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INTRODUCTION 

1. Motivation 

Due to their special mechanical, thermal, electrical, and chemical 

properties, nanostructures are increasingly used in the fields of medicine, 

electronics, and so on. Nanoplates are one of the most important structures 

commonly used as components in thin films, resonators, and sensors. 

Therefore, studying the vibrations of nanostructures is very important for 

design and manufacturing. 

With nanostructures, the dimensional effect becomes special. The 

test and simulation results show a significant influence on the mechanical 

properties when the size of the structure becomes small. When the length 

of the plate decreases, the influence of the intermolecular forces on the 

static and dynamic properties is significant and cannot be neglected. Since 

nano experiments are difficult and the simulation of molecular dynamics 

is expensive, the development of mathematical models at the nanoscale 

has become a key issue for evaluating the mechanical behavior of 

nanostructures. 

So the topic “Linear Static and Dynamic Analysis of FGM Porous 

Nanoplates Resting on Elastic Foundation Using Nonlocal Elasticity 

Theory” is an urgent topic that has scientific and practical significance. 

2. Aim of this thesis 

In general, studying nanostructures and the mechanical behavior of 

nanostructures is a large field. Within the framework of the thesis, the 

author focuses on studying the static and dynamic response of the 

functionally graded material (FGP) nanoplates using the finite element 

method (FEM) based on nonlocal elasticity theory (NET) with the 

following specific objectives: 
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- Establishing governing equations and algorithms to calculate the 

stress, strain, and displacement of the FGP nanoplates subjected to static 

and dynamic loads. 

- The calculation programs are established by the Matlab software 

to analyze displacement, stress, free vibration, and dynamic response of 

FGP nanoplates resting on an elastic foundation. 

- Investigating the influence of some structural factors, materials, 

and load characteristics on the mechanical behavior of FGP nanoplates. 

3. Research objectives and research areas 

3.1. Research objectives 

a) Structure 

- Plates: Consider FGP nanoplates with different shapes such as 

rectangular, L-shape, annular, and half-annular.  

- Porosity distribution with two rules: evenly distributed and 

unevenly distributed. 

- Elastic foundation: The plate is placed on the Winkler-Pasternak 

foundation with two layers. The first layer is a spring system with a 

stiffness coefficient of k1, while the second layer is a surface layer with a 

shear stiffness of k2. 

b) Load 

Consider FGP nanoplates subjected to static and dynamic loads. 

Nanostructure devices are mainly subjected to high temperature, 

moisture, pressure, and pulse load. So in the thesis, in the case of dynamic 

load, the pulse load is considered. 

3.2. Research areas 

Studying the mechanical behavior of FGP nanoplates subjected to 

static and dynamic loads by finite element method based on nonlocal 

elasticity theory and first-order shear deformation theory. 
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The thesis has three main problems: 

- Static bending problem. 

- Free vibration problem. 

- Forced vibration problem. 

4. Research methods 

The finite element method, in combination with nonlocal elasticity 

theory and Hamilton's principle is used to establish governing equations 

for the static, free vibration, and forced vibration of FGP nanoplates. 

The calculation program is established in the Matlab software. The 

obtained results are compared with those of other published ones to 

confirm the correctness of the proposed method. 

Thesis structure: 

The thesis is organized into an introduction, four chapters, 

conclusions, and recommendations for future studies as follows: 

Introduction: Presenting the urgency of the topic, objectives, 

objects, areas, and research methods of the thesis. 

Chapter 1: Research overview. 

Chapter 2: Theoretical basic for calculation of FGP nanoplates 

resting on an elastic foundation. 

Chapter 3: Static analysis of FGP nanoplates resting on an elastic 

foundation. 

Chapter 4: Dynamic analysis of FGP nanoplates resting on an 

elastic foundation. 

Conclusions and recommendations: This chapter summarizes the 

novel contributions of the thesis and suggests recommendations for future 

studies. 

List of publications 

Bibliography 
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 RESEARCH OVERVIEW 

 

1.1. Overview of nanomaterials and nanostructures 

 The concept of nanomaterials and nanostructures 

Nanomaterials are a type of material with a structure of porosities, 

fibers, tubes, thin sheets, and so on, with very small sizes ranging from 1 

to 100 nanometers. Nanotechnology is a technology related to the design, 

analysis, calculation, fabrication, and application of nanometer-sized 

structures and devices. 

1.2. Theory deserves nano-size effect 

Nowadays, with the development of science and technology, 

compact devices are required, especially those in medicine, electronics, 

and aerospace. Nanoplates are one of the important structures commonly 

used in resonators (Fig. 1.1), sensors, and thin film elements. As a result 

of their application, understanding the vibration characteristics of the 

nanoplates is an important issue. Therefore, the vibration analysis of the 

nanoplates has become a subject of primary interest in recent studies. 

       

Fig. 1.1. Nanoplates are used in the resonator and sensor. 

Theoretical studies and experimental modelings show that the usual 

calculation theories for structures with sizes of millimeters and above are 

not accurate for micrometers and nanometers in size. There are three main 
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theories have been proposed to analyze micro/nanostructures, which are 

the nonlocal elasticity theory, modified couple stress theory, and modified 

strain gradient theory. 

 Nonlocal elasticity theory 

The nonlocal elasticity theory was initially formulated by Eringen as 

means of an integral constitutive equation: 

 ( , ) L

ij ij

x

k x x dx      (1.1) 

where ij
  and L

ij
  are the components of the nonlocal and local stress 

tensors, respectively. 

k is the kernel function determined in terms of nonlocal parameters 

  and neighbor distance x x . 

0
e a   with a and 0

e  are the material constant and the parameter 

depending on the size ratio of the material, respectively. The value 0
e  can 

be determined either from experiments or simulations. 

By considering a specific kernel function k, Eringen reformulated the 

nonlocal constitutive equation (1.1) in a differential form as follows: 

  21 L

ij ij
       (1.2) 

where 
2  , 2  is the Laplace operator. 

 Modified couple stress theory 

The modified couple stress theory was proposed by Yang et al. The 

strain energy U is a function of both strain and curvature as follows 

  
1

2
ij ij ij ij

V

U m dV      (1.3) 

 Modified strain gradient theory  

According to the modified couple stress theory, the strain energy is 

written by 
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  
1

2
ij ij i i ijk ijk ij ij

V

U p m dV           (1.4) 

1.3. The main contents of the thesis  

From the above conclusions, the thesis combines the finite element 

method, the nonlocal elasticity theory, and the first-order shear 

deformation theory to analyze static bending, free vibration, and forced 

vibration of nanoplates. In which the structure rests on an elastic 

foundation with different shapes such as rectangular, L-shape, annular, 

and half-annular. Two types of porosity distribution are considered, which 

are evenly distributed and unevenly distributed. 

The results of the thesis are compared with the published results by 

analytical solutions to verify the accuracy and reliability of the calculation 

method and program. Then, the thesis will investigate some geometrical 

and material properties, elastic foundation, boundary conditions to the 

static bending, free vibration, and forced vibration of nanoplates. 

 

 THEORETICAL BASIC FOR CALCULATION OF 

THE FGP NANOPLATES RESTING ON ELASTIC 

FOUNDATION 

 

2.1. Material and mechanical models and assumptions 

 Material and mechanical models 

Consider FGP nanoplates with different shapes, such as rectangular, 

L-shape, annular, and half-annular. The plate is placed on a two-

coefficient Winkler-Pasternak elastic foundation with two continuous 

layers. The first layer is a parallel spring system with a stiffness coefficient 

1
,k  while the second layer is the shear layer with stiffness coefficient 2

.k  

The porosity distribution in nanoplates according to two rules as evenly 
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distributed and unevenly distributed (Fig. 2.1). The plate is subjected to 

static loads and pulsating dynamic loads, which are perpendicular to the 

plate surface (Fig. 2.2). 

 
a) Even porosity 

 
b) Uneven porosity 

Fig. 2.1. Two cases of porosities. 
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d) Half-annular nanoplate 

Fig. 2.2. The model of FGP nanoplates resting on the elastic foundation.  
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 Assumptions 

To establish the mechanical behaviour relations, the thesis uses some 

assumptions as follows: 

- The plate satisfies the Mindlin plate theory with 0
z
  . 

- Displacement of structures is small. 

- Material is linear elastic. 

2.2. Mechanical properties of materials 

The FGP materials with the variation of two constituents and two 

different distributions of porosity through thickness are determined as 

follows: 

Case 1: Even porosity ( ) ( ) 0.5 ( )
2

k

m c m c m

z
P z P P P P P

h


          (2.1) 

Case 2: Uneven porosity: 
2

( ) ( ) 0.5 ( ) 1
2

k

m c m c m

zz
P z P P P P P

h h


  (2.2) 

where P represents material properties such as the modulus of elasticity 

E, mass density  , and Poisson’s ratio  ; ( 0)k k   is the power-law index; 

(0 0.5)    is porosity factor. The symbols m and c represent metal and 

ceramic components, respectively. 

2.3. The mechanical behavior relations of the plate 

 The displacement field 

Based on the first-order shear deformation theory, the displacement 

field of the FGP nanoplates is defined by 

 
0

0

0

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

( , , ) ( , )

x

y

u x y z u x y z x y

v x y z v x y z x y

w x y z w x y





 


 
 

 (2.3) 

 Strain – displacement relations 

The strain vector of the plate is deduced from the displacement field 

as follows:      
0 1 0

1 2 1 1 2{ } { }T Tzε ε ε ε ε ε                               (2.4) 
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 Stress-strain relations 

According to the nonlocal elasticity theory, the stress-strain relation 

is determined by 

 
2σ σ Dε   (2.4) 

in which 2

0( )e a  is nonlocal factor, which represents the small-scale 

effect in nanostructures, 0e  is a constant, a is an internal characteristic 

length, and 
2 2

2

2 2x y
is the Laplace operator. 

 Hamilton principle 

To obtain the governing equations of motion of FGP nanoplates, the 

Hamilton’s principle is applied in the form as follows: 

  
0

0
t

U V W T dt         (2.5) 

 The variation of the strain energy can be given by: 

  
/2

/2

h

xx xx yy yy xy xy xz xz yz yz

S h

U dzdS          


        (2.6) 

The variation of the energy stored in the deformed elastic foundation 

is expressed by: 

    2 2

1 2 1 0 2 0 0. .
S S

V k w k w wdS k w k w w dS           (2.7) 

The variation of kinetic energy is given by   

  
2/2

0 0 0 0

2
/2 0 0 0 0 0 0

h
x x x x

S h y y y y

u u u z z u z
T z dzdS

v v v z z v z w w

     
 

      

   
  

      
    (2.8) 

The variation of work done by applied force is expressed by: 

 0

S S

W F wdS F w dS       (2.9) 

2.4. Finite element formulations 

 Finite element model 

In this thesis, the eight-node rectangular element, which consisted of 

four nodes at the vertices of the quadrilateral and four nodes being the 
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midpoints of the element's edge, is used. Each node has five degrees of 

freedom 0 0 0{ }x yu v w   . 

O
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Fig. 2.3. The eight-node rectangular element. 

 Element matrices and element vectors 

The node displacement vector is expressed by 

 0 0 0

5 1

{ }T

i i i i xi yiu v w  q   (2.10) 

The element displacement vector is  

 
1 2 3 4 5 6 7 8

40 1

T
T T T T T T T T

eq q q q q q q q q   (2.11) 

The element stiffness matrix is defined by 

 
1 1

1 1

det
1b T T

e 1 2

2

= J drds
 

   
     

    
 

BA B
K B B

BB X
  (2.12) 

  
1 1

1 1

dets T s

e 3 3= J drds
 

 K B A B   (2.13) 

The elastic foundation stiffness matrix is determined as follows: 

 

1

2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2

T T
T w w w w
w w

T T

w w w w

f

e
T T

w w w w

T T

w w w w

k
x x y y

x x y y

k
x x y y

x y y x

      
    

      
 

                
      

                  
       

N N N N
N N

N N N N

K

N N N N

N N N N





1 1

1 1

det J drds
 




    (2.14) 
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 The element mass matrix is : 

 
1 1

1 1

det
T T

T

e m m m J drds
x x y y

 

     
    

     
 

N N N N
M N D N D D   (2.15) 

The element load vector is defined by 

1 1 2 2 2 2

e 2 2 2 2

1 1

det
T T

T Tw w
w w

F F
F F J drds

x y x y
 

         
         

         
 

N N
F N N   (2.16) 

 All integrations in equations (2.12), (2.13), (2.14), (2.15), and (2.16)  

are calculated using full Gauss integration with three integral points. 

The governing equation of motion of the plate element without 

resistance has the form: 

 . .e e e e e M q K q F  (2.17) 

The governing equation of motion of the plate without resistance as 

follows: 

 . . M q K q F  (2.18) 

2.5. Summary of Chapter 2 

Using the finite element method based on first-order shear 

deformation theory and nonlocal elasticity theory, the author has built a 

stiffness matrix, mass matrix, and load vector. From there, based on 

Hamilton's principle, the motion equation is established for calculating 

FGP nanoplates with different shapes resting on elastic foundation. 

Defining specific boundary conditions for different shapes 

nanoplates. 

The formulations in this chapter are the scientific basis for building 

algorithms and calculation programs to solve the static problem in chapter 

3, the free vibration problem, and forced vibration in chapter 4. 

The expanded expressions in this chapter are used for calculations 

in the next studies. 

  

Đúng 

Sai 
Sai 

Đúng 
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 STATIC ANALYSIS OF FGP NANOPLATES RESTING 

ON ELASTIC FOUNDATION 

 

3.1. Finite element algorithm and calculation programs 

The equilibrium equation of nanoplates subjected to static loads is: 

 . K q F  (3.1) 

From the equation (3.1), the global node displacement vector is 

calculated according to the following formulation: 

 
1q K F  (3.2) 

The program FGP_Nanoplates_FSDT_Nonlocal_Static_2022 

(FNFNS_2022) is built in Matlab software to analyze the static behavior 

of the FGP nanoplates resting on the elastic foundation. 

3.2. Verification study 

Considering completely simply supported FGM square nanoplates. 

Material properties of the individual materials as shown in Table 3.1, and 

geometry parameters as a=b=10 nm, h=a/10, k = 0, K2 = 0. 

The dimensionless quantities are introduced by 

3 4 2 3
* * *2 2

1 24 2

0 0 0

100 10 10
, , , , ,

12(1 )

w s
xx xx xy xy

E h h h k a k a E h
w w K K H

q a q a q a H H
   


     


  (3.3) 

Table 3.1. Material properties 

Materials E (GPa)    (kg/m3) 

Al2O3 (ceramic) 380 0.3 3800 

Al (metal) 70 0.3 2707 

As exhibited in Table 3.2 the present results are in good agreement 

with an analytical method of Sobhy. It means that the present method is 

highly reliable. 
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Table 3.2. The displacement and stress of square nanoplates. 

Method K1 

0   4   

* ; ;0
2 2

a b
w
 
 
 

 * ; ;
2 2 2

xx

a b h 
 
 

  * ; ;0
2 2

a b
w
 
 
 

 * ; ;
2 2 2

xx

a b h 
 
 

  

Sobhy 
0 2.9603 19.9550 5.2977 35.7108 

100 2.3290 15.6991 3.5671 24.0455 

Thesis 

0 
2.9600 

(0.01%) 

19.8990 

(0.28%) 

5.2971 

(0.01%) 

35.6106 

(0.28%) 

100 
2.3288 

(0.01%) 

15.6555 

(4.36%) 

3.5669 

(0.01%) 

23.9791 

(0.28%) 

3.3. Numerical results and discussion 

Based on the calculation program, in this section, the author 

analyzes the static bending of FGP nanoplates with different shapes, 

geometrical parameters, material properties, boundary conditions, and 

elastic stiffness. The static load is evenly distributed in the direction 

perpendicular to the plate surface. 

 Rectangular nanoplate 

Considering the CSS FGP square nanoplates with geometric 

dimensions 10 ; /10.a b nm h a    Material properties of the individual 

materials as shown in  Table 3.1, power-law index k=1, porosity factor 

0.1,   nonlocal factor 2,   the stiffness of foundation: K1=50, K2=10. 

The plate is subjected to uniform load 0q  in perpendicular directions.  

The deformation field and stress of the nanoplate are shown in Figure 

3.1. It can be seen that the law of stress distribution according to the 

thickness of the plate at a point is consistent with the law of effective 

mechanical properties of FGP materials. In addition, in the case of a 

square plate, with completely simply supported, the maximum 

displacement will be at the center of the plate, and the strain field varies 

uniformly from this point to the surrounding. 
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a) The deformation field 

 

b) The stress  *

xx  at the midpoint 

Figure 3.1. The deformation and stress of the CSS square nanoplate. 

 L-shape nanoplate 

The deformation field and stress of the L-shape nanoplate is shown 

in Figure 3.2. From the deformation field can be seen that the vicinity of 

the L-angle is most susceptible to failure due to stress concentration 

because of the sudden change in shape at the L-angle. 

 

a) The deformation field 

 

b) The stress  *

xx  at A-point 

Figure 3.2. The deformation and stress of the CSS L-shape nanoplate. 

 Annular nanoplate 

The deformation field and stress of the annular nanoplate are 

indicated in Figure 3.3. 
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a) The deformation field 

 

b) The stress *

xx  at the A-point 

Figure 3.3. The deformation and stresses of the clamped supported at 

the outer border FGP annular nanoplate 

 Half-annular nanoplate 

The deformation field and stress of the FGP annular nanoplate are 

indicated in Figure 3.4.  

 

a) The deformation field 

 

b) The stress  *

xx  at the A-point 

Figure 3.4. The deformation and stresses of the clamped 

supported at outer border FGP half-annular nanoplate. 

3.4. The influence of some factors on the static response of FGP 

nanoplates 

 The influence of the parameters of the elastic foundation 

From the numerical results shown in Fig. 3.5, it can be concluded 

that when increasing K1 and K2 leads to the displacement of nanoplates 

decrease. This is perfectly reasonable because when the foundation 

stiffness increases, the stiffness of the plate increase. Furthermore, the 
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Pasternak foundation supports more strongly than the Winkler 

foundation. In other words, the shear layer of the foundation provides 

better support than the spring layer. 

 
a) CSS square nanoplate 

 
b) CSS L-shape nanoplate 

Fig. 3.5. Effect of K1 and K2 on the displacement of FGP nanoplates. 

3.5. Summary of Chapter 3 

In this chapter, the author presents the algorithm to analyze the FGP 

nanoplates with different shapes resting on an elastic foundation subjected 

to static loads. From the proposed formulation and the numerical results, 

the author can withdraw some following points: 

The author has built an algorithm and a calculation program 

FGP_Nanoplates_FSDT_Nonlocal_Static_2022 (FNFNS_2022) to 

calculate the FGP nanoplates resting on an elastic foundation under static 

load. The calculation results of the program are compared with other 

published results showing accuracy and reliability. 

The survey results show that there are many factors affecting the 

static response of FGP nanoplates resting on the elastic foundation. 

However, there are significant influencing factors, such as the nonlocal 

factor, the parameters of FGP, and the foundation stiffness. Therefore, 

when designing nanoplates for special requirements, engineers must 

attention to the above issues for the structure to operate at high efficiency. 

The obtained results in this chapter have been shown in paper 

number 2 and number 4 (List of publications). 

Đúng 

Sai 
Sai Đúng 
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 DYNAMIC ANALYSIS OF FGP NANOPLATES 

RESTING ON ELASTIC FOUNDATION 

 

4.1. Free vibration problem 

 Finite element algorithm and calculation programs 

From the equation of motion, in case of the external load is zero, the 

free vibration equation of the plate is as follows: 

  Mq Kq 0   (4.1) 

Assuming that the oscillations are harmonic with amplitude 
0q  and 

frequency  , then the solution of the equation (4.1) has form 

0 sin( t).q q  From there, the free vibration equation (4.1) leads to: 

  2

0 K M q 0  (4.2) 

The equations (4.2) are homogeneous linear equations. It has a non-

trivial solution 0 q 0  if and only if: 

  2 0 K M  (4.3) 

The equation (4.3) is a polynomial equation of order N. Solving this 

equation give N values of natural frequencies 
i

 . Substituting natural 

frequencies 
i

  into the equation (4.2) we find the corresponding 

eigenvector.  

The program FGP_Nanoplates_FSDT_Nonlocal_Freevibration_2022 

(FNFNF_2022) is developed in Matlab software to analyze the free 

vibrations of FGP nanoplates resting on an elastic foundation.  

 Convergence and verification study 

The CSS homogeneous square nanoplate with geometrical 

parameters a = b = 10 nm, h = a/10 and material properties: E = 30MPa, 

0.3  is studied. The dimensionless natural frequencies * / Gh    are 

listed in Table 4.1. It can be seen that the obtained results in the thesis are 



18 

closed to those of Belkorissat et al. based on hyperbolic refined plate 

theory (the maximum error is 1.18 %) and results of Aghababaei et al. 

using Navier solution based on the first-order shear deformation theory 

and the third-order shear deformation theory (the maximum error is less 

than 1%). Numerical results also indicate that the obtained frequencies 

based on the classical plate theory are significantly greater than the 

obtained results using other theories, the maximum error is 3 % in the case 

of moderately thick plates.  

Table 4.1. The first dimensionless natural frequency of homogeneous 

square nanoplates. 

/a h    

HSDT 

Belkorissat 

et al. 

CPT 

Aghababaei 

et al. 

FSDT 

Aghababaei 

et al. 

TSDT 

Aghababaei 

et al. Thesis 

*

1  Er *

1  Er *

1  Er *

1  Er 

10 

0 0.0930 0.32 0.0936 0.32 0.0930 0.32 0.0935 0.21 0.0933 

1 0.0850 0.35 0.0880 3.07 0.0850 0.35 0.0854 0.12 0.0853 

2 0.0787 0.51 0.0816 3.06 0.0788 0.38 0.0791 0.00 0.0791 

3 0.0737 0.14 0.0763 3.28 0.0737 0.14 0.0741 0.40 0.0738 

4 0.0695 0.29 0.0720 3.19 0.0696 0.14 0.0699 0.29 0.0697 

5 0.0659 0.30 0.0683 3.22 0.0660 0.15 0.0663 0.30 0.0661 

20 

0 0.0238 0.00 0.0239 0.42 0.0239 0.42 0.0238 0.00 0.0238 

1 0.0218 0.00 0.0220 0.91 0.0218 0.00 0.0218 0.00 0.0218 

2 0.0202 0.50 0.0204 0.49 0.0202 0.50 0.0202 0.50 0.0203 

3 0.0189 0.53 0.0191 0.52 0.0189 0.53 0.0189 0.53 0.0190 

4 0.0178 0.56 0.0180 0.56 0.0179 0.00 0.0179 0.00 0.0179 

5 0.0169 1.18 0.0171 0.00 0.0170 0.59 0.0170 0.59 0.0171 
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 Numerical results and discussion 

4.1.3.1. Square nanoplate 

Fig. 4.1 show the first three mode shapes of FGP square nanoplate, 

with geometric dimensions a = b =10 nm, h = a/10, 
1 100,K 2 10,K

1,k 2, 0.2.  It can be observed that the second dimensionless 

frequency is equal to the third dimensionless frequency. This is suitable 

for symmetrical nanoplates under the same supported conditions. 

 

a) 1st mode, 
1 = 0.8442 

 

b) 2nd mode, 
2 = 1.5156 

 

c) 3rd mode, 
3 = 1.5156 

Fig. 4.1. The first three mode shapes of the CSS FGP square nanoplate. 

4.1.3.2. L-shape nanoplate 

The first three mode shapes of L-shape nanoplate are shown in Fig. 4.2. 

 

a) 1st mode, 
1 =1.5102 

 

b) 2nd mode, 
2 =1.7367 

 

c) 3rd mode, 
3 =1.9983 

Fig. 4.2. The first three mode shapes of the CSS FGP L-shape nanoplate. 

4.1.3.3. Annular nanoplate 

 

a) 1st mode, 
1 =1.7710 

 

b) 2nd mode, 
2 =1.9901 

 

c) 3rd mode, 
3 =1.9901 

Fig. 4.3. The first three mode shapes of the CCS FGP annular nanoplate. 
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4.1.3.4. Half-annular nanoplate 

 

a) 1st mode, 
1 =0.6367 

 

b) 2nd mode, 
2 =1.0892 

 

c)3rd mode, 
3 =1.3944 

Fig. 4.4. The first three mode shapes of the CCS FGP half-annular nanoplate. 

 Influence of some factors on the natural frequency of FGP 

nanoplates 

4.1.4.1. Influence of the elastic foundation 

In order to consider the influences of foundation stiffness on free 

vibration of the nanoplate, change K1 from 100 to 1000 and K2  from 10 

to 100. The first natural frequencies of the nanoplate are shown in Fig. 

4.5. It can be found that when K1 and K2 increase lead to the natural 

frequency of nanoplates increase. Furthermore, the effects of the 

Pasternak foundation are stronger than the Winkler foundation.  

 
a) The CSS FGP nanoplate 

 
b) The CCS FGP nanoplate 

Fig. 4.5. Natural frequencies of FGP square nanoplate versus K1 and K2. 

4.1.4.2. Influence of material properties 

Secondly, let’s consider the effect of material properties on the free 

vibration of the FGP square nanoplate. The power-law index k gets values 

from 0 to 10, and the porosity factor changes from 0 to 0.3, the foundation 

stiffness 1 2100, 10,K K   and nonlocal factor 0,1, 2, 4.    The authors 

only choose the power-law index in the range from 0 to 10 for 
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investigation because many published works show that when k is greater 

than 10, the natural frequency of FGP structures does not change much 

and the recommended value of porosity volume fraction is in the range 

(0-0.3). 

The natural frequencies of FGP nanoplate with different boundary 

conditions are listed in Fig. 4.6. It can be seen that when k increases, the 

stiffness of the FGP nanoplate decreases (nanoplate is metal-rich), and 

hence natural frequencies decrease. We also found that when the increase 

of nonlocal factor leads to natural frequencies of FGP nanoplates 

decrease. The results are quite reasonable because the increase of the 

nonlocal factor reduces the stiffness of structures in the nonlocal elastic 

theory.  

 
a) The CSS FGP nanoplate  

 
b) The CCS FGP nanoplate 

Fig. 4.6. Natural frequencies of FGP square nanoplate versus k and .  

4.2. Forced vibration problem 

 Finite element algorithm and calculation programs 

Considering the drag coefficient, which is linearly dependent on 

velocity, the governing equations of motion for forced vibration of the 

plate have the following form: 

 Mq + Cq + Kq = F  (4.4) 

To solve the system of differential equations (4.4), the thesis uses the 

Newmark method of direct integration. 
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 Numerical results and discussion 

Fig. 4.7 – Fig. 4.8. The stress response 
*

xx  of the A-point over time 

t at z = h/2. Fig. 4.8 present the effect of the nonlocal factor on the 

displacement and stress response of the completely simply supported FGP 

L-shape nanoplate with uneven porosity at A-point has coordinates (3.75, 

6.25) in two cases: without damping ratio 0   and include damping 

ratio 0.1.   It can be seen that the vibration is damped after the 

application time of the load, and the nonlocal factor reduces the stiffness 

of nanoplates; hence displacement and stress increase. 

 

a) The damping ratio 0   

 

b) The damping ratio 0.1   

Fig. 4.7. The deflection response of the A-point over time t. 

 

a) The damping ratio 0   

 

b) The damping ratio 0.1   

Fig. 4.8. The stress response 
*

xx  of the A-point over time t at z = h/2. 
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4.3. Summary of Chapter 4 

In this chapter, the author presented the free vibration problem and 

forced vibration problem. From the proposed formulation and the 

numerical results, the author can withdraw some following points: 

The author has built an algorithm and a calculation program 

FGP_Nanoplates_FSDT_Nonlocal_Freevibration_2022 (FNFNF_2022) 

to calculate the free vibration of the FGP nanoplates resting on an elastic 

foundation. The calculation results of the program are compared with 

other published results showing accuracy and reliability. 

The author has built an algorithm and a calculation program 

FGP_Nanoplates_FSDT_Nonlocal_Dynamic_2022 (FNFND_2022) to 

calculate the FGP nanoplates resting on an elastic foundation under 

dynamic load. The calculation results of the program are compared with 

other published results showing accuracy and reliability. 

The survey results show that there are many factors affecting the free 

vibration of FGP nanoplates resting on an elastic foundation. However, 

there are large influencing factors such as nonlocal factor, the parameters 

of the functionally graded porous material, stiffness of the elastic 

foundation 

The survey results show that there are many factors affecting the 

dynamic response of FGP nanoplates resting on an elastic foundation. 

However, there are large influencing factors, such as the nonlocal factor, 

the parameters of the functionally graded porous material, and the 

stiffness of the elastic foundation. Therefore, when designing nanoplates 

for special requirements, engineers need to pay attention to the above 

issues for the structure to operate at high efficiency. 

The obtained results in this chapter have been shown in papers 

number 1, number 3, and number 5 (List of publications). 

 

 

Đúng 

Sai 
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CONCLUSIONS  

AND RECOMMENDATIONS FOR FUTURE STUDIES 

1. Novel contributions of the thesis 

Based on the finite element method and nonlocal elastic theory, the 

static and dynamic responses of FGP nanoplates resting on an elastic 

foundation have been investigated in this thesis. The following are some 

of the significant contributions of the thesis: 

- The thesis established a model, a finite element algorithm, and a 

collection of programs to analyze of static bending, free and forced 

vibration of the FGP nanoplates resting on an elastic foundation with 

various plate shapes and boundary conditions. The findings demonstrate 

the difference between nonlocal elasticity theory and local elasticity 

theory. 

- The influence of parameters such as nonlocal coefficients, material 

properties, geometric dimensions, elastic foundation stiffness, etc., on the 

static response, and natural and forced vibrations of FGP nanoplates have 

been examined in this thesis. From there, the thesis provides scientifically 

and practically relevant commentary. 

- The data set of the dissertation may be used as a reference in the 

computation and design of nanostructures to handle static and dynamic 

loads encountered in sensors, electronic chips, and sensors. 

2. Recommendations for future studies 

- Using higher-order shear deformation theories to examine the 

vibrations of nanoplates and nanoshells subjected to various types of 

mechanical loads while taking temperature into consideration. 

- Investigating the buckling problems of nanoplates in a viscoelastic 

environment while subjected to a variety of mechanical loads. 

- Computing the shape optimization problem and material 

optimization issue for nanoplates. 

- Calculation of nanomaterial-reinforced structures exposed to 

various sorts of loads. 


