easy to take

the number of POIs that consist of the correct sample ttc. The second

proposed method of this chapter is presented by Algorithm 3.

Similar to Algorithm 3, Algorithm 4 is divided into two phases. How-

ever, Algorithm 4 is different from Algorithm 2 in the process of phase

1, and the value of ε = 250. The proposal does further steps to take out

n′ ≈ n
3

power traces based on the biasing technique (Step 6,7). The rest

of Algorithm 4 is processed the same as Algorithm 3.

An important practical aspect is the number of POIs that have to

be taken in order to perform a successful attack. However, calculating

the exact number of POIs that contain the correct sample is very chal-
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a) b)

Figure 2.6: The correlation of the correct key for two CPA methods: a) Standard
CPA; b) CPA with power trace biasing technique.

Algorithm 4 Auto-CPA based on power trace biasing based partial correlation power analysis: BP-
CPA

Input: tracen×S , plaintextn×16, attack byte B, n′ = 0, ε = 250
Output: k[B]

1: Plt0 = plaintextn×16

2: for k from 0 to K do ▷ Phase 1
3: for i from 1 to n do
4: hi,k ← HW (SBOX((plaintexti,B , k))
5: if hi,k = 0, 1, 2, 6, 7, 8 then
6: n′ = n′ + 1
7: tracen′,S = tracei,S
8: end if
9: end for

10: Tr0 = tracen
′×S ▷ n′ ≈ n

3
11: R← StandardCPA(Plt0, T r0)
12: end for
13: while ii ≤ ε do ▷ Taking POIs
14: ii = ii+ 1
15: S̄[ii] = smax ← argmax(R) ▷ smax: the index of the column containing max value
16: smax = 0
17: end while
18: Plt1 = plaintextn×16

19: Tr1 = tracen×S̄

20: for k from 0 to K do ▷ Phase 2
21: R← StandardCPA(Plt1, T r1)
22: end for
23: k[B] = linemax ← argmax(R) ▷ linemax: the index of the line containing max value
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lenging in practice because of several reasons. Firstly, ρmax is a random

variable, and it is difficult to find the certain values of ρmax. Secondly,

it is clear that LIs have different lengths corresponding to different val-

ues of n. Finally, there are so many correct samples that can be used

to reveal the correct keys. Indeed, the authors in [20] have indicated

that in their experiments, the intermediate result is used in several in-

structions. This is very typical for software implementations. Each time

the micro-controller performs an operation that involves the attacked

intermediate result, there is at least one peak in the matrix R. Due

to the reasons mentioned above, this proposal focuses only on finding

the number of traces for the POI extractor. The theory of calculating

exactly the number of POIs is out of the scope of this work. However,

based on several practical attacks and simulations, the values of POI =

100 and POI = 250 are determined for n/2 and n/3, respectively. It

can be enough to reduce n for POI extraction with a small number of

POIs. This reasonable choice will be proven by the experiments in the

next section.

2.5. Validation experiments

To prove the efficiency of proposals on different SCA contexts, this

chapter investigates the performance of SCA attacks on the power con-

sumption data of 8-bit Sbox outputs. The other bit-length Sbox could

be performed similarly. Concretely, two power consumption datasets of

the AES-128 implemented on two platforms, including the RISC-V pro-

cessor and public ASCAD database, were used. All experiments were

performed with MATLAB software on a personal computer with an Intel

Core i5-9500 CPU and DDR4 24GB memory. In the experiments, the
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Figure 2.7: Attack results of standard CPA, P-CPA and BP-CPA methods on mask-
ing countermeasure: a) Standard CPA; b) P-CPA; c) BP-CPA.

average success rate and computation time are used as the metrics to

evaluate the efficiency of the proposed methods.

2.5.1. Attack on masking data

As described in Section 1.2.3, the ASCAD data was collected from the

software AES-128 implemented by the masking countermeasure with a

different masking value for each bye of the secret key. This technique

leads to increased computational complexity. In these experiments, the

standard 2-order CPA (Std-CPA) is performed to determine the number

of power traces needed for the attack. P-CPA and BP-CPA techniques

are then performed to investigate the efficiency in terms of the computa-

tion time. In the pre-processing state of Std-CPA, a pre-processed trace

which contains all values |la − lb| ∀la, lb ∈ l is calculated. As a result, the

new dataset with 244,650 samples on each power trace is formed. Next,

the Std-CPA is implemented on the pre-processing traces. As depicted

in Fig. 2.7(a), the Std-CPA was implemented successfully with 1200 AS-

CAD traces. The highest correlation is 0.16605, and the execution time

of Std-CPA is 1188.4 seconds. Then, these traces are used to implement

P-CPA and BP-CPA. Fig. 2.7.(b) shows that P-CPA can reveal the cor-

rect key on power traces that are used by Std-CPA. Especially, P-CPA
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allows taking exactly the same sample, which has the highest correlation

as Std-CPA (ρ = 0.16605). For BP-CPA, it is clear that this method

works better than P-CPA and Std-CPA. BP-CPA only used 350 power

traces for phase 1 (nearly 1/3 of total power traces needed in Std-CPA).

In addition, the POIs of BP-CPA are taken accurately, and the position

of the correct sample (X = 3) is lower than P-CPA (X = 13), as shown

in Fig. 2.7. It means that the power trace biasing technique makes the

values of the correct key higher and leads to a higher probability of a

successful attack. Since the partial correlation is used, the computation

time values of P-CPA and BP-CPA decline considerably from 1, 188.4

seconds to 583.54 seconds and 446.94 seconds, respectively. These re-

sults have clarified the efficiency of our proposed methods for masking

protected devices.

2.5.2. Attack on noise injection data

This experiment aims to evaluate the proposed technique in differ-

ent contexts of hiding countermeasures. The RISC-V power traces are

selected and then added by the Gaussian noise centered in zero with

several values of standard deviation to simulate different levels of hiding

countermeasure, as described in formula 1.4. As same as the previous

experiment, CPA attacks are performed by using three techniques of Std-

CPA, P-CPA, and BP-CPA to compare the efficiency in the computation

time. Table 2.1 presents the details of the parameters for each experi-

ment in this work. The attacks are mounted and repeated in each case of

noise 100 times, in which the power traces of each attack are randomly

taken from 10,000. The results of the experiments are then averaged. As

depicted in Fig. 2.8.(a), the computation times of three techniques on
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Table 2.1: The parameter of traces for our experiments on noise added RISC-V power
traces.

σ(noise) 0.004 0.006 0.008 0.01

n(Std-CPA) 400 800 1000 1600

n′(P-CPA) 200 400 500 800

n′(BP-CPA) ≈ 115.6 ≈ 231.2 ≈ 289 ≈ 462.4

each level of noise are different. It is clear that the average computation

time of Std-CPA is the highest in all experiments. The results indicate

that the computation time values of P-CPA and BP-CPA are the 2nd

lowest and the lowest ones, respectively. These results demonstrate that

BP-CPA is the most effective in terms of computation time, and it can

reduce approximately two times compared with Std-CPA. However, it is

worth noting that the time consumption values of P-CPA and BP-CPA

methods when σ = 0.004 are nearly the same, and the reduction of the

computation time is 1.5 times. This is an unexpected result because the

number of traces for the attack is small, and phase 1 of BP-CPA needs

some extra computation time to filter the high SNR power traces.

a) b)

Figure 2.8: Average computation time and success rate of one subkey on noise added
RISC-V power traces. a) Average computation time; b) Average success
rate.
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Comparing the reliability of proposed techniques, the averages of suc-

cessful attacks is taken. As illustrated in Fig. 2.8.(b), P-CPA achieves

the highest success rate, and the success rate of BP-CPA is lower than

Std-CPA in cases of σ = 0.006 and σ = 0.008. However, in general, the

results of the BP-CPA success rate are acceptable.

2.5.3. Combined hiding and masking

Next, the combination of hiding and masking techniques is consid-

ered. To simulate this scenario, the original ASCAD database is added

with different levels of Gaussian noise as described in Section 1.2.3.

In TCHES-2019, Timon demonstrated that DDLA could break masked

cryptographic devices without any advance knowledge about the mask-

ing implementation [7]. In contrast, a second-order CPA attack needs

to be pre-processed and performed in a squared computation complex-

ity compared to the 1-order CPA. However, the standard second-order

CPA can overcome the noise-generation-based hiding countermeasure.

Therefore, in this experiment, the attacks are performed to compare the

possibility of DDLA and CPA on a combined countermeasure. The same

model of the MLP network on TCHES-2019 is reconstructed with 30,000

power traces as the original work [7]. In terms of CPA, we use a max-

imum 2,700 and minimum 1,200 power traces for the highest and the

lowest levels of noise, respectively. It is noted that the original traces

in each attack are the same, but the Gaussian noise is re-initialized and

added on each implementation. Table 2.2 shows the parameter of our

experiments in detail. For convenience, we choose the most effective

proposed technique BP-CPA for this experiment. The attack results are

shown in Fig. 2.9. As shown clearly in Fig. 2.9.(a, b, c), it is difficult to
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(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Figure 2.9: The experimental results on differential levels of noise added ASCAD
database. Left column) σ = 0.5; Center column) σ = 1.0; Right column)
σ = 1.5; a, b, c) DDLA attack; d, e, f) BP-CPA attack.

discriminate the correct subkey by DDLA when σ = 1.0 and it can not

distinguish the correct subkey in the case of σ = 1.5.

In contrast, the proposed technique can reveal the correct subkey in

all cases. The black lines in Fig. 2.9.(d, e, f) present the correlation of

the correct subkey. It is worth noting that the correct samples which

have the highest correlation are taken at the beginning of the POI axis.

It means that the power trace biasing technique makes the correlation

values of candidate samples higher than the rest. In addition, our al-

gorithm takes the POI following the top-down strategy. Therefore, we

can reduce the number of POIs to a value of less than 250. More in-

terestingly, the maximum correlation value decreases when the number

of traces increases, as explained in (2.11). Despite having the highest

values, the black lines are not clearly distinguished from the rest (gray

lines). This is because we take the minimum number of traces for success-

ful attacks. These experimental results have indicated that the proposed
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method could outperform the non-profiled DL-based attack (DDLA) on

hiding-masking protected devices.

Table 2.2: The parameter of traces for the experiments on the noise added ASCAD
database.

σ(noise) 0.5 1.0 1.5

n(Std-CPA) 1500 2200 2700

n′(BP-CPA) ≈ 433.5 ≈ 635.8 ≈ 780.3

TCHES-2019 [7] 30,000 30,000 30,000

After proving the efficiency of our proposed method, we decided to

perform further experiments to evaluate the execution time of DDLA,

Std-CPA, and our proposed techniques. To achieve reliable results, we

repeat 50 times the experiment of CPA in Section IV.c. The computation

time is then averaged and presented in Fig. 2.10.(a). The DDLA columns

show the execution time of the DDLA technique. They are almost the

same because we fixed the number of traces for all different levels of

noise. The Std-CPA columns illustrate the computation time of Std-

CPA. We increase the number of traces corresponding to the increase

of the deviation of the noise. As a result, the execution time of Std-

CPA increases significantly, and it reaches the highest value when σ =

1.5. In addition, the execution time of Std-CPA is higher than DDLA

in all cases. These results indicate that the drawback of Std-CPA is

time-consuming. Fortunately, the goal of this work is to resolve the

limitation of Std-CPA. As expected, the BP-CPA columns present the

time consumption of BP-CPA, which is lower than those of both DDLA

and Std-CPA. Especially, the execution time of BP-CPA was reduced

approximately by 2.6 times compared to Std-CPA in all cases. The

results also indicate that our proposed technique outperforms DDLA
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a) b)

Figure 2.10: Average of computation time and success rate on different levels of Gaus-
sian noise added ASCAD: a) Average of computation time; b) Average
of success rate.

(967.842 seconds compared to 1495.62 seconds in the case of σ = 1.5)

even though DDLA uses a huge number of power traces (2700 compared

to 30000 power traces).

Considering the reliability, the comparison of the success rate between

Std-CPA and BP-CPA is shown in Fig. 2.10.(b). In terms of the low noise

level, the success rate of the proposal is slightly lower than Std-CPA. This

is the limitation of the proposed technique. This chapter uses power

trace biasing to increase the standard deviation of td(τ) on n′ = n/3

power traces. However, the attack phase is still based on standard CPA.

Therefore, the success rate of the proposed technique is less than or the

same as Std-CPA in such cases. In contrast, the proposal has better

results than Std-CPA in the remaining cases. From (2.14), it clearly

shows that the higher the noise, the smaller the SNR value. Therefore,

Std-CPA needs to use more power traces in order to discriminate the

correct samples as obtained from (2.5). By using the POI extractor, the

proposed technique has eliminated most of the noise-affected samples
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that are not related to the correct key or the operation. Consequently,

the proposed technique increases the probability of a successful attack

in comparison to Std-CPA: 81% compared to 70% in the case of σ = 1

and 78.85% compared to 76% in the case of σ = 1.5.

2.6. More discussion

2.6.1. Use cases

Security testing on noise injection countermeasure

a) Scenario description

� Use case 1: To find out the level of noise injection against a given

number of power traces. Considering level 3 in ISO/IEC 17825:2016,

the DUT needs to pass the security checking with 10,000 power

traces. In this case, the evaluator needs to try to modify the level of

injected noise. The evaluator will perform the security testing using

CPA and the proposed BP-CPA techniques.

� Use case 2: To find out the number of power traces that break the

DUT with a given level of injection noise (σ).

In this case, the level of additive noise is fixed. The evaluator needs

to determine the number of required power traces that can break

the countermeasure.

To simulate noise injection countermeasure in this case study, different

levels of Gaussian noise were added to each sample of power traces as

described in Section 1.2.3.

b) Results

� Use case 1: In the first scenario, the evaluator is required to perform

many CPA attacks with N= 10000 power traces corresponding to



71

Table 2.3: The execution time of evaluation process

Level of noise (σ) 0.03 0.032 0.034 0.036 0.038 0.04 Total time
Attack time CPA (Second) 276.495 275.503 273.260 273.655 267.801 277.294 1644.008
Attack time BP-CPA (Second) 127.080 128.419 125.714 126.524 127.2731 170.7751 805.785
Successful attack Yes Yes Yes Yes Yes No

Table 2.4: The execution time of evaluation process

Number of power traces 6000 7000 8000 9000 10000 Total time
Attack time CPA (Second) 149.439 177.544 219.383 236.648 275.431 1058.445
Attack time BP-CPA (Second) 74.065 82.837 103.067 110.233 126.912 497.114
Successful attack No No No No Yes

different levels of additive noise. The time process is recorded and

shown in Table 2.3. It can be seen that both CPA and BP-CPA

attacks provide the same result of a successful attack. However, in

terms of execution time, the evaluator spends 1644.008 seconds (ap-

proximately 27 minutes) to find out the final results. Interestingly,

by using BP-CPA, the execution time of the evaluation process re-

duces significantly to 805.785 seconds (approximately 13 minutes).

This result has demonstrated that the proposed technique works

better in the SCA evaluation process.

� Use case 2: Based on the procedure of attack-based testing described

in Section 1.4.2. The evaluator must try a different number of power

traces to determine the vulnerability of DUT. Unlike the validation

experiments with N already known, he starts with N= 6000, and

each step increase to 1000 power trace until he achieves a successful

attack. The results of security testing with σ = 0.036 are presented

in Table 2.4.
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Table 2.5: The execution time of evaluation process

Number of power traces 2000 2500 3000 3500 Total time

2-order CPA (second) 3270.3 2722.9 2224.5 1701.6 9919.406

2-order BP-CPA (second) 1226.771 1013.073 831.0303 658.6923 3729.566

Successful attack No No No Yes

Security testing on combined noise generation and boolean masking coun-
termeasure

a) Scenario description

In this part, security testing on a DUT-equipped boolean masking coun-

termeasure is presented. For convenience, ASCAD data is selected to

simulate this scenario. In addition, each sample of power trace is added

Gaussian noise as described in formula (1.4). The evaluator is required

to perform second-order CPA attacks to find out the number of power

traces, which can break the DUT countermeasure with σ = 1.8.

b) Results

In this case, various second-order attacks are performed. Similar to the

previous scenario, CPA and BP-CPA attacks are selected to implement

security tests. To perform second-order attacks, the new traces were re-

constructed from original ASCAD data (700 samples/trace). The num-

ber of samples of new traces is 244650. For convenience, the execution

time of pre-processing phase of second-order attacks is discarded. The

results of the processes are presented in Table 2.5. The total execution

time of 2-order CPA is 9919.406 seconds (approximately 2 hours 45 min-

utes), whereas 2-order BP-CPA is 3729.566 seconds (approximately 1

hour).

These results have demonstrated the efficiency of proposed techniques

in SCA security testing.
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2.6.2. The number of POI (ε)

As mentioned in the previous part, it is difficult to determine the

right value of ε in P-CPA or BP-CPA. It is usually selected based on

the results of real attacks. However, the value of ε should be initiated

by the following criteria:

� ε is defined to ensure that it is a small number compared to the

number of samples (l) on a power trace.

� As ε decreases, the probability of obtaining correct samples de-

creases, resulting in a lower success rate and faster attack time.

� As ε increases, the probability of obtaining correct samples increases,

leading to a higher success rate and longer attack time.

2.6.3. More comparisons to DDLA

The results presented in the previous section indicate that the DDLA

attacks face to “overfitting” problem. This issue leads to the phe-

nomenon which allows the attacker can detect the correct key in the

early epochs. In fact, it is impossible to know these early epochs prior to

performing the actual attacks. However, to provide more comparisons

between BP-CPA and DDLA, this part assumes that the early epochs

are known.

Taking Fig. 2.9.c as an example, the correct key can be taken from

epoch 10 to epoch 15. However, the accuracy of the correct key is quite

close to the incorrect one. It means that the correct key may not be

distinguished in some cases. To investigate this problem, additional ex-

periments were performed to evaluate the success rate of attacks in early

epochs. The results are presented in Table 2.6. By reducing the number
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Table 2.6: The results of other attacks using DDLA with selected number of epochs

Attack
method

No. of
traces used

Noise
(σ)

No. of epochs
Success rate

(%)
Average time

(second)
Repeated

DDLA 30,000 1.5 15 74 1158 50
DDLA 15,000 1.5 15 8% 561 50

BP-CPA 2700 1.5 - 78.85 967.6 50

of epochs, the performance of DDLA increases significantly. Especially,

SR of DDLA attacks with 15 epochs is 74%. The attack time is reduced

to 1158 seconds.

Compared to BP-CPA, the performance of DDLA (15 epochs) is nearly

the same. However, it is noted that the number of power traces used in

DDLA is many folds compared to BP-CPA (30,000 compared to 2700).

To demonstrate this, the number of traces is reduced to 15,000, and the

DDLA attacks are conducted again. The result was not unexpected.

The SR of DDLA attacks reduces dramatically (from 74% to 8%) in this

case. These results clarify that DDLA attacks require a huge number of

traces compared to BP-CPA. In addition, different early epochs need to

choose to correspond to different attacks.

In summary, the proposed technique outperforms DDLA regarding the

attack time and the number of traces required. In the case of attacking

early epochs, DDLA attacks provide performance nearly the same as

BP-CPA.

2.6.4. Disadvantage and resistance against BP-CPA attacks

Despite the efficiency of the proposed technique, these proposals still

contain several limitations as shown below:

Firstly, in the case of masking countermeasure, the number of traces

for the attack is limited because of the complexity of second-order leakage

data processing. In addition, this process requires high memory usage.
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Figure 2.11: Experimental results of BP-CPA attack on de-synchronized countermea-

sure. a) Shifted value = 1; b) Shifted value = 5.

Therefore, in the case of a high number of second-order power traces, it

is difficult to apply pre-processing techniques.

Secondly, other power consumption models have not been investi-

gated. In this case, only HW model is investigated and applied to biasing

power trace techniques. In means that the efficiency of proposed tech-

niques has been clarified on software implementations of cryptographic

algorithms. To attack hardware based designs of cryptographic algo-

rithms, HD model needs to be considered. This is also the future work

of this study.

Thirdly, the number of POI is determined manually. As stated previ-

ously, the number of POI is selected based on the practical attack results.

In some cases, the number of POI is too small to cover the correct sample

tct. Consequently, it leads to a failed attack. In other cases, the number

of POI is too large. Hence, the attack time is not optimized. This issue

is also investigated in the future work of this study.

Finally, in the case of hiding countermeasures, only the noise injection

technique is investigated. Furthermore, the random delay will cause a
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misaligned problem. Therefore, the POI extractor will not work cor-

rectly because it requires each operation of the cryptographic algorithm

should be located at the same position in each power trace to find out

the correlation. This observation is the motivation for the designer of

cryptographic devices to randomize the execution of the cryptographic

algorithm, i.e., the devices perform the operations of the algorithms at

different moments of time during each execution.

To clarify this assumption, an additional experiment is performed on

simulated de-synchronized power traces. These power traces are recon-

structed by randomly shifting each power trace of RISC-V data in a

maximum of 1 and 5 samples (denoted as data-sh1 and data-sh5, re-

spectively). The attack results are depicted in Fig. 2.11. Obviously, the

attack results of BP-CPA on data-sh1 show that the correct key can be

revealed easily, whereas the attack results on data-sh5 show that the red

curve of the correct key is very low compared to incorrect keys. The

secret key is not discriminate anymore in this case. These results have

demonstrated that the BP-CPA can not break de-synchronized counter-

measure directly. In addition, de-synchronized is not difficult to integrate

into a hardware design as well as software design. Therefore, this is also

a good solution to counteract BP-CPA.

2.7. Summary

In this chapter, the complexity of the CPA attack on the side-channel

data using different SCA countermeasures has been presented. To in-

crease the performance of SCA security testing, this chapter introduces

two new techniques called P-CPA and BP-CPA based on the sampling

distribution of correlation coefficient and the biasing technique. Perfor-
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mance comparisons between the proposed techniques and the conven-

tional CPA are provided using various experimental results, especially

in the case of protected datasets. In particular, P-CPA and BP-CPA re-

duce the computation time by approximately 2 and 2,6 times compared

to standard CPA, respectively. Additionally, in the case of combining

masking and noise generation countermeasures, BP-CPA outperforms

both standard CPA and DDLA in terms of execution time. The success

rate of the proposed techniques is also increased compared to conven-

tional CPA. However, BP-CPA can not break de-synchronized coun-

termeasure. This is also the solution to counteract BP-CPA on both

hardware and software implementations of cryptographic devices. The

results of this chapter are published in [C1] and [J1].
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Chapter 3

DIMENSIONALITY REDUCTION AND LABELING
METHODS FOR EFFICIENT DEEP LEARNING BASED

NON-PROFILED SCA

In the non-profiled context, statistic-based attack such as CPA has

been demonstrated to work well on breaking different SCA resistances.

CPA has also been applied to various works to verify the efficiency

of the deployed countermeasures. However, it requires a specific pre-

processing for each type of countermeasure. It leads to a high-cost and

time-consuming evaluation process. First introduced in 2018, DDLA can

perform the attack successfully without any pre-processing techniques in

the non-profiled context [7]. DDLA is the most used SCA method using

deep learning in research papers.

Despite being effective on both unprotected and protected SCA data,

DDLA still faces many issues, such as high-dimension data input, label-

ing techniques, or other common countermeasure like noise generators.

This chapter introduces the techniques to improve the DDLA attack

and mitigate the mentioned issues. Concretely, a dimensionality reduc-

tion method and a labeling technique are introduced to deal with high-

dimensional data input, imbalance dataset, and to reduce the impact of

additive noise. Simultaneously, different models based on popular archi-

tectures, such as MLP and CNN, are developed to apply the proposed

techniques. The chapter’s results are published in the papers [C2, C3],

[J3, J5], and P[1]
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3.1. Reducing data dimension using P-CPA

As indicated by Timon [7], the weights of the leakage sample directly

impact the loss, as it is the sample that carries the useful information

for the classification. In addition, there are a few leakage samples in

a power trace related to the processed data and the secret key in the

executions of the cryptographic algorithm. Therefore, high-dimensional

data input will make the DL model spend more time optimizing the

weights corresponding to the leakage features. In addition, one drawback

of DDLA is that it is necessary to perform a DL training for each key

guess (i.e., 256 training times in the case of AES-128) [7], the higher

the data dimension, the more complex the network architecture.

Several techniques were proposed for improving the performance of

non-profiled attacks by extracting the POI, as discussed in chapter 1.

However, most of the previous works focused on profiled attacks. In

terms of non-profiled scenarios, the authors in [89] exploited pattern

recognition methods to filter interesting points of power trace for ob-

taining a successful attack. Alipour et al. [21] used a simple method in

order to reduce the sampling points of each power trace by 50%. Ac-

cordingly, from each two neighboring sample points, the first one is kept,

while the second is omitted.

In the previous chapter, the P-CPA technique is introduced and used

for taking the most relevant samples in the power trace by computing

the correlation between real traces with their model. Additionally, P-

CPA requires only 50% of the given power traces for detecting the POI.

Therefore, this method is suitable for power traces containing a large

number of samples. Based on the advantages of P-CPA, this method
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Figure 3.1: The positions on sample axis corresponding highest correlation values on
all hypothesis keys will be taken (The red markers).

is used to reduce the number of features of data input in DDLA. To

illustrate the dimensionality reduction method based on P-CPA, an in-

tuitive example on the CW platform is shown in Fig. 3.1. Accordingly,

for determining the positions of high correlation on a dataset containing

5,000 power traces of 10,000 samples each. Firstly, the correlation value

of the real power trace with the HW model is calculated on 2,500 power

traces. As a result, a matrix of correlation coefficients with a size of 256

× 10,000 is produced, in which each row corresponds to a hypothesis key.

As depicted in Fig. 3.1, the correlation values of three rows (k= 43, 44,

45) in the correlation matrix are plotted. Next, from which 50 positions

with the 50-top highest correlation values are located (red star points).

Then, 50 relevant sample points of all power traces are extracted. Con-
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sequently, the size of the new dataset can be reduced 200-fold compared

to that of the original one. It can be explained as the correlation-based

extraction can reduce the size of each power trace from 10,000 to 50

samples.

By determining 50 useful sample points based on the 50-top highest

correlation values, a smaller dataset of power traces is generated and

reconstructed following hypothesis keys and HW values, in which HW s

play the role of labels. However, this method is only used in the case

of first-order leakage or the pre-processed data of second-order power

traces.

3.2. Significant HW Labeling

In terms of labeling techniques, two typical labeling techniques, in-

cluding Hamming weight and Binary, have been applied in the DL-based

non-profiled SCA [7]. The efficiency of DDLA using the Binary labeling

method is proven in many works [7, 21–23]. Especially by using Binary

Neural Network (BNN) with LSB/MSB labeling techniques on picture-

formatted data, the authors in [22] show that the validation accuracy

is significantly higher, and the number of learning epochs required to

obtain the secret key can be reduced.

In contrast, no report on using the HW labeling method is published in

the non-profiled deep learning context. Additionally, the authors in [22]

have also indicated that the HW model causes the imbalance dataset

problem in the non-profiled SCA scenario. Indeed, by observing Fig. 2.5,

it is obvious that the distribution of intermediate values on each HW

is imbalanced and symmetric about HW4 in the case of AES-128. To

address this problem, the authors in [90] proposed a method based on
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the data re-sampling technique. Accordingly, they used a random over-

sampling method, the so-called SMOTE, to oversample for each class.

In practice, SMOTE can be considered as a general case of the data

augmentation (AU) technique, which is proposed in [91].

To mitigate the imbalanced dataset issue in non-profiled context, this

section introduces a simple labeling technique based on Hamming weight.

Unlike profiled DL-based SCA, DDLA uses the training metrics instead

of the model’s output for discriminating the correct key. Accordingly,

training with the correct key always has better learning ability than

incorrect ones. It means that if we use only three classes for training

instead of nine classes, the DL model using the correct key still has better

training metrics than the wrong key. As shown in Fig. 2.5, there are three

significant HWs (HW = 3, 4, 5) that contain the most distribution of

intermediate values. Moreover, the distribution of three significant HWs

(SHW) is nearly balanced. Therefore, SHW is considered to use for

classification in the non-profiled context.

Apart from balancing data, SHW labeling reduces significant measure-

ments needed for the training process. Indeed, as depicted in Fig 2.5.a, it

is clearly shown that SHW discards the intermediate values correspond-

ing to HW = 0, 1, 2, 6, 7, 8 (about 30% of power traces). It is meaningful

in the case of reducing the execution time in the non-profiled context.

This property will be illustrated in the experimental results section.

3.3. Dataset reconstruction

For investigating the efficiency of the proposed techniques in this chap-

ter, different datasets are reconstructed from the original ASCAD, RISC-

V, and CW data as presented in Table 3.1. The character “x” in the
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Figure 3.2: Structure of the new datasets: There are 16 folders (Dataset1 to
Dataset16) corresponding to 16 bytes of secret key, each folder con-
tains 256 files in .csv format which correspond to 256 hypothesis keys.
N original power traces (L samples/trace) are calculated to form N1 new
traces and labeled (HW = {3, 4, 5}). Each new trace contains 50 samples
which are highest correlation values.

name of each dataset indicates that it is an original or reconstructed one.

Then, each dataset is described in a row for its properties. Dataset2x,

for example, contains Dataset2O and Dataset2R. Dataset2O consists of

20,000 unmasked ASCAD power traces; each power trace has 700 sam-

ples. Dataset2R is reconstructed from Dataset2O, using P-CPA with

ε = 50 to reduce the data dimension from 700 to 50. The dataset is

labeled by the SHW labeling technique. For other cells using the symbol

“-”, the corresponding part is not applied. It is noted that the num-

ber of traces needed for creating Dataset2R is the same in Dataset2O.

However, the number of traces of Dataset2R for the training process is

reduced by approximately 30% in the case of SHW applied. It is true

for all other datasets in this chapter.

To simulate de-synchronized countermeasure, Dataset3sh1 and Dataset3sh5

are generated from the original RISC-V data. Each power trace in the

datasets is randomly shifted in a maximum of 1 and 5 samples, re-

spectively. Regarding noise generation countermeasure, three different

datasets corresponding to three different levels of Gaussian noise were
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Table 3.1: The details of reconstructed datasets using different data.

Dataset
Original (O) Reconstructed (R)

Data
No. of

traces used
Dim

No. of traces

for training
Dim

Labeling

technique

Shifted

values

RD method

(ε)

Dataset1x ASCADunmask 20,000 700 20,000 700 LSB - -

Dataset2x ASCADunmask 20,000 700 ≈7000 50 SHW - P-CPA (50)

Dataset3x RISC-V 10,000 480 ≈7000 480 SHW - -

Dataset3sh1x RISC-V 10,000 480 ≈7000 480 SHW 1 -

Dataset3sh5x RISC-V 10,000 480 ≈7000 480 SHW 5 -

Dataset4x CW 5,000 10,000 ≈3000 50 SHW - P-CPA (50)

Dataset49-HWx CW 5,000 10,000 5000 50 9-HW - P-CPA (50)

ASCADLSBx ASCAD 20,000 700 20,000 700 LSB - -

ASCADSHWx ASCAD 20,000 700 ≈14,000 700 SHW - -

x: O/R; RD: Reducing data dimension; -: Not used

employed on CW data as described in Table 3.2. Finally, by increasing

the size of the attack dataset, we investigate the ability of DLSCA to

break the noise generator if power traces are collected enough. To simu-

late this scenario, we chose σ = 0.025 and σ = 0.055 to form three new

datasets from CW data as presented in Table 3.3.

For all reconstructed datasets, 16 folders corresponding to 16 sub-

bytes of a secret key are obtained. Each folder contains 256 sub-folders

corresponding to 256 values of the potential guessed key. In such a sub-

folder, three folders named HW3, HW4, and HW5 are used for three

labels of the CNN. Finally, for each label folder corresponding to the

intermediate value (HW = 3, 4, 5), the power traces were partitioned

as illustrated in Fig. 3.2. Each dataset is divided into two parts of train-

ing and validating data corresponding to 80% and 20% of the created

dataset, respectively.
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Table 3.2: The details of reconstructed datasets from noise-added CW power traces.

Dataset
Original (O) Reconstructed (R)

No. of

traces used
Dim

No. of traces

for training
Dim

Labeling

technique

Std of noise

(σ)

RD method

(ε)

Dataset41x 5000 10,000 ≈3000 50 SHW 0.025 P-CPA (50)

Dataset42x 5000 10,000 ≈3000 50 SHW 0.05 P-CPA (50)

Dataset43x 5000 10,000 ≈3000 50 SHW 0.075 P-CPA (50)

x: O/R; RD: Reducing data dimension; -: Not used

Table 3.3: The details of reconstructed CW datasets for evaluating the noise genera-
tion based hiding countermeasure.

Dataset
Original (O) Reconstructed (R)

No. of

traces used
Dim

No. of traces

for training
Dim

Labeling

technique

Std of noise

(σ)

RD method

(ε)

Dataset51x 3000 10,000 ≈2100 50 SHW 0.025 P-CPA (50)

Dataset52x 3000 10,000 ≈2100 50 SHW 0.055 P-CPA (50)

Dataset53x 4000 10,000 ≈2800 50 SHW 0.055 P-CPA (50)

Dataset54x 5000 10,000 ≈3500 50 SHW 0.055 P-CPA (50)

x: O/R; RD: Reducing data dimension; -: Not used

3.4. Non-profiled DLSCA using significant HW labeling

While the original DDLA proposal [7] uses CNN and MLP as a build-

ing block, one can use advanced DL techniques like recurrent neural net-

works (RNN) or long short-term memory (LSTM), especially in the case

of sequence-based data like SCA data. This chapter, however, continues

to use MLP and CNN architecture for two distinct reasons. Firstly, RNN

and LSTM are not currently well-studied for SCA use cases. Secondly,

the wide variety of results available for the use of CNN or MLP with

SCA datasets helps us to benchmark our results. Therefore, two new

instances of MLP and CNN architectures are introduced in this section.
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Figure 3.3: The proposed Multi-layer perceptron architecture.

3.4.1. MLPSHW

The proposed MLP network comprises an input layer, output layers,

and six hidden layers. The number of nodes in the input layer is assigned

according to the number of samples in a power trace. As depicted in

Figure 3.3, all arrows represent the weights. Prior to the implementation

training phase, the values of weights and bias are randomly chosen from

a normal distribution using the Xavier scheme.

As explained in Section1.3.3, a procedure called forward propagation

is performed. In DL-based SCA, the popular activation functions used in

hidden layers are ELU and RELU, which are computed as formula (3.1)

and (3.2), respectively. Our proposed model used ELU instead of ReLU

to avoid the vanishing problem and produce negative outputs for each

node in the hidden layer.

ReLU :F(y) =

 y :

0 :

y > 0

y ≤ 0

 (3.1)

ELU :F(y) =

 y :

ϕ · (ey − 1) :

y > 0

y ≤ 0

 (3.2)

For classification, the Softmax function is used in the output layer for
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calculating the probability of each HW label. This function is calculated

as

SoftMax :z (y) [i] =
ey[i]∑C
j=1 e

y[j]
(3.3)

where C is number of classes, in our case, C = 3 since our proposed

model uses HW label.

Finally, backward propagation is implemented in order to update the

weights to obtain the expected results. Since we have three labels, the

categorical cross-entropy loss between the ground-truth and prediction

labels are computed as follows:

LX(w) = −
3∑

j=1

ytrue ln (z) (3.4)

where ytrue is the grouth-true values of HW classes.

Then, we use stochastic gradient descent with momentum (SGDM)

optimizer to find the optimal minimizing of the loss function. Deep

learning will do a series of iterations t, and in each iteration, the gradient

of loss function∇LX (w) is computed. After that, w is updated by using

the formula as follows:

vt = γvt−1 + η∇wLX (w)

wt+1 = wt − vt

(3.5)

where γ is the momentum value. In our case, γ is chosen equal 0.9,

and the learning rate η is chosen equal 0.01.

When the correct hypothesis key kcr is used, the series of intermedi-

ate results will be correctly computed. Consequently, the partition and

the labels used for our model will be consistent with the corresponding
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Figure 3.4: The proposed CNNSHW architecture.

traces. In contrast, for all the incorrect guess keys, the labels used for the

training will be incompatible with the traces. As a result, the training

model with the dataset generated from kcr provides better results with

lower loss or higher accuracy than the other candidates. Therefore, the

correct key can be obtained.

3.4.2. CNNSHW

As demonstrated in [7], CNN is an efficient architecture to perform

DDLA on de-synchronized power traces. This part introduces a new

CNN model using the SHW label for the non-profiled SCA attack. The

details of the proposed architecture are described as follows.

The proposed architecture is composed of an input layer and two 1-D

convolutional (Conv1d) blocks in the middle, followed by the flattened

layer and classification (output) layer. Each Conv1D block is formed by

a Conv layer directly followed by a batch normalize layer and a pooling

layer for selecting the informative and downsample the feature maps.

The last layer of the Conv1D block is the activation layer, as described

in Fig. 3.4.
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Table 3.4: Hyperparameter of proposed CNNSHW architecture

Model CNNSHW

Input size RISC-V shifted 480

Convolutional layers

(Activation)

Conv1d 1(N* 32× 1 filters),

Pool 1(2× 1), Norm, Relu

Conv1d 2(N* 16× 1 filters),

Pool 2(4× 1), Norm, Relu

Number of filters

(N)

Conv1d 1 4/8/16

Conv1d 2 4/8/16

Output layer 3-Softmax

Batch size 200/500/1000

Learning rate 0.001

Similar to MLP, CNNSHW performs forward propagation to calculate

the output (3 nodes) from the input layer and backward propagation

to update the learning metrics. However, unlike in MLP models where

each neuron has a separate weight vector, neurons in CNN share weights.

Neurons perform convolutions on the data, with the convolution filter

being formed by the weights. In our case, two Conv1d layers correspond-

ing to two blocks are designed with the same number of filters (4,8, and

16).

According to [7], on the first-order SCA data, DDLA only uses one

main leakage area to classify the data. It means that the CNN model

tries to find the most informative feature in the training phase. There-

fore, the filter of the proposed model has the size of [32 1] for the first

Conv1d block and [16 1] for the second block. The stride of [1 1] is

used to extract the strongest features. The weighted sum of each filter

is calculated as follows:

a1,j =
f∑

n=0

w1,nI1,j+n + b (3.6)

where I is the input data (or the output of the previous layer), b de-
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notes the bias, f is the size of the filters, and w1,n stands for the element

of filter (or convolutional kernel weights). Before feeding up to a non-

linear activation function, the output of (3.6) is normalized. Finally, an

FC layer, along with the Softmax function, plays a role as a classifier,

which has three output classes corresponding to three HWs labels. In

backward propagation stage, an optimizer is used to find the optimal

parameters minimizing the loss function. In this case, the popular opti-

mization algorithm called Adaptive Moment Estimation (ADAM) with

default setting is employed to train the proposed model as follows:

(1) mt ← β1mt−1 + (1 − β1)∇Ltotal(θt−1) (Update biased first moment

estimate);

(2) vt ← β2vt−1 + (1 − β2)∇L2
total(θt−1) (Update biased second raw mo-

ment estimate);

(3) m̂t ← mt/(1− βt
1) (Compute bias-corrected first moment estimate);

(4) v̂t ← vt/(1− βt
2) (Compute bias-corrected second raw moment esti-

mate);

(5) θt ← θt−1 − ηm̂t

/
(
√
v̂t + κ) (Update the parameters)

where θt represents the set of parameters of the model at timestep t; mt

and vt are the first and second moment vectors (m0 ← 0 and m0 ← 0)

at timestep t, respectively; β1 and β2 are the first and second moment

decay rates, respectively; η is the learning rate; and κ is a scalar value.

In our case, η is chosen equal 0.001, other parameters are chosen as de-

fault setting [92] (β1 = 0.9, β2 = 0.999 and κ = 10−8). The details of

the proposed CNNSHW architecture are described in Table 3.4.
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3.5. Validation experiments

In these experiments, the reconstructed datasets in Section 3.3 are

used to implement training on the proposed models. Different mod-

els are performed to obtain the results. Firstly, with the unprotected

dataset, only MLP architecture in TCHES2019 called MLPDDLA, and

the fine-tuned MLPSHW are investigated. In the case of the protected

dataset, the experiments aim to evaluate the efficiency of SHW com-

pared to LSB. Therefore, the MLPDDLA model is reused, except for the

output layer and labeling technique, to train the masked data. Regarding

hiding countermeasure, MLPSHW and CNNSHW is used to attack noise-

generator and de-synchronized datasets, respectively. The experiments

are performed on a personal computer with the configuration of Intel

Core i5-9500 CPU and DDR4 24GB memory.

3.5.1. Taking the correct key and fine-tuning model

Unlike the profiled DLSCA, non-profiled DLSCA uses the trend of

training metrics, such as loss and accuracy, to detect the correct key.

This subsection indicates how to use accuracy for determining the correct

key in a non-profiled context, and it can be applied to loss metrics as

well. Apart from taking the correct key, this part aims to achieve better

performance by choosing the right number of hidden layers and the size

of each hidden layer. Specifically, four different models are proposed

based on MLP architecture called MLPSHW1, MLPSHW2, MLPSHW3, and

MLPSHW4 corresponding to four different number of hidden layers. The

details of the proposed models are presented in Table 3.5. In the case

of CNN-based model, the proposed architecture starts with the original

architecture described in [7], except for the output layer. The variant of
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Table 3.5: Hyper-parameters of MLP models using in experiments.

Hyperparameters MLPDDLA MLPSHW1 MLPSHW2 MLPSHW3 MLPSHW4

Input 700 50 50 50 50

Hidden layer 2 3 4 5 6

Neuron 20x10 150x100x25 150x300x100x25 150x300x300x100x25 150x300x600x300x100x25

Output 2 3 3 3 3, 9

Label LSB SHW SHW SHW SHW, 9-HW

Optimizer Adam Sdgm Sdgm Sdgm Sdgm

Activation RELU ELU ELU ELU ELU, RELU

Learning rate 0.001 0.01 0.01 0.01 0.01

Batch size 1000 - - - -

Initializing Xaivier Initialization

a) b) c) d)

Figure 3.5: Results of validation accuracy using proposed MLP model with different
number of layers. a) MLPSHW1; b) MLPSHW2; c) MLPSHW3; d) MLPSHW4

CNNSHW will be investigated in the next part.

Firstly, the training processes on unprotected CW data (Dataset4R)

are performed using proposed MLP models. As an illustration, Fig. 3.5a

presents the validation accuracy obtained when performing MLP-based

SCA attacks using CW dataset with ne = 30 epochs per guess key. In the

graph in Fig. 3.5a, the horizontal axis presents the number of training

epochs, and the vertical axis shows the validation accuracy values. A

total of 256 curves corresponding to 256 accuracy metrics are obtained.

It means that these curves are the results of 256 pieces of training using

256 sub-dataset (blue) as shown in Fig.3.2. It can be seen that only one

red curve has the highest values (around 65% from the 10th epoch to the
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last). In contrast, all other blue curves are lower and fluctuate around

40%. This graph demonstrates that the proposed model can learn the

dataset formed by the correct key and can not learn the incorrect key

datasets. Consequently, the correct key is found in our attack setup.

As mentioned above, besides finding the correct key, this experiment

aims to find out the most effective model from different MLP architec-

tures as presented in Table.3.5. Furthermore, these experimental results

clarify the efficiency of SHW labeling compared to other techniques. In

this case, the number of epochs and the value of accuracy are used as

the metrics for determining the best model, which requires the smallest

number of epochs and achieves the highest accuracy value to distinguish

the correct key from the incorrect one. As depicted in Fig 3.5, all pro-

posed MLP models provide good results in taking the correct key. There

are no big differences in the results of different numbers of hidden layers.

However, it can be seen that the most significant difference is in the first

ten epochs. Regarding accuracy, MLPSHW1 and MLPSHW2 are lower than

the rest. These results show that using more hidden layers (MLPSHW3,

MLPSHW4) could achieve higher accuracy in the case of unprotected data

like CW. Switching to number of epochs, it is clear to see that MLPSHW4

can distinguish the correct key with only five epochs. In addition, the

accuracy at epoch 5th of this model is the highest. Therefore, MLPSHW4

is selected for the next experiment. Next, by using MLPSHW4, additional

experiments are performed to investigate the efficiency of SHW labeling

techniques compared to others. However, only HW labeling and LSB

labeling techniques are investigated since identity labeling will naturally

lead to similar DL metrics for all the key candidates as indicated in
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a) b)

Figure 3.6: Experimental results of proposed model using a) 9-HW and b) SHW
labeling technique.

[7]. HW labeling technique is commonly known as an effective power

model, which contains nine classes (9-HW). In this experiment, we per-

form a DLSCA attack on Dataset49-HWR using MLPSHW4 with 9-HW.

The attack results are then compared to that of SHW, as shown in the

previous experiment. As illustrated in Fig.3.6, both labeling techniques

achieve good results in taking the correct key. However, it is clear that

9-HW technique has lower accuracy and requires at least seven epochs

to discriminate the correct key. More importantly, the number of power

traces needed for the SHW technique is approximately 3000 compared

to 5000 power traces of 9-HW (less than approximately 30%).

In summary, in the case of using unprotected data like CW, MLPSHW4

provides stable results and requires fewer epochs than others. Further-

more, the model using SHW achieves better results and reduces the

number of power traces needed for DLSCA. Therefore, for the rest of

this chapter, we choose MLPSHW4 using the SHW label as the main

MLP-based model for the experiments on the unprotected dataset.
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(a) (b)

Figure 3.7: Results of ASCAD database for different models using SHW and LSB
labeling technique: a) MLPDDLA and LSB label; b) MLPSHW and SHW
label;

3.5.2. Unprotected data

To investigate the efficiency of the proposed model and labeling tech-

nique on the unprotected platform, we use the unmasked ASCAD dataset

reconstructed in Section 3.3. Especially, the performance of DDLA us-

ing different labeling techniques, including SHW-based and LSB-based,

is investigated. For simplicity, only MLPSHW4 model is used in this

experiment. Firstly, the training processes using MLPDDLA model on

Dataset1R are performed with ne = 35 epochs per guess key. It is im-

portant to note that the dimension of data input of MLPDDLA is the

same as the original one. However, MLPDDLA are implemented on MAT-

LAB framework instead of Pytorch as in the original work. Secondly,

the MLPSHW4 model using SHW-based labeling technique is trained on

Dataset2R with ne = 35 epochs for each key guess. The attack results on

the third byte are illustrated in Fig. 3.7, it can be seen that by using the

SHW labels, the model has lower validation accuracy than TCHES 2019

because they use only two labels, which leads to the results for classifica-

tion is at least 50%. Indeed, the result of MLPDDLA on Fig. 3.7.a shows
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that the validation accuracy of the correct key (red curve) increases grad-

ually from 50% to approximately 68%, whereas the incorrect key ones

(blue curves) fluctuate around 50%. Obviously, MLPDDLA can discrimi-

nate the correct key after 10 epochs.

Switching to the proposed models, as it can be clearly seen in Fig. 3.7.b,

the validation accuracy of correct key guess (red curve) increases in a

zig-zag way from 30% to 55.6% and then keeps consistent. In contrast,

the incorrect key guesses (blue curves) update the values only in the first

ten epochs, then keep unchanged below 40%. These results demonstrate

that the proposed model using SHW has the ability to reveal the cor-

rect key. Despite lower accuracy, the proposed technique gives a high

probability of discriminating the correct key than the model in [7]. In

addition, the number of epochs needed for determining the correct key

is only seven compared to 10 of MLPDDLA (red dash line).

3.5.3. Protected data

According to [7], the MLP-based model is suitable for masked data

since it can combine second-order leakage samples automatically with-

out any pre-processing technique. On the other hand, the CNN-based

model is capable of fighting against hiding countermeasures. Therefore,

in this experiment, an MLP-based model is used to investigate the effi-

ciency of the proposed technique on a masked dataset. Regarding hiding

countermeasures, both MLP-based and CNN-based models are selected

to evaluate the performance.

Masking

a) Combining function in non-profiled DLSCA

As presented in Section 1.4.1, a very common countermeasure to
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protect block ciphers implementation is to randomize their sensitive

variables by masking techniques. Every sensitive variable v is ran-

domly split into d shared m1, . . . ,md in such a way that the relation

m1 ∗m2 . . . ∗md = v is satisfied for a group operation ◦.

In the case of first-order masking, let assume two leakages L (t1) and

L (t2) at sample l1 and l2 such that:

L (t1) = δ1 + HW (v ⊕m) + B1

L (t2) = δ2 + HW (m) + B2

(3.7)

where δ1 and δ2 denote the constant part of the leakage, HW (.) is the

Hamming Weight function, B1 and B2 are two Gaussian random vari-

ables (center zero and with standard deviation σ).

The input y1i of node i in the first shared layer can be calculated from

the S-dimension data input a
(0)
j (j < 0 ≤ S) and the weight wj as follows:

y1i =
m∑
j=0

(
wj × a

(0)
j

)
=

m∑
j=0,j ̸=l1,l2

(
wj × a

(0)
j

)
+

(
wl1 × a

(0)
l1

)
+

(
wl2 × a

(0)
l2

)
=

m∑
j=0,j ̸=l1,l2

(
wj × a

(0)
j

)
+ (wl1 × (δ1 + HW (Z ⊕M) + B1))

+ (wl2 × (δ2 + HW (M) + B2))

=
m∑

j=0,j ̸=l1,l2

(
wj × a

(0)
j

)
+ (wl1 × L (t1)) + (wl2 × L (t2))

(3.8)

Because (wj)0≤j≤S ∈ R, therefore L (t1) and L (t2) can be positive

or negative. As the result, if the model is perfectly trained (wj ≈

0 (j ̸= l1, l2)), the function F (.) can be satisfied:

F (L (t1) , L (t2)) = |L (t1)− L (t2)| (3.9)

in other words, the neural network can recombined the mask and the

masked values following the “absolute difference combining function” to
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Figure 3.8: Experimental results on masked AES data using LSB and SHW labeling
technique.

perform a high-order attack [33]. However, for this combining to work

correctly, we assume that δ1 be equal to δ2 as indicated in [33].

b) Attack results

As presented in Section 3.1, POI selected dataset is only suitable in

first-order leakage data. Therefore, in this experiment, only the efficiency

of the proposed labeling technique is investigated. The reconstructed

dataset method and proposed MLP architectures are out of scope of

this experiment. A new dataset called ASCADSHWR is created based on

ASCAD data, which is labeled using SHW instead of LSB method. For

convenience, MLPDDLA model is selected to evaluate both LSB labeling

and SHW labeling techniques.

Firstly, the attacks are launched by MLPDDLA model, which is trained

on the ASCADLSBR dataset with two outputs (LSB label). Next, other

attacks are implemented on MLPDDLA model using the ASCADSHWR

dataset with three outputs (SHW label). The experimental results are

shown in Fig. 3.8. It can be seen that LSB labeling provides a clear

distinction between correct and incorrect keys, whereas it is only a small



99

gap between correct key and incorrect keys in the case of the SHW la-

beling method.

To investigate more about SHW on masked data, other attacks are

performed on ASCAD. The known key-based analysis is then applied.

The attack results are shown in Fig. 3.9. In these experiments, the PGE

metric is selected to evaluate the efficiency of SHW. It is clear that the

correct key usually has a lower loss (low PGE) value than the incorrect

keys, as shown in Fig. 3.9.a,b,c. However, detecting the key through the

normal method or even the “early stop” technique is not enough.

To reveal the secret key, a new distinguisher based on the inversion of

PGE value is introduced. It contains two steps:

� The attacks are performed and repeated N times. PGE of all hy-

pothesis keys is calculated on N attacks.

� Calculate the inversion of all PGE (IPGE) as follows:

IPGE =
1

PGE + ϕ
(3.10)

where ϕ = 1 is a constant to avoid division by zero in the case

of PGE = 0. Therefore, IPGE reaches 1 when PGE = 0. The

correct key is then determined based on the highest IPGE of the

corresponding hypothesis key.

The attack results using IPGE are presented in Fig. 3.10. By using

IPGE values, the correct key is clearly detected from other hypothe-

sis keys. The results also indicate that the performance of the model

depends on the hyperparameter of the model, such as batch size and

number of epochs. As shown in Fig. 3.10.a, the attacks on 30 epochs

training provide better results than that of using 20 epochs (another
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peak occurs in Fig. 3.10.b). On the other hand, Fig. 3.10.c indicates

that the batch size of 256 achieves better results compared to others

(the correct key’s IPGE value is greater).

The experiment results have clarified the correlation between the com-

bined second-order leakage samples and the HW model. However, the

poor results of SHW show that SHW is less efficient than the LSB label

in this case. By applying the IPGE distinguisher, it is demonstrated that

SHW labeling is able to reveal the subkey from an AES implementation-

equipped masking. In addition, the SHW labeling technique helps reduce

the number of measurements for each training process by approximately

30% compared to the LSB labeling technique.

Despite revealing the subkey successfully, the biggest disadvantage of

this method is that it requires many iterations of attack to take the PGE

values. However, this issue can be solved with other hyperparameters of

the model.
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Figure 3.9: Partial Guessing Entropy of the correct key on different attacks using
ASCAD data with SHW labeling technique.
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Figure 3.10: Attack results on ASCAD data using IPGE distinguisher and SHW
label. a) 30 epochs, batchsize = 1000; b) 20 epochs, batchsize = 1000;
c) 30 epoch, batchsize = 256

Noise generation based hiding countermeasure

This subsection evaluates the ability of non-profiled DLSCA against

a noise generation countermeasure. In order to simulate the noise gen-

erator countermeasure, different levels of Gaussian noise are added to

power traces as described in Section 1.2.3. As pointed out in the pre-

vious chapter, non-profiled SCA utilizes the relationship between real

power consumption and the power consumption model. In addition, the

authors in [20] showed that the additive noise contribute to values of

the Signal-to-noise ratio as follows:

SNR =
V ar (Pexp)

V ar (Psw.noise + Pel.noise)
(3.11)

where Pe.noise is electronic noise, Psw.noise is switching noise and Pexp

denotes the exploitable power consumption.

In this case, additive noise plays a role as Pe.noise. Furthermore, in [1],

the authors show that the correlation is proportional to
√
SNR. There-

fore, when the Gaussian noise is introduced, the relationship between

the data input and the output (label) of DDLA decreases. As a result,

the DL model is more difficult to learn the data correctly.
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(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

Figure 3.11: Attack results of the MLPSHW4 model fight against three levels of noise
generation-based hiding countermeasure. Left column: 0.025, Cen-
ter column: 0.05, Right column: 0.075; Fig (a),(b),(c) are results of
MLPSHW4 using ELU activation function; Fig (d),(e),(f) are results of
MLPSHW4 using ReLU activation function; Fig (g),(h),(i) compare the
validation accuracy of MLPSHW4 using ELU and ReLU.

In this experiment, the datasets described in the Table 3.2 are chosen

because the raw power traces from the CW platform are low in noise,

and we assume that they have no impact on measurement equipment.

The results are depicted in Fig. 3.11, where the top row and middle

row illustrate the results of MLPSHW4 using ELU and RELU in different

levels of noise. The bottom row shows the comparison of using ELU

and RELU activation. Overall, MLPSHW4 provided good results in a



103

a) b) c)

Figure 3.12: Non-profiled DLSCA and CPA attack results against hiding counter-
measure. a) DLSCA, ≈ 2100 power traces, σ = 0.025; b) DLSCA,
≈ 2100 power traces, σ = 0.055; c) CPA, 3000 power traces, σ = 0.055

non-profiled context. However, MLP-based DDLA needs more epochs

to discriminate the correct key than CNN-based DDLA.

In terms of the effect of noise, the curve accuracy of MLPSHW4 training

on the dataset reconstructed from the correct key goes down when the

standard deviation of Gaussian noise increases (from 0.025 to 0.075) as

illustrated in Fig. 3.11.a,b,c. However, a significant difference in perfor-

mance between ELU and RELU activation can be seen as depicted in

Fig. 3.11.g,h,i. In the first case (σ = 0.025), it is clearly seen that the cor-

rect key accuracy of MLPSHW4 using ELU activation (red curve) increases

drastically and reaches the peak of about 60%, whereas the RELU used

model (blue curve) increases gradually from 36% to 49%. This means

that ELU used model provides greater learning ability than RELU. In

addition, the number of epochs needed for discriminating the correct key

is only 5 (ELU- red dash line) compared to 7 (RELU- blue dash line).

More interestingly, in the case of higher noise (σ = 0.05), ELU used

MLPSHW4 needs only 7 epochs compared to 19 epochs of MLPSHW4 using

RELU to determine the correct key. Especially, the results presented in

Fig. 3.11i show that both models using ELU and RELU fail to recover
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Figure 3.13: Experimental result of non-profiled DLSCA using different sizes of
dataset . a) ≈ 2100 power traces, σ = 0.055; c) ≈ 2800 power traces,
σ = 0.055; d) ≈ 3500 power traces, σ = 0.055.

the key due to the presence of a high level of noise (σ = 0.075). However,

the red curve is still higher than the blue curve. These results clarify

that MLPSHW4 using ELU outperforms the RELU in fighting against a

noise generation-based hiding countermeasure.

In next experiment, all attacks are performed using MLPSHW4. The

results of non-profiled DLSCA on the low noise dataset (Dataset51R) are

illustrated in Fig. 3.12a. Evidently, our model provides good perfor-

mance with the presence of a small level of noise generator (σ = 0.025).

However, by increasing the noise (σ = 0.055) and keeping the same size

of the dataset (Dataset52R), the noise generator countermeasure fights

against our MLP-based model successfully, as depicted in Fig. 3.12b.

Compared to CPA attack, we perform a first-order CPA attack on the

original dataset of Dataset52R namely Dataset52O. The results shown

in Fig. 3.12c indicate that the CPA attack outperforms non-profiled

DLSCA in the case of applying noise-generator countermeasure. Next,

we keep the level of noise (σ = 0.055) and increase the size of the dataset

to 4000 and 5000 power traces, then the reconstructed datasets called

Dataset53R and Dataset54R are used. Fig. 3.13 depicts the attack results.
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Figure 3.14: The CPA attack results on de-synchronized datasets. a) Small shifted
value, success; b) High shifted value, failed

Interestingly, by increasing the size of the attack dataset, our model

achieves better results and breaks the noise generator countermeasure

successfully, as shown in Fig. 3.13c. These results clarify that increasing

the attack set size can help mitigate the hiding countermeasure in the

non-profiled scenario.

De-synchronized

In this part, we first clarify that the de-synchronized works well in

defending the statistic-based attack such as CPA. Two CPA attacks are

performed on Dataset3sh1R and Dataset3sh5R. As depicted in Fig.3.14,

it can be clearly seen that the CPA attack on Dataset3sh1R can reveal

the secret key easily, whereas the attack on Dataset3sh5R failed. These

results have clarified the efficiency of de-synchronized on defending CPA

attacks.

To investigate the efficiency of the proposed CNN model using SHW

label (CNNSHW), we start with the base architecture as described in [7]

(CNNLSB), except the output layer. Then, we evaluate the impact of

the different number of filters to find the most effective model. In ad-

dition, the comparisons are made for our proposed model and TCHES

2019. Firstly, the attack results of CNNLSB and CNNSHW using four fil-
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Figure 3.15: The attack results of CNN models using LSB and SHW labeling tech-
nique on de-synchronized datasets with different numbers of filters. a)
LSB label, 4 filters; b) SHW label, 4 filters; c) SHW label, 8 filters; d)
SHW label, 16 filters;

ters are shown in Fig. 3.15.a and Fig. 3.15.b, respectively. With the same

condition of the training process (number of epochs, number of filters,

activation, etc.), it can be seen that CNNLSB can not reveal the secret

key, whereas the secret key can be clearly discriminated at epoch 150 by

CNNSHW. More interestingly, CNNSHW performs the attacks faster than

CNNLSB by about 20% (8.31 hours compared to 10.52 hours as shown

in Table 3.8) since the model using SHW label reduces approximately

30% power traces needed for training. It is worth noting that by imple-

menting various experiments, the results of CNNSHW mentioned above

are achieved with a batch size equal to 200; other values provide poor

results.

In summary, these results have demonstrated that DL-based attack

outperforms CPA in the same condition, such as the number of measure-

ments for attack and de-synchronized countermeasure applied. Signif-

icantly, the CNN model using SHW achieves higher performance than

that of using LSB labeling.
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Table 3.6: The execution time of DDLA attacks on unprotected data using different
labeling techniques.

Target Model
Labeling

technique

Number of traces No. of

samples

RD method

(ε)

No. of

epochs
Execution time

Total Used for training

CWno mask
MLPexp [7] LSB 3000 3000 10000 - 30 4 hrs 31 min 59 sec

MLPSHW4 SHW 3000 ≈2100 50 P-CPA (50) 30 1 hr 39 min 30 sec

ASCADunmasked
MLPexp [7] LSB 10000 10000 700 - 30 6 hrs 53 min 44 sec

MLPSHW4 SHW 10000 ≈7000 50 P-CPA (50) 30 6 hrs 0 min 41 sec

RD: Reducing data dimension; -: Not used

3.5.4. Complexity

This section analyzes the complexity of proposed methods compared

to the previous work [7]. One drawback of DDLA is that it is necessary

to perform DL training for each key guess. In the previous subsection,

the number of epochs is used as the metric to quantify the efficiency

of an attack. However, in practice, the time complexity could be re-

duced when the model uses the “early stopping” technique to finish the

attacks. This technique is out of scope in this thesis and will be consid-

ered in our future work. To complete the performance analysis of DDLA

attacks, we provide the execution time comparison for one key byte at-

tack. Firstly, the execution times of the proposed model using the SHW

labeling and LSB labeling technique were recorded. It is worth noting

that all experiments are performed on a personal computer without a

Graphic Processing Unit (GPU). It means that the execution time could

be reduced dramatically when utilizing parallel computing (a multi-core

CPU or GPU). The results are summarized in Table 3.6.

Firstly, the efficiency of the dimensionality reduction method and

SHW is demonstrated on the CW dataset. The execution time of DDLA

attacks using the SHW label on a reconstructed dataset is significantly

faster compared to the original dataset using the LSB label (approxi-
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Table 3.7: The execution time of DDLA model using LSB and SHW label.

Attack
method

No. of
traces training

No. of epochs Batch size
Labeling
technique

Attack time
(hours)

Iteration
required

MLPexp [7] 20,000 30 1000 LSB 0.24 1
MLPexp

+ IPGE
≈14,000 30 1000 SHW 3.3 20

20 1000 SHW 2.92 20

Table 3.8: The execution time of CNN model using LSB and SHW label with different
numbers of filters.

Model No. of filters Attack time (hours)

CNNLSB 4 10.52

CNNSHW

4 8.31

8 10.26

16 16.41

mately 1 hour 40 minutes compared to 4 hours 32 minutes) since the di-

mensionality of data input reduced from 10000 to 50. The same trend of

attack time can be seen in the results of the ASCAD unmasked dataset.

However, the attack time decreases slightly from 6 hours 53 minutes to

6 hours because the dimension input reduces from 700 to 50.

Next, we consider the case of the ASCAD masked dataset. In this

context, the architecture, number of traces, and input dimensions are

chosen the same as in Timon’s work. It is noted that for utilizing the

performance of multi-core, Keras framework is used instead of MATLAB

for the rest of the experiments. As presented in Table 3.7, the execution

time of MLPexp [7] on 20,000 power traces using LSB is 0.24 hours to re-

veal the subkey. Regarding MLPexp using SHW, it is not clear for taking

the subkey after one training as illustrated in Fig. 3.8. Therefore, IPGE

is applied to reveal the subkey. Consequently, only the execution time

of MLPexp combining IPGE is provided. Since IPGE requires many iter-

ations, the execution time of MLPexp using SHW is very long compared

to LSB in this case (2.92 hours compared to 0.24 hours).
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Finally, additional experiments are performed to investigate the com-

plexity of CNNSHW using different numbers of filters. The attack results

are depicted in Fig. 3.15.b,c,d. With the same eight filters for both

Conv1D blocks, CNNSHW achieves better results than four filters when

the correct key can be revealed earlier after 100 epochs. The same trend

can be seen with CNNSHW using 16 filters. The secret key can be dis-

tinguished after only 50 epochs. However, the negative impact of the

increasing number of filters is that the attack time goes up significantly

from 8.31 hours to 16.41 hours, corresponding to 4 filters and 16 filters,

respectively.

In summary, the dimensionality of data input strongly impacts the

performance of DDLA. The proposed dimensionality reduction method

has demonstrated efficiency in the case of first-order leakage compared

to Timon’s work. In addition, the size of the training data can be de-

termined by the label used. In our scenario, the models using SHW

have achieved better results than that using the LSB labeling method in

terms of execution time for non-protected or de-synchronized data. In

the case of masking, the SR of attack is low due to the weak correlation

between actual power consumption and the power model. In this case,

the correct subkey is still reveal by repeating the training process and

using IPGE as a distinguisher. It is noted that the neural networks used

for the experiments in this chapter were purposely kept small to limit

the complexity of the attacks. The architectures used are surely not op-

timal, and other hyper-parameters of the network might lead to better

results.
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3.6. Summary

In this chapter, non-profiled deep learning-based SCA techniques are

presented and provide details investigations of different scenarios. Re-

garding the high dimensional data issue, the P-CPA technique is in-

troduced to select the most informative sample points. Therefore, the

size of the data input reduces significantly. Related to the imbalanced

dataset problem, a new labeling technique called SHW based on Ham-

ming weight is proposed. By using SHW for MLP and CNN, the models

have been trained and revealed the correct key successfully. More in-

terestingly, SHW helps the attacker reduce the measurements needed

for training processes by approximately 30%. Various experimental re-

sults are reported in this chapter, which clarifies the efficiency of SHW

compared to 9-HW and LSB labeling techniques on both unprotected

and protected datasets. The results also indicate that it is difficult to

distinguish the correct key based on SHW label in the case of masking

countermeasure applied. This issue can be solved by utilizing IPGE dis-

tinguisher after repeating the attack many times. It therefore leads to

a longer execution time compared to model using LSB label. Regarding

noise generation countermeasure, the experimental results have demon-

strated that increasing the attack dataset can account for the correlation

noise-generator hiding technique.
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Chapter 4

MO-DLSCA: MULTI-OUTPUT DEEP LEARNING BASED
NON-PROFILED SCA

This chapter introduces new DL models based on multi-output classifi-

cation and multi-output regression, which can predict all possible values

of the key hypothesis in a single training without any reference device.

As a result, the proposed methods can reduce the attack time from sev-

eral hours to less than half an hour compared to previous work in a

non-profiled context. In addition, this chapter first suggests using the

identity labeling technique in the non-profiled SCA domain, which mit-

igates the imbalanced dataset issue and eases the SCA evaluation.

The validation results of the proposed techniques were presented in

the papers [C4], [J2], and [J4].

4.1. Introduction

The efficiency of the DDLA technique has been demonstrated in dif-

ferent scenarios, especially in the case of masking and hiding counter-

measures applied. However, DDLA spends several hours or even more to

reveal only one byte of the secret key. The main reason for the aforemen-

tioned problem is that DDLA requires performing the training process

many times to record the training metrics for all key hypotheses. It leads

to a time-consuming and high-cost evaluation process. For example,

with the AES-128 algorithm, the DDLA method (Algorithm 2) requires

performing 256 training processes corresponding to 256 key guesses to
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Figure 4.1: Differential deep learning analysis attacks perform the training process
repeatedly to reveal the secret key.

determine the correct subkey byte, as illustrated in Fig. 4.1.

Most recently, the drawbacks of the original DDLA have been in-

vestigated and mitigated by Kwon et al. [40]. Their work is based on

multi-label neural networks. Accordingly, they use a parallel architec-

ture to predict a total of 256 hypothesis keys. The loss function used

in the parallel network is the binary cross-entropy. The output layer

consists of 256 nodes (corresponding to 256 key guesses).

To apply the multi-label in their model, the hypothesis intermediate

value h = LSB(Sbox(p ⊕ ki)) is calculated for each key guess. Let us

assume that the values for k0 is 0, for k1 is 1, for k2 is 1,..., and for k255 is

0, then the label array “011....0” is achieved. One element of the array

represents one key hypothesis. Therefore, it consists of the values for all

key guesses. Since only a scalar loss value is achieved after a training

process, the authors cannot use the “loss metric” for discriminating the

correct key. Their solution is using a custom function to calculate the

accuracy of each key guess by separating the output and then matching

the hypothesis values to count the number of corrected predictions. This
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Figure 4.2: The structure of multi-output neural network

method requires extra calculations to achieve the final results. Therefore,

the attack time is not optimized.

The authors in [40] have also introduced a shared-layer-based model to

mitigate the drawback of parallel architecture. However, their proposed

architectures are still based on the original DDLA. Therefore, only the

attack time is investigated and enhanced. Another important metric,

such as the success rate of attack, has not been considered.

Recently, an alternative and often more effective approach in the DL

domain is to develop a single neural network model that can learn multi-

ple related tasks (i.e., outputs) at the same time, called multiple-output

learning (MOL) [79]. There are two mostly used models in MOL: multi-

output regression (MOR) and multi-output classification (MOC), as il-

lustrated in Fig. 4.2. Firstly, MOR is known in the literature as multi-

target, multi-variate or multi-response regression, which aims to pre-

dict multiple real-valued output/target variables simultaneously. Next,

MOC is usually used to perform different classification problems simul-

taneously. From the point of view of the SCA domain, MOR and MOC

are promising techniques that could increase the performance of the SCA
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evaluation process. Therefore, this chapter proposes and investigates the

efficiency of MOL models based on two popular architectures, such as

MLP and CNN. Concretely, MLP-based MOL models are selected to deal

with the datasets that are equipped with masking or noise injection coun-

termeasures. To break other protected scheme such as de-synchronized,

the models based on CNN are applied.

4.2. Data preparation

To apply multi-output model in SCA domain, the data input (power

traces) should be labeled by the values corresponding to the model out-

puts. The proposed models aim to predict all key hypotheses in one

training process. Therefore, the number of network outputs is K, which

corresponds to K key guesses (0 to K). However, it is different from

Kwon’s models; the outputs of the proposed model are divided into K

branches. To benchmark the proposed models, this chapter uses the
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Figure 4.3: Structure of multi-output datasets used in this thesis.

same LSB labeling technique as in previous works [7, 40], which is cal-

culated by the formula (1.12). Regarding the MOR model, the identity

labeling technique is first selected to use in non-profiled DLSCA. In this

case, the ID labels are calculated by the formula (1.13). Regarding the

SHW label, it requires a different set of power traces corresponding to

different key hypotheses. Therefore, SHW can not be applied in multi-

output architecture. All multi-output datasets used in this chapter are
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Table 4.1: The structure of reconstructed datasets.

Dataset
ASCAD ChipWhisperer CHES2018-CTF

Ground truth

value

No. of traces Input No. of traces Input No. of traces Input

Original 50000 700 10000 480 45000 2200 -

Dataset1 20000 700 - - - - LSB

Dataset2 20000 700 - - - - Identity

Dataset3 - - 10000 480 - - LSB

Dataset4 - - 10000 480 - - Identity

Dataset5 - - - - 40000 2200 LSB

Dataset6 - - - - 40000 2200 Identity

constructed as depicted in Fig. 4.3.

In order to evaluate the efficiency of the proposed models, the data

recorded from different platforms are considered, including ASCAD data,

CHES2018-CTF data, and the data captured from the CW board. Con-

cretely, 20,000 power traces from the fixed key ASCAD dataset are used

to evaluate the efficiency of the proposed model on the first-order mask-

ing countermeasure. To evaluate the efficiency of proposed models on dif-

ferent platforms, other masking datasets are reconstructed from 40,000

power traces CHES2018-CTF. In the case of CW data, 10,000 power

traces with the size of 480 samples/trace are selected, which correspond

to the power consumption of the first Sbox output process. In addi-

tion, this dataset simulates the de-synchronization countermeasure as

described in Section 1.2.3. The structure of reconstructed datasets used

in this chapter is shown in Table 4.1.

4.3. Proposed multi-output classification neural networks

This section introduces MOR and MOC models based on multi-layer

perceptron architecture, which can predict 256 hypothesis keys simulta-
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Figure 4.4: Structure of proposed multi-output classification neural network.

neously in a single training process.

4.3.1. MLPMOC

This part first considers the non-profiled SCA as a classification prob-

lem. As depicted in Fig. 4.4.a, the overall architecture of the proposed

network consists of an input layer, a shared layer followed by K branches

corresponding to K hypothesis keys (for example, K = 256 in the case

of 8-bit Sbox). Each branch contains an MLP architecture as same as

MLPDDLA (except the input layer) [7]. According to [23], the number of

layers and the number of nodes in each layer are similar to the original

MLPDDLA model (hidden layer: 20x10-Relu, output layer: 2-Softmax).

The input layer of the proposed model has the same size as the number

of samples in the power trace.

The shared layer plays an important role in the proposed architecture.

It can be utilized the max shared as in MLPmax-shared [40]. However, using

the same architecture of MLPDDLA except the output layer, their archi-

tecture only decreases the execution time without enhancing the success

rate, especially in the case of noisy data. In contrast, the proposal aims

to decrease the computation time as well as enhance the success rate.
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Therefore, we do not make the comparison to MLPmax-shared in this work.

In the proposed model, the shared layer is exploited to decrease the

number of input features for each branch. In addition, the shared layer

plays a role in reducing the impact of noise of data input. As a result,

the proposed model can deal with noise generator hiding countermea-

sure better than MLPDDLA. However, it may cause a negative impact on

the convergence of the optimization algorithm compared to MLPDDLA.

Consequently, the number of epochs for obtaining good training met-

rics is higher than the model without using a shared layer. A formal

description of our proposed model is presented below.

Let W [l] = Ru(l−1)×u(l) and B[l] = Ru(l) be the matrices of weight and

bias parameters, respectively, of the shared layer number lth containing

u(l) units. Prior to the implementation training phase, the values of

weights and bias are randomly chosen from a normal distribution using

the Xavier scheme.

Firstly, the “forward propagation” procedure is performed. Given an

example input ti, the activation value of the unit in the shared layer

number lth (presented as A) is computed as follows:

Z [l] = W [l]A[l−1] + B[l]

A[l] = σ
(
Z [l]

) (4.1)

where σ denotes the activation function and it is noted that A[0] = ti.

There are some commonly used and popular activation functions such

as Sigmoid, Hyperbolic tangent (Tanh), ReLU, ELU, and Softmax. In

the proposed model, ReLU is chosen for the nodes in hidden layers since

it is less computationally expensive than others.

Regarding the non-shared layers, the activation values of the first non-
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shared layer of the branch kth (A[1,k] ∈ Runs) are computed as follows:

Z [1,k] = W [1,k]A[s] + B[1,k]

A[1,k] = σ
(
Z [1,k]

) (4.2)

where A[s] represents the activation values of the last shared layer. Con-

sequently, the activation values of the last non-shared layer of the branch

kth is defined as:

Z [ns,k] = W [ns,k]A[ns−1,k] + B[ns,k]

A[ns,k] = σ
(
Z [ns,k]

) (4.3)

In the proposed MOC model, four variants of the shared layer are

investigated. They include a non-shared layer (0 node) and one shared

layer of 50, 200, and 400 nodes, for comparison with MLPDDLA. In the

case of the model using the non-shared layer, each first hidden layer of a

branch is fully connected to the input layer. In such a case, each branch

of the proposed model can learn all input features independently, similar

to MLPDDLA architecture. However, the novelty of the proposed model

is that the network parameters are updated for all hypothesis keys in

each iteration instead of updating for only one guess key as MLPDDLA

architecture. Since the same structure is applied for all branches, the

weights used for each branch are equivalent. Consequently, the loss

function of the whole network is calculated as follows:

Ltotal =
256∑
k=1

γk ∗ L[k] (θ) (4.4)

where θ represents the set of all parameters of the model, γk is used as

the weighted factor of branch number kth and set as 1 for all branches

(weights of each branch is equivalent), L[k] denotes the loss results cal-
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Table 4.2: Deep learning hyper-parameters of proposed models.

Model MLPMOC CNNMOC

Input size 700, 480 700, 480

Shared layer
0/50/
200/400

conv1d 1 ( 4 32× 1 filters),
pool 1 (2× 1), norm, relu
conv1d 2 (4 16× 1 filters),
pool 2 (4× 1), norm, relu

Branch 256 256
Hidden layer/branch 20× 10 0
Output layer/branch 2 2
Activation Relu, Softmax Relu, Softmax
Optimizer Adam Adam
Learning rate 0.001 0.001
Batch size 100/500/1000 50/100/500/1000
Initializing He uniform He uniform

culated for the kth branch, which can be generally defined as follows:

L[k](θ) = − 1

Ns

2∑
j=1

ytrue ln (z) (4.5)

where ytrue and z are the ground-truth and the predicted values, respec-

tively. Ns denotes the number of training samples.

Finally, the “backward propagation” procedure is implemented to min-

imize the loss function Ltotal. Accordingly, the gradient of the loss func-

tion ∇Ltotal (θ) is computed for updating the network in each iteration.

∂Ltotal

∂θ
=

256∑
k=1

γk
∂

∂θ
L[k] (4.6)

In this thesis, the popular optimization algorithm called Adaptive

Moment Estimation (ADAM) with default setting is employed to train

the proposed model. The details of the proposed models are presented

in Table 4.2.

4.3.2. CNNMOC

The authors in [7] have introduced a CNN model (CNNDDLA) to re-

veal the secret key from the de-synchronized countermeasure. Similar
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to MLPDDLA, their model needs to be trained repeatedly to determine

the correct key. To mitigate this disadvantage, this part introduces a

multi-output model based on CNN architecture (CNNMOC), which can

break de-synchronized countermeasures in a single training process. The

proposed CNNMOC consists of an input layer, share layers, and an out-

put layer, as depicted in Fig.4.4.b. The shared layer consists of two

blocks. Each block includes a 1D convolutional (conv1d) layer, an av-

erage pooling (pool) layer, a batch normalization (norm) layer, and a

rectified linear unit (relu) layer. These layers are placed in order as fol-

lows conv1d-norm-pool-relu. In the training phase, with the equivalent

weights used for all branches, the loss function of each branch and for

the whole network is calculated by the formula (4.5) (4.4), respectively,

same as in MLPMOC.

Similar to MLPMOC, the CNNMOC model performs forward propagation

to calculate the output (256 nodes) from the input layer and backward

propagation to update the learning metrics. However, unlike in MLPMOC

where each node has a separate weight vector, nodes in CNNMOC share

weights. Each node performs convolutions on the data with the convolu-

tion filter being formed by the weights by Equation (3.6). Before feeding

up to a nonlinear activation function, the output of (3.6) is normalized.

In this case, two conv1d layers corresponding to two blocks are designed

as described in [7] with the size 32× 1 and 16× 1, respectively.

The details of the proposed models are presented in Table 4.2. For

simplicity, the simplest model based on CNNDDLA model is chosen, except

for the output layer. It is worth noting that the attacker is able to

apply other hyperparameters to our proposed architecture to enhance

the success rate of SCA attacks.
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Figure 4.5: Structure of proposed multi-output regression neural network.

4.4. Proposed multi-output regression neural networks

4.4.1. MLPMOR

Considering to regression problem, a MOR-based model is introduced

in this part. Similar to the MOC model, the proposed network consists

of an input layer, shared layers, followed by 256 branches corresponding

to K hypothesis keys. However, a regression model is used instead of a

classification model. Therefore, the output of each branch has only one

node, as depicted in Fig. 4.5.

To simultaneously achieve K output values corresponding to K key

hypotheses, the MLPMOR model performs forward propagation procedure

to calculate the outputs from the input layer. The calculation of each

node of the shared layer in the proposed model is the same as the cal-

culation of the MOC model. Once the prediction for a given input ti is

computed, the separate loss on each branch can be calculated by using

Mean Squared Error (MSE) for each key guess k as follows:

L[k] (θ) =
1

Ns

Ns∑
i=1

(yi − ŷi)
2

(4.7)

Similar to MOC models, all tasks (branches) of the proposed archi-
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Table 4.3: Hyperparameter of the proposed MOR model based on MLP architecture.

Model MLPMOR

Input size
ASCAD 700

CHES-CTF 2200

Shared layer

(Activation)

300× 100/ 500× 300/ 700× 500

(Relu)

Branch 256

Output layer/branch 1-Linear

Batch size 50/100/500/1000

Learning rate 0.001

Regularzation
Layer1 0.01/0.005/0.002/0

Layer2 0.02/0.01/0.004/0

Block1 Block2 Flatten
Linear

conv1d_1,

norm,

pool_1,

relu

Input layer Shared layer Output layer

conv1d_2,

norm,

pool_2,

relu

1 1( )y Sbox p k= 

2 2( )y Sbox p k= 

256 256( )y Sbox p k= 

1ŷ

256ŷ
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ma
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Figure 4.6: Proposed multi-output regression neural network using CNN architec-
ture.

tecture are considered equally important since each key hypothesis has

the same priority. To optimize the model, the task-specific losses are

simply added together to produce a single scalar loss value as described

in [93]. Therefore, our proposed model is optimized by performing back-

ward propagation with the sum of losses (Ltotal) using formula (4.4).

The details of the proposed networks are presented in Table 4.3. It is

worth noting that the MLPMOR model is performed with three variants

of the shared layer, including the size of a shared layer is 300 × 100,

500× 300, and 700× 500, for comparison with MLPDDLA.
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Table 4.4: Hyperparameter of the proposed MOR model based on CNN architecture

Model CNNMOR

Input size CW-shifted 480

Shared layer

(Activation)

Conv1d 1(N* 32× 1 filters),

Pool 1(2× 1), Norm, Relu

Conv1d 2(N* 16× 1 filters),

Pool 2(4× 1), Norm, Relu

Number of filters

(N)

Conv1d 1 4/8/16

Conv1d 2 4/8/16

Branch 256

Output layer/branch 1-Linear

Batch size 50/100/500/1000

Learning rate 0.001

4.4.2. CNNMOR

This part introduces a multi-output regression model based on CNN

architecture (CNNMOR), which can break de-synchronized countermea-

sure in a single training process. The CNNMOR model consists of an

input layer, share layers, and an output layer, as depicted in Fig.4.6.

The shared layer consists of two blocks as same as CNNMOC. The nov-

elty of the proposed model is that each branch contains only one node for

the output layer. It means that each branch of the model produces real

values for input data. These outputs are then compared to the ground-

truth values (ID labels). Therefore, the separate loss of each branch and

the total loss are calculated as the same in MLPMOR by formula (4.7)

and formula (4.4), respectively.

For simplicity, the proposed CNNMOR starts with the architecture

based on CNNDDLA model, except for the output layer. However, a dif-

ferent number of filters, as well as different batch sizes, will be used to

fine-tune the proposed models. The details of the proposed models are

presented in Table 4.4. It is worth noting that the attacker is able to
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apply other hyperparameters to the proposed architecture to enhance

the success rate of SCA attacks.

4.5. Validation experiments

All experiments were performed by Keras framework on a personal

computer with Intel Core i5-9500 CPU, DDR4 24GB memory. It means

that the complexity of our proposal is acceptable and can be imple-

mented on a personal computer easily.

4.5.1. Attack on unprotected data

In this part, different experiments are performed to demonstrate the

proposed models work well on unprotected datasets. Since the efficiency

of the LSB label has been demonstrated in Timon’s work [7], the experi-

ments of the proposed model use the Identity label on Dataset 4. Dataset

3 is selected for MLPDDLA. However, only 3,000 power traces are used in

these datasets for all experiments. In this part, the MLPMORy model is

used where y = 1, 2, 3 denotes the size of the hidden layer corresponding

to the size of 300 × 100, 500 × 300, and 700 × 500, respectively. The

results are presented in Fig. 4.7.

Overall, all models achieve successful attacks. However, there are

different results in the first ten epochs of each model. Concretely, it is

difficult to distinguish the correct key on the loss metric of MLPMOR1.

When the size of the shared layer (SoSL) increases, the gap between

the correct key and incorrect keys is clearer, especially in the case of

MLPMOR3, the correct key can be taken successfully at epoch 10. This

result indicates that the size of input data has a strong impact on the

multi-output model. In addition, the result also shows that a better
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Figure 4.7: Results of loss metric of MLPMOR on unprotected dataset with different
numbers of epochs. Left column: 30 epochs, Center column: 40 epochs,
Right column: 50 epochs; Fig (a),(b),(c) are results of MLPMOR1; Fig
(d),(e),(f) are results of MLPMOR2; Fig (g),(h),(i) are results of MLPMOR3;
Fig (j),(k),(l) are results of MLPDDLA.

result can be achieved by increasing the SoSL.

Regarding execution time, the presented attacks above are repeated

30 times. The execution time is then averaged and presented in Fig. 4.8.

The results show that the attack time of MLPDDLA is the highest in all
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Figure 4.8: Experimental results of proposed multi-output models on unprotected
data (ChipWhisper) using different size of shared layer

numbers of epochs. Fortunately, employing a multi-output architecture

reduces the attack time significantly (approximately 1.76 times). Fur-

thermore, the results suggest that the attack time is adversely affected

by the SoSL, with a longer attack time observed as higher SoSL values

are applied.

4.5.2. Attack on protected data

Masking countermeasure

a) MLPMOC

All experiments in this part are performed on Dataset 1. It is noted

that the labels corresponding to each key hypothesis can be taken out

simultaneously or separately depending on the output of the model.

Therefore, the reconstructed datasets can be used for training both

multi-output and single-output models.

Firstly, the performance of the proposed network with different values

for SoSL is investigated. The models with three values of the shared layer

size (50, 200, and 400) are denoted as SoSL-50, SoSL-200, and SoSL-
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a) SoSL-50 b) SoSL-200 c) SoSL-400 d) Non-SoSL

Figure 4.9: The experimental results of MLPMOC models on masking countermeasure
using different SoSL on each branch.

400, respectively. As depicted in Fig. 4.9, there is an increasing trend of

accuracy along with the increment of SoSL. Accordingly, the model of

SoSL-50 achieves poor discrimination in the first ten epochs compared

to other models. In contrast, the model of SoSL-400 can discriminate

the correct key from incorrect ones very early in Fig. 4.9c. Concretely,

at the 25th epoch, the training accuracy of the branch of the correct key

(red) increases from 0.588 for SoSL-50 to 0.636 and 0.668 for SoSL-200

and SoSL-400, respectively. However, at this epoch, the gaps between

the accuracy of the correct key and the highest accuracy of incorrect

keys (blue) decrease from 0.041 to 0.027 and 0.026, respectively. Hence,

using a high SoSL may cause an over-fitting problem, which leads to

failing attacks if we prolong the training time in too many epochs.

Switching to the proposed network of non-shared layer, so-called Non-

SoSL, further experiments are carried out on Dataset 1. As a result,

the Non-SoSL model achieves higher performance than all others at all

epochs, as shown in Fig. 4.9.d. Especially, the Non-SoSL model provides

a clear distinction between the correct key and incorrect keys very soon

at the first epoch and a big gap (0.05) at the 25th epoch. This result has

clarified that the shared layer has a negative impact on the convergence

of the proposed model due to common use for all outputs. Only the
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output of the correct key contributes a stable update to the shared layer;

other outputs make the weights of shared layers chaotic. The reported

results have clarified the efficiency of the proposed methods for masking

protected devices.

In the second experiment, the execution time of the proposed network

is evaluated and compared to MLPDDLA and MLPPL [40]. To achieve

reliable results, the previous experiments are repeated 50 times on the

same dataset. In addition, this experiment also performs the attack

using MLPDDLA 50 times. The computation time is then averaged and

presented in Fig. 4.10. Firstly, the impact of SoSL on the execution

time of the proposed network is evaluated. As depicted in Fig. 4.10.a,

the computation time of SoSL-50 is lowest (78.439 seconds), and SoSL-

400 is highest (130.35 seconds). As stated before, the main purpose of

the shared layer is to reduce the parameter for all branches. However,

the results of the execution time for SoSL-400 and Non-SoSL indicate

that the models using high SoSL will be more time-consuming than

the model without using a shared layer (130.35 compared to 109.657

seconds). Despite the lowest execution time, SoSL-50 achieves a lower

accuracy than all other models. By this observation, the SoSL-200 model

is specified as the best choice of a model using a shared layer to achieve

better results of both accuracy and execution time compared to other

models for the last experiments.

Unlike MLPPL, the multi-loss-based model in this work provides the

training metric separately on each output. It leads to lower complexity

than MLPPL using a custom function. To demonstrate this assump-

tion, the reported results in [40] are used to make the comparison. Ac-

cordingly, MLPPL reduces the execution time approximately 2.81 times
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a) b)

Figure 4.10: The experimental results on masking countermeasure. a, b) Accuracy
of proposed model with and without shared layer, respectively; c) Com-
parison of attack time.

compared to MLPDDLA (from 1950.9 to 693.8 seconds ), whereas Non-

SoSL decrease the execution time approximately 5.62 times compared

to MLPDDLA (from 1052.2 to 182.1 seconds). It is noted that the com-

parisons above are made in the same conditions, such as the number of

traces, dimensional input, and the number of training epochs. These re-

sults have clarified our assumption and demonstrated that the proposed

model outperforms both MLPDDLA and MLPPL on masking-protected

devices.

Finally, the attack time comparison of SoSL-200, Non-SoSL, and MLPDDLA

is conducted. Fig. 4.10.b presents the execution time of attacks using

selected models on different numbers of epochs. Overall, the execution

time of MLPDDLA is the highest in all cases. Interestingly, the execution

time of the proposed network decreases dramatically about eight times

and nine times (from 595.98 to 72.36 and 64.639 seconds), correspond-

ing to Non-SoSL and SoSL-200 over ten epochs, respectively. Similar

results can be seen in the case of training 30 epochs. The execution time

of Non-SoSL and SoSL-200 decreased significantly about six and seven

times (from 772.221 to 126.312 and 109.067) compared to MLPDDLA, re-
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spectively. These results clarify that the proposed model outperforms

MLPDDLA in the computation time.

b) MLPMOR

This experiment aims to break the masking dataset, namely CHES-

CTF 2018, which has not been investigated by non-profiled DLSCA yet.

To compare with previous work, Dataset5 using the LSB label is used for

training DDLAMLP model, and Dataset6 using the identity label is used

for performing regression tasks based on the proposed MLPMOR models.

Firstly, we perform the non-profiled attack based on a classification neu-

ral network using MLP architecture as described in [7]. The original ar-

chitecture is kept except for the batch size in the set {1000, 500, 100, 50}

is selected to find out the suitable value. In addition, the regularization

L1/L2 of hidden layer are also applied to achieve better results as de-

scribed in [23]. The grid search values of regularization are selected as

shown in Table 4.3.

The attack results are shown on the first row of Fig. 4.11. Despite

changing the batch size, DDLAMLP can not reveal the correct key from

CHES-CTF-2018 dataset. Similar results are also achieved with all sets

of values of regularization. These results indicate that the classification

model is not useful in this case and motivates us to consider the regres-

sion models. By investigating various attacks with different sizes of the

hidden layers, MLPMOR3 with the L1/L2 values of the hidden layer1 and

hidden layer2 set to 0.01 and 0.02, respectively, provides the best results.

The attack results are shown on the second row of Fig. 4.11. It can be

seen in Fig. 4.11e,f, MOR-MLP3 can not reveal the correct key. How-

ever, when the batch size goes down to 100 and 50, the correct key is

clearly discriminated from the incorrect ones. These results have demon-
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Figure 4.11: Experimental results on CHES-CTF 2018 dataset. a,e) Batch size=
1000; b,f) Batch size= 500; c,g) Batch size= 100; d,h) Batch size= 50;
first row) DDLAMLP; second row) MOR-MLP3;
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Figure 4.12: The experimental results on combined masking and noise generation.

a) Success rate of MLPDDLA and MLPMOC models on different levels of
noise using 20,000 power traces; b) SoSL-200 on 20,000 power traces,
σ = 1.5; c) SoSL-200 on 50,000 power traces, σ = 1.5;

strated that the proposed MOR architecture works well on CHES-CTF

2018 dataset. In addition, the results have clarified that identity label

works well in non-profiled DLSCA context using MLP architecture.

Noise generation countermeasures

a) MLPMOC

In this part, the noise injection countermeasure described in Sec-

tion 1.2.3 is applied to reconstruct new datasets called DatasetX-N1,
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DatasetX-N2, and DatasetX-N3 (correspond to σ = 0.5, 1.0 and 1.5, re-

spectively) are reconstructed as the same technique as DatasetX, where

X = 1, 2, 3. In this case, we consider MLPDDLA is more reliable than

MLPmax-shared on noisy data. Therefore, only the comparison between

Non-SoSL, SoSL-200, and MLPDDLA is performed. By repeating the at-

tacks using Non-SoSL, SoSL-200, and MLPDDLA 50 times, we calculate

the percentage of successful attacks over total attacks. The comparison

of the success rate between MLPDDLA, Non-SoSL, and SoSL-200 is shown

in Fig. 4.12.a. Evidently, all models achieve good performance (100%)

with the presence of a small level of additive noise (σ = 0.5). However,

in the case of higher noise (σ = 1.0), the number of successful attacks

drops from the 100% to 80% and 90% corresponding to MLPDDLA and

SoSL models, respectively. Interestingly, the success rate of SoSL-200

only decreases slightly from 100% to 96%. A similar trend can be seen

at the higher level of Gaussian noise (σ = 1.5). The success rate goes

down significantly because the models provide poor discrimination, as

illustrated in Fig. 4.12.b, in the case of SoSL-200 (0.681 and 0.667).

However, our network still achieves better results than MLPDDLA (44%

and 36% compared to 30%). We perform further attacks using SoSL-

200 on a larger size of the dataset (Dataset3-N3). A clear gap between

correct and incorrect keys (0.648 and 0.624) can be seen in Fig. 4.12.c.

More interesting, the success rate is 100%. It indicates that by using

the reasonable value of SoSL, the proposed network can mitigate the

effect of the additive noise better. In addition, the attacker can perform

DDLA attacks with reasonable epochs, a larger number of traces, or

more hyperparameters, which will, in turn, improve the success rate.
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Figure 4.13: Results of loss metric of proposed models on ASCAD with different
numbers of epochs. Left column: 30 epochs, Center column: 40 epochs,
Right column: 50 epochs; Fig.(a),(b),(c) are results of MLPMOR1;
Fig.(d),(e),(f) are results of MLPMOR2; Fig.(g),(h),(i) are results of
MLPMOR3.

b) MLPMOR

To evaluate the efficiency of MLPMOR models, ASCAD data is selected.

Different levels of noise are added to the original ASCAD data. Then,

the datasets called Dataset1-X and Dataset2-X, where X is N1, N2 and

N3 corresponding to σ = 0.5, 1.0 and 1.5, respectively.

To select the best model for the ASCAD data, various experiments are

performed on different models corresponding to different sizes of hidden
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Figure 4.14: The attack time comparison of the proposed MLPMOR3 model and
DDLAMLP on the ASCAD-dataset.

layers on Dataset2-N1. For each model, the number of epochs is changed

from 30 to 50 with step 10. As depicted in Fig. 4.13, MLPMOR1 can not

reveal the correct key with all epochs. In addition, the results show that

the MLPMOR1 model can not learn. Moving on to the bigger size of the

hidden layer, better results can be clearly seen. The correct key can be

revealed at epoch 30. If the training is prolonged, a clear discrimination

between correct and incorrect keys can be achieved, especially in the case

of MLPMOR3. It is worth noting that the batch size for all models is set to

50, and the regularization values are zero in this case. These results have

demonstrated the proposed models using identity label work well on the

ASCAD data. To clarify the enhancement of performance compared to

previous work, additional attacks are performed using MLPDDLA with

the same number of epochs, and the execution time is then recorded. As

shown in Fig. 4.14, the blue line and the red line show the execution time

of MLPMOR3 and MLPDDLA, respectively. The results have demonstrated

that MLPMOR3 outperforms MLPDDLA in terms of execution time.

Regarding reliability, the attacks are repeated 100 times, and then
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Figure 4.15: Experimental results of proposed multi-output model on full ASCAD-
dataset using MO-MLP3

calculate the percentage of successful attacks over total attacks for each

level of noise. The results of the first case are presented in Fig. 4.15.

Evidently, all models achieve good performance (98%) with the presence

of a small level of additive noise (σ = 0.5). In the case of higher noise

(σ = 1.0), the success rate of MLPMOR3 only decreases slightly from

98% to 84%, whereas it can be seen as a dramatic decline of MLPref

(from 98% to 58%). A similar trend can be seen at the higher level of

Gaussian noise (σ = 1.5). Despite the fact that the success rate goes

down significantly. The proposed network still achieves better results

than MLPDDLA (48% compared to 23%). It indicates that by using the

reasonable size of the hidden layer, the proposed network can better

overcome the effect of additive noise.

De-synchronized countermeasure

Finally, a popular protected scheme, namely de-synchronization, is

considered. To simulate this countermeasure, we randomly shift each

power trace of Dataset3 and Dataset4 in a maximum of 20 samples

as described in Section 1.2.3. Consequently, two new datasets called
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Figure 4.16: Attack results on de-synchronized power traces using CPA, CNNDDLA,

and CNNMOC. a) CPA; b) CNNDDLA; c) CNNMOC.

Dataset3-sh20 and Dataset4-sh20 are reconstructed for training CNNMOC

and CNNMOR, respectively.

a) CNNMOC

In this experiment, the loss metric of a training process is exploited to

reveal the correct key. Firstly, a CPA attack is performed on Dataset3-

sh20 to validate the efficiency of the de-synchronized countermeasure. As

depicted in Fig. 4.16.a, the secret key can not be revealed. In contrast,

a good result in detecting the correct key can be seen in Fig. 4.16.b

and Fig. 4.16.c. These results demonstrate that the CNN model can

break the de-synchronization countermeasure based on the translation-

invariance property. However, the attack time of CNNMOC is shorter

by approximately 30 times compared to CNNDDLA (703.65 seconds com-

pared to 20792.43 seconds). In addition, CNNMOC provides a clear dis-

tinction at a very early epoch compared to that of CNNDDLA.

To clarify this assumption, various attacks are performed using fewer

epochs. Firstly, the number of epochs reduces from 100 to 50. The

attacks are repeated 100 times. The success rate and the average time

are then taken and shown in Table 4.5. These results have clarified that

the proposed model outperforms previous work regarding attack time.
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Table 4.5: Attack time comparison of CNNMOC and TCHES2019 on de-synchronized
power traces using 50 epochs.

Model No. of epochs
Success rate

(%)

Attack time

(hours)

CNN-DDLA [7] 50 100 3.064

CNN-MOC 50 100 0.098
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Figure 4.17: Attack results on de-synchronized power traces using the CNNMOR mod-
els. a) 4 filters; b) 8 filters; c) 16 filters

b) CNNMOR

In this experiment, different CNNMOR models corresponding to a dif-

ferent number of filters are used to find out the best MOR-CNN model

for Dataset4-sh20. Let denote CNNMORx for the variant of the proposed

model, where x = 4, 8, 16 represents the number of filters.

As discussed in CNNMOC’s experiments, the CNN model outperforms

the CPA attack and can break the de-synchronization countermeasure

based on the translation-invariance property. Therefore, it is assumed

that the CNN-based multi-output regression architectures can provide

better performance in DDLA attacks.

Indeed, we perform different DLSCA attacks on Dataset4 using the

proposed MOR-CNN models. To select the best hyperparameter for

CNNMOR, a grid search with a different number of filters and batch size

is performed. As depicted in Fig. 4.17, all CNNMOR models provide good

discrimination of the correct key and the incorrect ones. Interestingly,
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the results are better when the number of filters increases. Compared

to CNNDDLA, CNNMOR does not achieve a clear distinction, especially

in the case of CNNMOR4 as depicted in Fig 4.17.a. This observation

raises a question about the reliability of our proposed model compared to

CNNDDLA. To answer this question, we decided to repeat the experiments

corresponding to each model 100 times to find out the success rate of

attacks. The results are summarized in Table 4.6. Surprisingly, despite

poor discrimination, CNNMOR4 provides a high success rate compared to

CNNDDLA (about 84 % compared to 100 %). More interestingly, the SR

of the remaining CNNMOR models is 100%. These results demonstrate

the reliability of the proposed architecture compared to CNNDDLA.

Apart from the success rate, the execution time of all experiments

is also recorded to make the comparison of the proposed model and

CNNDDLA. As shown in Table 4.6, for recovering one key bye, CNNDDLA

requires approximately 3.064 hours, whereas the attack time of CNNMOR4

and CNNMOR16 are only 0.075 and 0.103 hours, respectively. In other

words, our proposed MOR architectures perform the attacks up to ap-

proximately 40 times faster than previous work using DDLA. These re-

sults have clarified our assumption that MOR could increase the perfor-

mance of DDLA by simultaneously predicting 256 key hypotheses. More

importantly, the identity labeling technique has also been proven to work

effectively in this case.

4.5.3. Results comparison

This part provides the comparison of the results between the propos-

als and other common techniques using different data in a non-profiled

context. The attack results are summarized in Table 4.7. Overall, the
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Table 4.6: Attack time comparison of proposed models and TCHES2019 on de-
synchronized power traces.

Model No. of epochs
Success rate

(%)

Attack time

(hours)

CNN-DDLA [7] 50 100 3.064

CNN-MOR4 50 84 0.098

CNN-MOR8 50 100 0.087

CNN-MOR16 50 100 0.103

Table 4.7: The comparison of attack results on masking countermeasure using differ-
ent models.

Model Data
No. of

traces

No. of

epochs

Attack time

(second)

Results

(*)

Power

model

MLPDDLA
1 [7]

ASCAD [12]

20,000 30 772.2 S LSB

MLPMOC
1 20,000 30 109.1 S LSB-vector

MLPDDLA
2 [7] 20,000 50 1950.9 S LSB

MLPPL
2 [40] 20,000 50 693.8 S LSB

MLPSL
2 [40] 20,000 50 14.5 S LSB

1-order CPA1 1,200 - - F HW

2-order CPA1 [9] 1,200 - 1188.4 S HW

BP-CPA1 [94] 1,200 - 446.9 S HW

MLPDDLA
1 [7]

CHES2018-CTF [95]
40,000 16 N/A F LSB

MLPMOR
1 40,000 16 N/A S ID

CNNDDLA
2 [7]

CW-shifted

10,000 50 7069.1 S LSB

CNNPL
2 [40] 10,000 50 3983.3 S LSB

CNNSL
2 [40] 10,000 50 31.9 S LSB

CNNDDLA
1 [7] 10,000 50 11,030.4 S LSB

CNNMOC
1 10,000 50 354.8 S LSB-vector

CNNMOR
1 10,000 50 270 S ID

BP-CPA1 [94] 10,000 - - F HW
1 This work, Keras, Intel Corei5-9500, 24GB RAM; (*) S: Success; F: Failed

2 Keras, NVIDIA GeForce GTX 1080Ti GPU, Intel Corei7-8700K, 48GB RAM.

proposed models based on MOL architecture achieve good results on

different protected schemes. Concretely, the attack results on the mask-

ing dataset show that statistic-based techniques could reveal the secret

key with only 1200 power traces. Unfortunately, the drawbacks of these
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attacks are high memory usage required and the square order of com-

putational complexity. By applying the BP-CPA in chapter 2, the ex-

ecution time of 2-order attacks reduces significantly (approximately 2.6

times compared to conventional 2-order CPA). However, a pre-processing

technique must be applied to attack high-order leakage data. Therefore,

BP-CPA still take a long time and can not break other countermea-

sure, such as de-synchronized power traces as shown in the last row of

Table 4.7.

In terms of DL-based techniques, DL-based attacks could reveal the

secret key without any pre-processing techniques. Moreover, the attack

time reduces dramatically. Specifically, the MLPSL in [40] achieve the

fastest attack (about 14.5 seconds) since it exploits the max-shared layer.

However, the models in [40] improves the execution time without enhanc-

ing success rate of the attacks. It is noted that, it is not fair to compare

the execution time directly between MLPSL and MLPMOC. However, we

can compared the number of reductions of attack time in the same con-

ditions (the computer systems, the number of traces, and the number

of epochs). The next fastest technique is our proposed MLPMOC mod-

els (about 109.6 seconds), as shown in the second row of the Table 4.7.

Interestingly, MPLMOC not only reduces the execution time, but also en-

hance the success rate of the attacks as described in Chapter 4. In other

words, the attack results of MLPMOC are more confident than MLPSL.

Therefore, MLPMOC is more suitable in hardware security evaluation.

The same conclusion can be made for CNNSL and CNNMOC. Based on

Table 4.7, it can be seen that the main drawback of DL techniques is

the requirement of a huge number of power traces compared to statistic-

based techniques. In addition, the performance of the DL-based attacks
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depends on the computational resources.

Moving on to another masking dataset, the proposed MLPMOR is

also the best candidate for performing attacks on CHES2018-CTF data.

More important, MLPMOR performs the attacks using the ID labeling

technique. It means that the evaluation process can be implemented

easily by using the intermediate values (Sbox output) directly. The re-

sults in Table 4.7 also show that MLPDDLA can not reveal the secret key

with the LSB labeling technique.

Regarding the de-synchronized countermeasure, only DL-based at-

tacks can steal the secret key successfully. It is simply because CPA

attacks require re-aligned power traces, whereas CNN can work well on

these traces based on the translation-invariance property. In addition,

by applying MOC architecture, CNNMOC reduces the attack time from

5.7 hours to approximately 0.2 hours compared to CNNDDLA. Another

good choice is CNNMOR. Similar to MLPMPR, CNNMOR can perform the

attack using the ID labels instead of HW, HD, or LSB power models.

It leads to an easy evaluation process without knowledge about power

consumption models.

4.6. Disadvantages and resistance against MO-DLSCA attacks

Despite performing the SCA attack faster, proposed techniques based

on MOL architectures have some drawbacks.

Firstly, the attack results could be unstable for each attack due to the

multiple sources of randomness in the deep learning training process [96].

On the other hand, some metrics must be determined manually. The

number of epochs, for example, is fixed for all attacks. It leads to the

attack time is not optimized. As illustrated in Fig. 4.16, it is easy to see
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Figure 4.18: Attack results on different numbers of power traces using the MLPMOC

models. a) 20,000 traces; b) 10,000 traces; c) 7,000 traces

that the secret key can be discriminated clearly at epoch 20, whereas

the proposed techniques determine the correct key in a fixed number

of epochs (100 epochs). Obviously, it leads to a high-cost and time-

consuming evaluation process. To mitigate this issue, “early stopping”

technique should be employed in MO-DLSCA attacks to determine the

correct key at a suitable number of training epochs.

Secondly, the number of measurements is very high compared to statistic-

based attacks. As presented previously, BP-CPA requires only 1200

power traces to break the ASCAD data, whereas MO-DLSCA needs

20,000 measurements to perform the attacks. The main reason is that

MO-DLSCA can not determine the minimum power traces to attack

successfully. The experiments on ASCAD data presented in this chapter

could be performed successfully with less than 20,000 measurements, as

depicted in Fig. 4.18. Therefore, this is the issue that will be investigated

in the future works of this thesis.

Finally, the DL model can naturally perform the combined function

as described in Section. Regarding de-synchronized, CNN-based models

also can deal with the leakage sample in any position of a power trace

based on the translation-invariance property. However, MO-DLSCA is
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Figure 4.19: Attack results on different levels of additive noise using the MLPMOC

models. a) σ = 0; b) σ = 1.0; c) σ = 1.5

sensitive to the presence of additive noise compared to statistic-based

SCA. Indeed, as demonstrated in [97], the authors showed that injecting

noise at the input layer increases the network performance. However, in

the case of non-profiled attacks, various outputs are obtained simulta-

neously. They consist of one output value and the other corresponding

to the correct key and incorrect keys, respectively. Therefore, noise in-

jection of the input layer increases the classification performance of all

outputs, including incorrect keys. Consequently, it is difficult to discrim-

inate between the correct and incorrect keys in this case.

Based on the disadvantages of MO-DLSCA, a suggestion for a resis-

tance method for the cryptographic device against MO-DLSCA could

be described as follows:

- Using a noise generation countermeasure for the hardware designs.

It can be achieved by applying a parallel computation of a function of

the cryptographic algorithm as indicated in [98]. To clarify the efficiency

of noise generation countermeasure, an experiment was implemented on

the noisy dataset. The attack results are illustrated in Fig. 4.19. It

can be seen that when the noise is zero, the accuracy of the branch

corresponding to the correct key is the highest. Other branches that
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correspond to incorrect keys are low. However, when the noise increases,

the accuracy of all key increase. These results demonstrate that additive

noise leads to improve classification performance for the whole network.

It is worst when the noise is high enough. The additive noise makes the

model learn too well for all noisy data. As a result, the correct key can

not be detected from the incorrect key, as illustrated in Fig. 4.19.c.

The reported results have demonstrated the efficiency of noise gen-

eration countermeasure against MLPMOC. Similar results also can be

achieved on MLPMOR. However, these results are only obtained based

on simulation datasets. The real implementation of hardware (software)

of this countermeasure against MO-DLSCA will be investigated in the

future works of this thesis.

4.7. Summary

In this chapter, different DL models based on the multi-output neural

network are proposed. The proposals have mitigated the main drawback

of DDLA by predicting the correct key after only one training process.

The experimental results have indicated that the proposed models re-

markably outperform the DDLA attack in terms of execution time and

success rate. Specifically, the proposed MOC model reduces the exe-

cution time up to nine times compared to the MLPDDLA in the case of

masking countermeasure applied. Regarding MLPMOR, the attack results

have clarified that the identity labeling technique can be used for non-

profiled DLSCA successfully. Regarding the combined countermeasure,

both MOR and MOC models achieve a better success rate than that

of MLPDDLA by at least 20%. The experimental results have also clar-

ified that CNNMOC can break the de-synchronization countermeasure.
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More interestingly, the proposed model performs SCA attacks faster, up

to 40 times compared to CNNDDLA. However, by using a fixed num-

ber of epochs, the attack results are not optimized. In addition, noise

generation countermeasure is also investigated as a potential candidate

for preventing MO-DLSCA. The results of this chapter are published in

[C4], [J2], and [J4].
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CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDIES

This section summarizes the contributions of the thesis and presents

some open problems for future studies.

A. Conclusions

Side-channel attacks have become a realistic threat to implementa-

tions of cryptographic algorithms and received great attention from the

hardware security research community. Research on SCA attacks is cru-

cial for detecting and preventing potential hardware security problems.

In addition, efficient SCA attacks play a vital role in the certification

process. It helps to reduce the time to the market of products. In this

thesis, effective SCA methods are proposed for reducing the computation

time and enhancing the success rate of SCA security testing in different

scenarios, such as high dimensional data, imbalanced datasets, and the

presence of SCA countermeasures. The major contributions of the thesis

can be summarized as follows.

� Two low complexity correlation power analysis (CPA) techniques

called P-CPA and BP-CPA are proposed based on the correlation

distribution and power trace biasing technique. Especially, the exe-

cution time of SCA security testing is reduced by approximately 2

and 2.6 times (P-CPA and BP-CPA, respectively). This contribution
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is presented in [C1], [J1].

� Investigating the single-output DLSCA attacks on breaking differ-

ent countermeasures without any pre-processing requirements, such

as masking, noise generation, and de-synchronized. These coun-

termeasures can not be broken by statistic-based methods, such as

conventional CPA, B-CPA, and BP-CPA. Considering the remain-

ing issues of non-profiled DLSCA, a dimensional reduction technique

for DLSCA is introduced using the P-CPA method. In addition, a

novel labeling technique, the so-called Significant Hamming Weight

(SHW), is proposed for solving imbalanced dataset problems. The

experimental results on MLP and CNN architectures have clarified

that the data input dimension can reduce significantly. In addition,

by applying SHW, the power traces needed for the training pro-

cess reduces approximately 30% compared to LSB or 9-HW labeling

technique. This contribution is presented in [C2,C3], [J3,J5] and

[P1].

� A multi-output classification and multi-output regression neural net-

works are proposed to mitigate the drawbacks of the single-output

DLSCA. The execution time of SCA security evaluation decreases

significantly on different countermeasures, such as masking (9 times)

and de-synchronized power trace (40 times). In addition, the success

rate of SCA attacks increases by at least 20% compared to single-

output architecture in the case of the presence of Gaussian noise.

This contribution is presented in [C4],[J2, J4].
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B. Limitations

Besides numerous effectiveness in attacking SCA data. The proposals

still contain several limitations, as shown below:

Firstly, in the case of BP-CPA, the number of traces for the attack is

limited because of the complexity of second-order leakage data process-

ing. In addition, this process requires high memory usage. Therefore, in

the case of a high number of second-order power traces, it is difficult to

apply pre-processing techniques. In addition, other power consumption

models have not been investigated. In this case, only HW model is in-

vestigated and applied to biasing power trace techniques. In means that

the efficiency of proposed techniques has been clarified only on software

implementations of cryptographic algorithms.

Regarding the leakage sample selection, the number of POI is deter-

mined manually. As stated previously, the number of POI is selected

based on the practical attack results. In some cases, the number of POI

is too small to cover the correct sample tct. Consequently, it leads to a

failed attack. In other cases, the number of POI is too large. Hence, the

attack time is not optimized. This issue is also investigated in the future

work of this study. Furthermore, the random delay has not been investi-

gated by BP-CPA. This countermeasure will cause a misaligned problem.

Therefore, the POI extractor will not effectively work because it requires

each operation of the cryptographic algorithm should be located at the

same position in each power trace to find out the correlation.

Secondly, the proposed DLSCA based on multi-output architecture
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is not optimized for the attack time. Another main drawback has also

been indicated in Chapter 4. Accordingly, the number of measurements

needed for MO-DLSCA is very high compared to statistic-based attacks.

Finally, despite several ideas for countermeasures against proposed

attacks, non of the suggestions have been implemented and verified in

practice.

C. Future Studies

From the analysis above, several possible open problems require fur-

ther investigations in order to enhance the performance of SCA evalua-

tion as follows:

- Firstly, future works will be directed toward investigating the sug-

gestions of SCA countermeasures against proposed attacks in the real

scenario.

- Secondly, investigate BP-CPA techniques on different SCA plat-

forms, especially in hardware implementation.

- Finally, other advanced DL architectures, such as LSTM, and RNN,

will be investigated in the SCA domain. More importantly, an online

DLSCA method will be employed to reduce the attack time and deter-

mine the minimum measurements needed for DLSCA.
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Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp.

309–318.

[85] E. Prouff and M. Rivain, “A generic method for secure sbox imple-

mentation,” in Information Security Applications, S. Kim, M. Yung,

and H.-W. Lee, Eds. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2007, pp. 227–244.

[86] Y. Zheng, Y. Zhou, Z. Yu, C. Hu, and H. Zhang, “How to com-

pare selections of points of interest for side-channel distinguishers in

practice?” in Information and Communications Security. Springer

International Publishing, 2015, pp. 200–214.



167

[87] Statistical Characteristics of Power Traces. Boston, MA: Springer

US, 2007, pp. 61–99. [Online]. Available: https://doi.org/10.1007/

978-0-387-38162-6 4

[88] S. Mangard, “Hardware countermeasures against dpa – a statistical

analysis of their effectiveness,” in Topics in Cryptology – CT-RSA

2004, T. Okamoto, Ed. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2004, pp. 222–235.
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