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INTRODUCTION 

1. Motivation 

Due to their special mechanical, thermal, electrical, and chemical 

properties, nanostructures are increasingly used in the fields of medicine, 

electronics, and so on. Nanoplates are one of the most important structures 

commonly used as components in thin films, resonators, and sensors. 

Therefore, studying the vibrations of nanostructures is very important for 

design and manufacturing. 

With nanostructures, the dimensional effect becomes special. The test 

and simulation results show a significant influence on the mechanical 

properties when the size of the structure becomes small. When the length of the 

plate decreases, the influence of the intermolecular forces on the static and 

dynamic properties is significant and cannot be neglected. Since nano 

experiments are difficult and the simulation of molecular dynamics is 

expensive, the development of mathematical models at the nanoscale has 

become a key issue for evaluating the mechanical behavior of nanostructures. 

So the topic “Linear Static and Dynamic Analysis of FGM Porous 

Nanoplates Resting on Elastic Foundation Using Nonlocal Elasticity 

Theory” is an urgent topic that has scientific and practical significance. 

2. Aim of this thesis 

In general, studying nanostructures and the mechanical behavior of 

nanostructures is a large field. Within the framework of the thesis, the author 

focuses on studying the static and dynamic response of the functionally graded 

material (FGP) nanoplates using the finite element method (FEM) based on 

nonlocal elasticity theory (NET) with the following specific objectives: 



2 

 

   

 

- Establishing governing equations and algorithms to calculate the stress, 

strain, and displacement of the FGP nanoplates subjected to static and dynamic 

loads. 

- The calculation programs are established by the Matlab software to 

analyze displacement, stress, free vibration, and dynamic response of FGP 

nanoplates resting on an elastic foundation. 

- Investigating the influence of some structural factors, materials, and 

load characteristics on the mechanical behavior of FGP nanoplates. 

3. Research objectives and research areas 

3.1. Research objectives 

a) Structure 

- Plates: Consider FGP nanoplates with different shapes such as 

rectangular, L-shape, annular, and half-annular.  

- Porosity distribution with two rules: evenly distributed and unevenly 

distributed. 

- Elastic foundation: The plate is placed on the Winkler-Pasternak 

foundation with two layers. The first layer is a spring system with a stiffness 

coefficient of k1, while the second layer is a surface layer with a shear stiffness 

of k2. 

b) Load 

Consider FGP nanoplates subjected to static and dynamic loads. 

Nanostructure devices are mainly subjected to high temperature, moisture, 

pressure, and pulse load. So in the thesis, in the case of dynamic load, the pulse 

load is considered. 

3.2. Research areas 

Studying the mechanical behavior of FGP nanoplates subjected to static 

and dynamic loads by finite element method based on nonlocal elasticity theory 

and first-order shear deformation theory. 



3 

 

   

 

The thesis has three main problems: 

- Static bending problem. 

- Free vibration problem. 

- Forced vibration problem. 

4. Research methods 

The finite element method, in combination with nonlocal elasticity theory 

and Hamilton's principle is used to establish governing equations for the static, 

free vibration, and forced vibration of FGP nanoplates. 

The calculation program is established in the Matlab software. The 

obtained results are compared with those of other published ones to confirm the 

correctness of the proposed method. 

Thesis structure: 

The thesis is organized into an introduction, four chapters, conclusions, 

and recommendations for future studies as follows: 

Introduction: Presenting the urgency of the topic, objectives, objects, 

areas, and research methods of the thesis. 

Chapter 1: Research overview. 

Chapter 2: Theoretical basic for calculation of FGP nanoplates resting 

on an elastic foundation. 

Chapter 3: Static analysis of FGP nanoplates resting on an elastic 

foundation. 

Chapter 4: Dynamic analysis of FGP nanoplates resting on an elastic 

foundation. 

Conclusions and recommendations: This chapter summarizes the 

novel contributions of the thesis and suggests recommendations for future 

studies. 

List of publications 

Bibliography 



4 

 

   

 

 RESEARCH OVERVIEW 

 

1.1. Overview of nanomaterials and nanostructures 

 The concept of nanomaterials and nanostructures 

Nanomaterials are a type of material with a structure of porosities, fibers, 

tubes, thin sheets, and so on, with very small sizes ranging from 1 to 100 

nanometers. Nanotechnology is a technology related to the design, analysis, 

calculation, fabrication, and application of nanometer-sized structures and 

devices. 

In 1959, the concept of nanotechnology was mentioned by the American 

physicist Richard Feynman when he mentioned the ability to make matter at a 

microscopic size from the process of gathering atoms and molecules. In the 

1980s, a number of analytical tools came out, such as scanning probe 

microscopes that could see the size of just a few atoms or molecules. These 

tools helped people see and understand more in the field of nano. 

 Properties of nanomaterials, nanostructures 

Compared with conventional materials, nanomaterials have superior 

mechanical, physical, and chemical properties. The advanced properties of 

nanomaterials are due to their very small size compared to traditional materials. 

Nanomaterials are between the quantum properties of atoms and the bulk 

properties of materials. For bulk materials, the critical length of the properties 

is very small compared to the magnitude of the material, but for nanomaterials 

that is no longer the case, so the special properties start from this cause [1], [5]. 

 Processing techniques of nanomaterials, nanostructures 

Nanomaterials can be manufactured by four common methods, such as 

wet chemical methods, mechanical methods, thermal evaporation methods, and 
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gas-phase methods. Each method has its advantages and disadvantages, 

depending on material requirements, and equipment conditions, to choose the 

appropriate method. 

a) Wet chemical methods 

Wet chemical methods include hydrothermal, sol-gel, and co-

precipitation methods. Under the influence of temperature, pressure, and pH 

conditions, solutions containing different ions are mixed in an appropriate 

proportion, and under the influence of these conditions, nanomaterials are 

precipitated. After filtration and drying processes, nano-sized materials are 

obtained. 

The advantage of the wet chemical method is that the materials that can 

be manufactured are very diverse. They can be inorganic, organic, and metal 

materials. The advantage of this method is that it is cheap and can be used to 

produce a large number of materials, but it also has the disadvantage that 

compounds with water molecules can be difficult. It is not high efficiency, and 

the product is not uniform. 

b) Mechanical methods 

This method includes grinding and mechanical alloying methods. In this 

method, the material in powder form is ground to a smaller size. Nowadays, the 

most commonly used crushers are planetary or rotary crushers. The mechanical 

method has the advantages of being simple, the tooling is inexpensive, and it 

can be fabricated with a large amount of material. However, it has the 

disadvantage that the particles are agglomerated together, the particle size 

distribution is not uniform, it is easy to get contaminated by the fabrication 

tools, and it is often difficult to achieve small particles. This method is often 

used to create non-organic materials such as metals. 

c) Thermal evaporation methods 
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Thermal evaporation methods include lithography and vacuum 

deposition methods. These methods are effective in fabricating thin films or 

surface coatings and can also be used to fabricate nanoparticles by creating 

nanomaterials from shields. However, this method is not very efficient for 

large-scale fabrication. 

d) Gas-phase methods 

Gas-phase methods include flame pyrolysis, electro-explosion, laser 

ablation, and plasma. The principle of these methods is to create nanomaterials 

from the gas phase. Flame pyrolysis is a long-standing method used to create 

simple materials such as carbon and silicon. Laser ablation can produce a 

variety of materials but is limited in the laboratory because of its low efficiency. 

The plasma methods can be used to produce a wide variety of materials but are 

not suitable for organic materials because their temperatures can reach 90000C. 

 Applications of nanostructures 

Nanotechnology allows the fabrication and use of materials at the 

molecular level, increasing and creating special properties of materials and 

reducing the size of devices and systems to extremely small sizes. This is 

considered the industrial revolution, promoting development in all fields, 

especially biomedical, energy, environment, information technology military, 

and affecting the whole society [1]. 

a) In medicine - biology 

Nanoparticles are seen as nanorobots that penetrate the body. Enables 

humans to intervene at the molecular or cellular scale. Currently, humans have 

created nanoparticles with biological properties that can be used to support 

disease diagnosis, drug delivery, and cell destruction. 

b) Energy 

The nanotechnology platform contributes to improving the quality of 
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solar cells, increasing the efficiency and storage of batteries and 

supercapacitors, and creating superconductors as electrical conductors for long-

distance power transmission. 

c) Electronic-mechanical 

Nanotechnology helps to manufacture nanoelectronics components with 

extremely fast processing speeds to integrate into generations of nano-

computer or use nanomaterials to make extremely small information recording 

devices, computer screens, and mobile phone screens. Besides, nanotechnology 

creates ultra-lightweight, super-strong nanomaterials. Nanomaterials are also 

used in the manufacture of devices for cars, planes, and spacecraft. 

d) Apparel and food 

The garment industry has turned a new page when applying silver 

nanoparticles, which have the ability to attract and destroy bacteria that cause 

unpleasant odors in clothes. This useful application has been applied to a 

number of sportswear models. Not stopping there, nanotechnology can make 

foods taste better and be more nutritious. In addition, nanotechnology will also 

help store food for many times longer by creating food storage materials that 

have the ability to kill bacteria. 

e) Environment 

Nanotechnology helps to replace polluting chemicals, materials, and 

traditional manufacturing processes with a new process that is compact, 

energy-efficient and has a reduced impact on the environment. Specifically, it 

has successfully fabricated nanofiltration membranes that contribute to filtering 

pollutant molecules; Nano-catalysts and adsorbents are used to treat waste 

quickly and completely. In which the highlight is the nano water purifier. This 

is a machine that uses nano technology with pore and micro-sized filters to 

remove impurities, bacteria, and dirt in the input water. Aside from that, the 
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membranes will help keep the minerals in the water that is good for the body.  

Nanotechnology is truly a turning point in every aspect of life. Currently, 

nanotechnology is still being researched to discover all the great uses it brings. 

1.2. Overview of plate theories and method of plate analysis 

 Plate theories 

a) Classical plate theory 

Advantages: This theory is simple and contains only three unknowns. 

Disadvantages: It does not consider shear strain, only suitable for the 

calculation of thin plates. 

b) First-order shear deformation theory 

Advantages: The shear strain is taken into account, so it is suitable for 

the calculation of thin and moderate plates. 

Disadvantages: The shear stress is constant with the plate thickness, 

which does not satisfy the condition that the shear stress is zero at the top and 

bottom faces. Therefore, a shear correction factor is needed, which depends on 

many conditions such as material, geometrical structure, boundary conditions, 

etc. (normally taken as 5/6). 

c) Higher-order shear deformation theory 

Advantages: The shear stress is distributed parabolic along the plate 

thickness and satisfies the condition that the shear stress is zero at the top and 

bottom faces. So, it is suitable for the calculation of moderate and thick plates. 

Disadvantages: The higher-order shear deformation theory has a 

complex displacement field. The degree of freedom of the structure increases, 

resulting in a large amount of computation. 

d) Quasi-3D theory 

Advantages: The shear stress is distributed parabolic along the plate 

thickness and satisfies the condition that the shear stress is zero at the top and 
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bottom faces, considering the strain along the plate thickness, which is closer 

to the actual stress of the plates. Therefore, it is suitable for calculating both 

medium and thick structures. 

Disadvantages: The higher-order shear deformation theory has a 

complex displacement field. The degree of freedom of the structure increases, 

resulting in a large amount of computation. 

 Method of plate analysis 

There are different methods for calculating plates as well as nanoplates, 

such as analytical methods, numerical methods, and semi-analytical methods. 

Analytical methods include Navier solution, Lévy solution, Rayleigh-Ritz, 

Galerkin-Vlasov, and so on. Numerical methods include finite element 

methods (FEM), smoothed finite element method (S-FEM), finite difference 

method (FDM), differential quadrature method (DQM), differential element 

method (DEM), and isometric geometry method (IGA). 

The advantage of analytical methods is that they can provide accurate 

and reliable solutions, but the transformations are quite complicated and are 

usually only used for simple and symmetrical structures. Numerical methods 

only give approximate solutions, but this method is effective for complex 

structures with different boundary conditions and loads. Nowadays, with the 

development of calculation methods and computer science, the results of 

numerical methods have been verified through many published works, 

confirming their reliability and accuracy. 

a) Analytical methods 

Analytical methods include Navier’s solution, Lévy’s solution, 

Rayleigh-Ritz, Galerkin-Vlasov, and so on. 

Advantages: Analytical methods can give accurate solutions and high 

reliability. 
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Disadvantages: These methods must vary in complexity. Therefore, only 

used for both simple structures and boundary conditions. 

b) Numerical methods 

Numerical methods include the finite element method, smoothed finite 

element method, finite difference method, differential quadrature method, 

differential element method, and isometric geometry method. 

Advantages: Numerical methods can compute complex structures. 

Disadvantages: These methods only give approximate solutions. 

However, with the development of calculation methods and computer 

science, the results of numerical methods have been tested through many 

published works, confirming their reliability and accuracy. 

c) Semi-analytical methods. 

Combination of analytical methods and numerical solutions. 

1.3. Theory deserves nano-size effect 

Nowadays, with the development of science and technology, compact 

devices are required, especially those in medicine, electronics, and aerospace. 

Nanoplates are one of the important structures commonly used in resonators 

[6], [7] (Figure 1.1), sensors [8], [9], [10] (Figure 1.2), and thin film elements 

[11]. As a result of their application, understanding the vibration characteristics 

of the nanoplates is an important issue. Therefore, the vibration analysis of the 

nanoplates has become a subject of primary interest in recent studies. 
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Figure 1.1. Nanoplate is used in the resonator [6]. 

 

Figure 1.2. Nanoplate is used in the sensor [8]. 

Theoretical studies and experimental modelings show that the usual 

calculation theories for structures with sizes of millimeters and above are not 

accurate for micrometers and nanometers in size. There are three main theories 

have been proposed to analyze micro/nanostructures, which are the nonlocal 

elasticity theory, modified couple stress theory, and modified strain gradient 

theory. 

 Nonlocal elasticity theory 

The nonlocal elasticity theory was initially formulated by Eringen [12], 
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[13], Eringen and Edelen [14] by means of an integral constitutive equation: 

 ( , ) L

ij ij

x

k x x dx      (1.1) 

where 

ij
  and L

ij
  are the components of the nonlocal and local stress tensors, 

respectively. 

k is the kernel function determined in terms of nonlocal parameters   and 

neighbor distance x x . 

0
e a   with a and 0

e  are the material constant and the parameter 

depending on the size ratio of the material, respectively. The value 0
e  can be 

determined either from experiments or simulations. 

By considering a specific kernel function k, Eringen [15] reformulated the 

nonlocal constitutive equation (1.1) in a differential form as follows: 

  21 L

ij ij
       (1.2) 

where 
2  , 2  is the Laplace operator. 

The research results on nonlocal elasticity theory in the period from 1972 

to 2002 were summarized by Eringen in the literature [16]. 

Compared to the integral model, the differential one is widely used for 

nanostructures due to its simplicity. More information about the paradoxical 

behavior of the differential model can be found in the literature [17], [18], [19]. 

  Modified couple stress theory 

The modified couple stress theory was proposed by Yang et al. [20]  by 

modifying the classical couple stress theory of Toupin [21], Mindlin [22], 

Tiersten, and Koiter [23]. By introducing an additional equilibrium condition 

of moments of couples to enforce the couple stress tensor to be symmetric, the 

number of additional material length scale parameters in the modified couple 
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stress theory is reduced from two to one. This makes the modified couple stress 

theory more advantageous because the determination of the material 

parameters is a challenging task. The strain energy U is a function of both strain 

and curvature as follows [23]: 

  
1

2
ij ij ij ij

V

U m dV      (1.3) 

where 

ij
m  are the components of the deviatoric part of the symmetric couple 

stress tensor. 

ij
  are the components of the symmetric curvature tensor defined by [23]: 

 , ,
yx z

xx yy zz
x y z

 
  

 
  
  

  (1.4) 

 
1 1 1

, ,
2 2 2

y yx x z z

xy xz yz
y x z x z y

    
  

        
         

         
  (1.5) 

 For a linear elastic material, ij
m  are given by 

 
2

1
ij ij

E
m l 





  (1.6) 

where l is the material length scale parameter. The evaluation and calibration 

of l can be found in the literature [24], [25]. 

 Modified strain gradient theory  

Compared with the modified couple stress theory, the strain energy in the 

modified strain gradient theory contains two additional gradient parts: the 

dilatation gradient   and the deviatoric stretch gradient   , in addition to the 

symmetric curvature ij
 . Therefore, the strain energy is written by [26]: 
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  
1

2
ij ij i i ijk ijk ij ij

V

U p m dV           (1.7) 

The ingredients in the formula (1.7) are determined as in [26]. 

 Overview of the works using nonlocal elasticity theory to analyze 

nanoplates 

Combining the above micro and nanostructure theories with different 

plate theories, we can be solved various problems. In the above theories, the 

nonlocal elasticity theory is commonly used to calculate nanostructures 

because it is quite simple and gives quite accurate results with simulations. The 

thesis uses nonlocal elasticity theory to calculate nanoplates, so in this section, 

the author summarizes a number of papers on calculating nanostructures based 

on nonlocal elasticity theory. 

1.3.4.1. Nonlocal elasticity theory in combination with the classical plate 

theory 

The classical plate theory has the advantage of simplicity, containing 

only three unknowns, but this theory ignores the shear strain. So, this theory is 

only suitable for the calculation of thin structures. Lu et al. [27] used nonlocal 

elasticity theory based on classical plate theory to study the effect of 

geometrical parameters on the static and buckling of isotropic nanoplates. Duan 

and Wang [28] used nonlocal elasticity theory and classical plate theory to 

derive exact solutions for the axisymmetric bending analysis of circular 

nanoplates under general loading. Also, using the Lévy solution based on 

nonlocal elasticity theory and classical plate theory, Aksencer and Aydogdu 

[29] employed buckling loads and natural frequencies of rectangular nanoplates 

with two opposite edges being simply supported. Shakouri [30] derived the 

Galerkin approach to solve the natural frequencies of isotropic nanoplates. 

Phadikar and Pradhan [31], Ansari et al. [32] were early scientists who used the 
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finite element method basis on nonlocal elasticity theory to calculate to 

calculate the mechanical behavior of nanobeams. Based on the classical plate 

theory and nonlocal elasticity, Phadikar and Pradhan [31] use the finite element 

method to analyze static bending, free vibration, and buckling of isotropic 

nanobeams and nanoplates. Nguyen et al. [33] used an isogeometric analysis 

(IGA) to study FGM nanoplates. Other research findings on static bending, free 

vibration, mechanical buckling, and thermal buckling of nanostructures using 

nonlocal elasticity theory and classical plate theory have been published in the 

works [34]-[36]. 

1.3.4.2. Nonlocal elasticity theory in combination with the first-order shear 

deformation theory 

The first-order shear deformation theory takes into account the shear 

strain, so it is suitable for the calculation of thin and moderate structures. 

However, the shear strain is constant with the plate thickness, which does not 

satisfy the condition that the shear stress is zero at the top and bottom faces. So, 

a shear correction factor is needed. This factor depends on some conditions, 

such as the material, the shape of structures, and the boundary conditions, and 

usually gets a value of 5/6. 

Pradhan and Phadikar combine nonlocal elasticity theory combining 

with the classical plate theory and the first-order shear deformation theory to 

analyze free vibration [38] and buckling [39] of nanoplates. Ansari et al. 

examined the vibration of single-layered graphene sheets [40] and multi-

layered graphene sheets [41] with different boundary conditions using the 

nonlocal elasticity theory, the first-order shear deformation theory, and the 

differential quadrature method. The nonlocal and first-order shear deformation 

theories were also proposed for nanoplates made of FG and orthotropic 

materials. For instance, Hosseini-Hashemi et al. [42] developed a nonlocal 
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FSDT for FG circular nanoplates. Closed-form solutions for natural frequencies 

of circular nanoplates under various BCs were also obtained. Anjomshoa and 

Tahani [43] developed a nonlocal FSDT model for the free vibration analysis 

of orthotropic circular and elliptical nanoplates embedded in an elastic medium. 

Golmakani and Rezatalab [44] presented a nonlinear nonlocal FSDT model for 

the nonlinear bending analysis of orthotropic nanoscale plates embedded in an 

elastic matrix based on nonlocal continuum mechanics. Dastjerdi et al. [45], 

[46] presented a nonlinear nonlocal FSDT model for the nonlinear geometric 

analysis of annular/circular orthotropic embedded SLGSs in which the effect 

of elevated temperature was considered. Based on first-order shear deformation 

theory, nonlocal elasticity theory, and an isogeometric analysis, Ansari and 

Norouzzadeh [47] investigate the buckling of nanoplates. 

1.3.4.3. Nonlocal elasticity theory in combination with the third-order shear 

deformation theory 

Aghababbaei and Reddy [48] used the nonlocal elasticity theory and the 

third-order shear deformation theory to study static bending and free vibration 

of nanoplates with a simply supported boundary. Also, using nonlocal TSDT, 

Pradhan and Sahu [49] studied the effect of the nonlocal factor on buckling load 

and free vibration of simply supported graphene plates. Ansari and Sahmani 

[51] used a unified nonlocal model with three different theories of the classical 

plate theory, first-order shear deformation theory, and third-order shear 

deformation theory. Daneshmehr et al. examined the buckling [52] and free 

vibration [53] of FG nanoplates. Nami and co-workers [54] investigated the 

thermal buckling of FG nanoplates by using third-order shear deformation 

theory. 
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1.3.4.4. Nonlocal elasticity theory in combination with the higher-order shear 

deformation theory 

The shear stress is distributed parabolic along the plate thickness and 

satisfies the condition that the shear stress is zero at the top and bottom faces, 

so it is suitable for the calculation of medium and thick plates. However, the 

higher-order shear deformation theory has a complex displacement field. Shear 

locking occurs in the case of thin plates, so some techniques must be used to 

eliminate this phenomenon, such as using the reduction integral or using an 

independent shear strain field. 

Sobhy [55] presented a combination model of nonlocal elasticity theory 

and the sinusoidal higher-order shear deformation theory of Thai and Choi [56]. 

Using analytical methods, Sobhy studied the free vibration, mechanical 

buckling, and thermal buckling of multilayer graphene plates with different 

boundary conditions. Developing his research direction, Sobhy [57], [58] 

analyzed the static bending of single-layer anisotropic, anisotropic graphene 

plates in a thermal environment. Zenkour and Sobhy [59], Alzahrani et al. [60], 

Thai et al. [61] have studied thermal buckling, thermo-mechanical buckling of 

single-layer graphene plates using nonlocal elasticity theory and sinusoidal 

higher-order shear deformation theory of Touratier [62]. Belkorissat et al. [63] 

calculated FG nanoplates based on higher-order shear deformation theory 

hyperbolic format. Phung-Van and his colleagues investigated the static and 

dynamic responses of functionally graded carbon nanotube-reinforced 

composite nanoplates based on the nonlocal elastic continuous isogeometric 

model [64]. Zenkour et al. [65] calculated the thermal buckling of nanoplates 

on the elastic foundation by using the sinusoidal shear deformation theory. Tran 

et al. [66] used higher-order shear deformation nonlocal theory for bending, 

buckling, and free vibration analysis of FGP nanoshells resting on an elastic 
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foundation.  Some other studies on nanostructures were also synthesized in 

[67], [68], [69]. 

Nguyen Van Hau [2] used the high-order shear deformation theory, 

Quasi-3D theory, and the Ritz solution to analyze the static bending, stability, 

and free vibration of FGM and FGM composite plates under mechanical load 

and temperature. Pham Cong Hong [3] used the classical plate theory, first-

order shear deformation theory, and Reddy's third-order shear deformation 

theory combined with the Galerkin method for static and dynamic nonlinear 

analysis and FGM plate resting on an elastic foundation. Nguyen Van Thanh 

[4] used the classical plate theory, first-order shear deformation theory, and 

Reddy's third-order shear deformation theory combined with Von Karman's 

geometric nonlinearity to establish the basic equations of static and dynamic 

nonlinear of the FG-CNTRC plate. The thesis analyzed the static and dynamic 

stability of the FG-CNTRC plate under mechanical load and temperature by 

using an analytical approach and the Galerkin method. 

1.4. The main results have been published  

Through the analysis of the above works, some conclusions are drawn as 

follows: 

Nowadays, nanostructures are widely applied in many fields. 

Nanotechnology is a turning point for all aspects of life, so the analysis and 

calculation of nanostructures is an important issue. 

There are three main methods dealing with the mechanical response of 

nanostructure. The first is the experiment method. The second one is 

simulation. And the last one is developing mathematical–mechanical models. 

In which experiment method requires modern equipment, so this is expensive 

and difficult to conduct. While simulation technics, the model is not the same 
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as the real one. Besides that, the simulation method can't give an exact solution. 

So developing mathematical-mechanical models need to be carried out. 

Based on this approach, there are three theories have been proposed to 

analyze micro/nanostructures, including nonlocal elasticity theory, modified 

couple stress theory, and modified strain gradient theory. In which the nonlocal 

elasticity theory is used a lot because of its simplicity and gives fairly accurate 

results with molecular simulations. 

There are many different plate theories to calculate structures, such as 

CPT, FSDT, HSDT, and Quasi-3D theory. Among those theories, the FSDT is 

commonly used. Nowadays, many scientists are interested in HSDT and Quasi-

3D theory due to its accuracy. 

There are different methods for calculating nanostructures, such as 

analytical methods, numerical methods, and semi-analytical methods. The 

advantage of analytical methods is that they can provide accurate and reliable 

solutions, but the transformations are quite complex and are usually only used 

for simple and symmetrical structures. Numerical methods only give 

approximate solutions, but this method is effective for complex structures 

under different boundary conditions and loads. Nowadays, with the 

development of numerical methods and information technology, the obtained 

results have been tested through many published works, confirming their 

reliability and accuracy. 

Research on nanostructures and microstructures have been of interest to 

scientists for many years. The published works have focused on building 

computational theories of nanostructures. Some works use the above theories 

together with analytical methods to calculate static bending, free vibration, and 

thermo-mechanical buckling of beams, plates, and nanotubes. Recently, some 

scientists have used numerical methods to analyze the mechanical behavior of 

nanostructures. 
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1.5. Issues that need further research 

From the overview of the issues presented above, the author realizes that 

some problems need further research, which is: 

- Studying the static response and forced vibrations of nanoplates and 

nanoshells with complex shapes subjected to different types of mechanical 

loads taking into account the influence of temperature using the first-order 

shear theory and the higher-order shear deformation theories. 

- Investigating the static and dynamic buckling response of 

nanostructures resting on an elastic foundation and viscoelastic environments 

under the effect of diverse mechanical loads. 

- Calculating optimal shape and optimizing materials for nanostructures. 

- Analysis of nanomaterial-reinforced structures exposed to various sorts 

of loads. 

- Studying the behavior of nanostructures taking into account the 

influence of porosity, cracks, and so on. 

The summary nanostructure problems are shown in Figure 1.3. 

1.6. The main contents of the thesis  

From the above conclusions, the thesis combines the finite element 

method, the nonlocal elasticity theory, and the first-order shear deformation 

theory to analyze static bending, free vibration, and forced vibration of 

nanoplates. In which the structure rests on an elastic foundation with different 

shapes such as rectangular, L-shape, annular, and half-annular. Two types of 

porosity distribution are considered, which are evenly distributed and unevenly 

distributed.  

The results of the thesis are compared with the published results by 

analytical solutions to verify the accuracy and reliability of the calculation 
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method and program. Then, the thesis will investigate some geometrical and 

material properties, elastic foundation, boundary conditions to the static 

bending, free vibration, and forced vibration of nanoplates. 
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1.7. Summary of Chapter 1 

Due to special mechanical, thermal, electrical, and chemical properties, 

nanostructures are increasingly used in the fields of medicine, electronics, and 

so on. Nanoplates are one of the most important structures commonly used as 

components in thin films, resonators, and sensors. Therefore, studying the 

vibrations of nanostructures is very important for design and manufacturing. 

The mechanical behavior of nanoplates is a very important topic. 

Therefore, a large number of scientists worldwide are deeply interested, where 

various different methods, such as analytical methods, semi-analytical 

methods, numerical methods, and experimental methods, are employed. In the 

current period, with the strong development of science and technology, 

especially the application of computers in calculations, the finite element 

method has many advantages in solving mechanical problems with a huge 

amount of calculations. Therefore, the topic “Linear Static and Dynamic 

Analysis of FGM Porous Nanoplates Resting on Elastic Foundation Using 

Nonlocal Elasticity Theory” which the thesis sets out, has scientific and 

practical significance, contributing a novel research direction to investigate 

static, free vibration, and forced vibration for nanoplates under the influence of 

other types of loads. Through studying the research works that have been 

achieved in the current period, to my best knowledge, the author finds that this 

problem is of scientific and practical significance. 
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 THEORETICAL BASIC FOR CALCULATION OF FGM 

POROUS NANOPLATES RESTING ON ELASTIC FOUNDATION 

 

2.1. Material and mechanical models and assumptions 

 Material and mechanical models 

Consider FGP nanoplates with different shapes, such as rectangular, L-

shape, annular, and half-annular. The plate is placed on a two-coefficient 

Winkler-Pasternak elastic foundation with two continuous layers. The first layer 

is a parallel spring system with a stiffness coefficient 1
,k  while the second layer 

is the shear layer with stiffness coefficient 2
.k  The porosity distribution in 

nanoplates according to two rules as evenly distributed and unevenly distributed 

(Figure 2.1). The plate is subjected to static loads and pulsating dynamic loads, 

which are perpendicular to the plate surface (Figure 2.2). 

 
a) Even porosity 

 
b) Uneven porosity 

Figure 2.1. Two cases of porosities. 
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c) Annular nanoplate 
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d) Half-annular nanoplate 

Figure 2.2. The model of FGP nanoplates resting on the elastic foundation.  

 Assumptions 

To establish the mechanical behaviour relations, the thesis uses some 

assumptions as follows: 

- The plate satisfies the Mindlin plate theory with 0
z
  . 

- Displacement of structures is small. 

- Material is linear elastic. 
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2.2. Mechanical properties of materials 

The FGP materials with the variation of two constituents and two different 

distributions of porosity through thickness are determined as follows [70]: 

Case 1: Even porosity 

                        ( ) ( ) 0.5 ( )
2

k

m c m c m

z
P z P P P P P

h


                (2.1) 

Case 2: Uneven porosity 

                 
2

( ) ( ) 0.5 ( ) 1
2

k

m c m c m

zz
P z P P P P P

h h


            (2.2) 

where: P represents material properties such as the elastic modulus E, mass 

density  , and Poisson’s ratio  . 

( 0)k k   is the power-law index. 

(0 0.5)    is porosity factor. 

The symbols m and c represent metal and ceramic components, 

respectively. 

Figure 2.3 illustrates the elastic modulus E of FGP material (Al/Al2O3) in 

two cases of even and uneven porosity versus the power-law index. Figure 2.4 

depicts the distribution of material properties according to the thickness of the 

nanoplate for the power-law index values k = 0, 1, 2, and 4. 
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a) Even porosity 

 
(b) Uneven porosity 

Figure 2.3. Elastic modulus E of FGP (Al/Al2O3) with different power-law 

index k. 

 

 

a) k = 0 

 

b) k =1 

 

c) k = 2 

 

d) k = 4 

Figure 2.4. Distributions of material properties through thickness of FGP 

nanoplates. 
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2.3. The mechanical behavior relations of the plate 

 The displacement field 

Based on the first-order shear deformation theory, the displacement field 

of the FGP nanoplates is defined by [71]: 

 

0

0

0

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

( , , ) ( , )

x

y

u x y z u x y z x y

v x y z v x y z x y

w x y z w x y





 


 
 

 (2.3) 

where 

, ,u v w : are the displacement components at any point ( , , )x y z ; 

0 0 0, ,u v w : are the displacement components at the mid-plane (z = 0) along 

x, y, z axis; 

,x y  : are the rotations of the cross–sections around the y-axis and x-axis, 

respectively. 

 Strain – displacement relations 

The strain vector of the plate is deduced from the displacement field as 

follows [71]: 
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  (2.4) 

 The equation (2.4) is rewritten by 
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  (2.6) 

 Stress-strain relations 

According to the nonlocal elasticity theory, the stress-strain relation is 

determined by [81] 
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 The equation (2.7) is rewritten by 

 
2σ σ Dε   (2.8) 
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in which 
2

0( )e a  is nonlocal factor, which represents the small-scale effect 

in nanostructures, 0e  is a constant, a is an internal characteristic length, and 

2 2
2

2 2x y
is the Laplace operator. 

 
3 2

2 3

b

s

D 0
D

0 D
  (2.9) 

 
11 12

55

22

44

66

0
0

0 ;
0

b s

C C
C

C
C

sym C

D D   (2.10) 

where 

 

11 22

12

66 55 44

( )

[1 ( )][1 ( )]

( ) ( )

[1 ( )][1 ( )]

( )

2[1 ( )]

E z
C C

z z

z E z
C

z z

E z
C C C

z

 



 



 (2.11) 

 

 Hamilton principle 

To obtain the governing equations of motion of FGP nanoplates, the 

Hamilton’s principle is applied in the form as follows [71]:  

  
0

0
t

U V W T dt         (2.12) 

where , ,U V W    and T  are the variation of the strain energy of plates, the 

energy stored in the deformed elastic foundation, the work done by applied 

force, and the kinetic energy, respectively. 

The equation (2.12) is rewritten as: 
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  
0

0
t

H U V W T dt        (2.13) 

The Hamintol principle written for the plate element is as follows: 

  
0

0
t

e e e e eH U V W T dt        (2.14) 

2.3.4.1. The strain energy of the FGP nanoplates 

 The variation of the strain energy can be given by [71]: 

  
/2

/2

h

e xx xx yy yy xy xy xz xz yz yz

S h

U dzdS          


        (2.15) 

 

0 0

/2

0 0

/2
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yx
xx yy

h
yx

e xy

S h

xz x yz y

u v
z z

x x y y

u v
U z z dzdS

y x y x

w w

x y

  
 

  
 

 
   



      
      

       
    
      

     
 

                  

    (2.16) 

 

0 0

0 0

0 0

yx
xx xx yy yy

yx
e xy xy

S

xz x yz y

u v
N M N M

x x y y

u v
U N M dS

y x y x

w w
Q Q

x y

  

  


 
 

   
   

    
     
       

       
 

                  

   (2.17) 

where the internal force components are calculated as follows: 

    
/2

/2

; 1; ; , ,

h

ij ij ij

h

N M z dz ij xx yy xy


    (2.18) 

    
/2

/2

; ;

h

xz yz xz yz

h

Q Q dz 


    (2.19) 
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2.3.4.2. The energy stored in the deformed elastic foundation 

The variation of the energy stored in the deformed elastic foundation is 

expressed by [71]: 

 e

S

V R wdS     (2.20) 

where 
2

1 2.R k w k w    is the reaction force of the elastic foundation. 

 The fomula (2.20) is rewritten as: 

    2 2

1 2 1 0 2 0 0. .e

S S

V k w k w wdS k w k w w dS           (2.21) 

2.3.4.3. The variation of kinetic energy 

The velocity of the point with coordinates ( , , )x y z  at t time is expressed by 

 

0

0

0

( , , , ) ( , , ) ( , , )

( , , , ) ( , , ) ( , , )

( , , , ) ( , , )

x

y

u x y z t u x y t z x y t

v x y z t v x y t z x y t

w x y z t w x y t





 


 
 

  (2.22) 

The variation of velocity is expressed by 

 

0

0

0

( , , , ) ( , , ) ( , , )

( , , , ) ( , , ) ( , , )

( , , , ) ( , , )

x

y

u x y z t u x y t z x y t

v x y z t v x y t z x y t

w x y z t w x y t

  

  

 

 


 
 

  (2.23) 

The variation of kinetic energy is given by [70] 

   e

V

T z u u v v w w dV         (2.24) 

 By substituting the fomulas (2.22) and (2.23) into the fomula (2.24) 

  
   

   

/2
0 0

/2 0 0 0 0

h
x x

e

S h y y

u z u z
T z dzdS

v z v z w w

  
 

   

  
 
     

    (2.25) 
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 
2/2

0 0 0 0

2
/2 0 0 0 0 0 0

h
x x x x

e

S h y y y y

u u u z z u z
T z dzdS

v v v z z v z w w

     
 

      

   
  

      
    (2.26) 

 

 

 

 

0 0 0 0 0 0 0

1 0 0 0 0

2

e x y x y

S

x x y y

J u u v v w w

T J u v u v dS

J

  

      

   

  
 
     
 
  
 

   (2.27) 

where 

      
/2

2

0 1 2

/2

, , 1, ,
h

h

J J J z z z dz


     (2.28) 

2.3.4.4. The work done by applied force 

The variation of work done by applied force is expressed by [71] 

 0e

S S

W F wdS F w dS       (2.29) 

By substituting equations (2.17), (2.21), (2.27) and (2.29) into (2.12) and 

integrading by part, grouping by terms containing 0 0 0, , , ,x yu v w     , 

respectively. The motion equations of FGP nanoplates can be obtained by 

0 0 0 1:
xyxx

x

NN
u J u J

x y
 


  

 
                                       (2.30) 

0 0 0 1:
xy yy

y

N N
v J v J

x y
                                          (2.31) 

2

0 1 0 2 0 0 0:
yzxz

QQ
w k w k w F J w

x y
                 (2.32) 

1 0 2:
xyxx

x xz x

MM
Q J u J

x y
                              (2.33) 
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1 0 2:
xy yy

y yz y

M M
Q J v J

x y
         (2.34) 

Integrating the equation (2.7) following plate thickness, the internal force 

and moment are determined by 

The membrane force is: 

0

11 12 11 12

2 0
21 22 21 22

66 66
0 0

0 0

0 0

0 0 0 0

x

xx xx

y

yy yy

xy xy

yx

u

xxN N A A B B
v

N N A A B B
x y

N N A B
u v

y x y x








  
             
         

                                            

  (2.35) 

 The equation (2.35) is abbreviated by 

 2 0 1

1 1(1 ){ }T

xx yy xyN N N Aε Bε   (2.36) 

 The shear force is expressed as follows: 

 

0

2 55

044

0

0

xs
xz xz

S
yz yz

y

w

Q Q A x

wQ Q A

y







 
        

                
  

  (2.37) 

The equation (2.37) is abbreviated by 

 2 0

2(1 ){ }T

xz yzQ Q s
A ε   (2.38) 

The bending and torque of the plate are defined by 
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         

                                            

  (2.39) 

 

The equation (2.39) is abbreviated by 

 2 0 1

1 1(1 ){ }T

xx yy xyM M M Bε Xε   (2.40) 

where 

 
/2 /2

2

/2 /2

5
( , , ) (1, , ) ;

6

h h

s

b s

h h

z z dz dz
 

  A B X D A D   (2.41) 

Substituting internal forces from the equations (2.35), (2.37) and (2.39) 

into (2.30), (2.31), (2.32), (2.33), (2.34) and performing mathematical 

transformations, the equations of the system are expressed of Euler-Lagrange 

equations (by giving the corresponding values for the differential variables 

, , , ,x yu v w      equal to 0) of the following form: 

2

0 0 1(1 )( )
xyxx

x

NN
J u J

x y
                                            (2.42) 

2

0 0 1(1 )( )
xy yy

y

N N
J v J

x y
                                            (2.43) 

2 2

1 0 2 0 0 0(1 )( )
yzxz

QQ
k w k w F J w

x y
     (2.44) 
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2

1 0 2(1 )( )
xyxx

xz x

MM
Q J u J

x y
                         (2.45) 

2

1 0 2(1 )( )
xy yy

yz y

M M
Q J v J

x y
                         (2.46) 

The expanded form of equations (2.42), (2.43), (2.44), (2.45) and (2.46) 

are presented as follows: 
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  (2.47) 
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 Multiply equations (2.42), (2.43), (2.44), (2.45) and (2.46) by the 

differential variables 0u , 0v , 0w , x , 
y ,  respectively, using the 

divergence theorem and ignoring the Neumann boundary, we get the following 

equation [71]: 
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x x y y
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

   

  (2.52) 

 The expanded form of the equation (2.52) is expressed as follows:  



37 

 

   

 

22 2 2

0 0
11 12 11 122 2 2

022 2 2

0 0
66 662 2

22 2 2

0 0
66 662 2

2 2 2

0 0
21 22 21

yx

yx

yx

u v
A A B B

x x x y x
u

u v
A B

y x y y x y

u v
A B

y x x y x x

u v
A A B

x y x y










   
   

     
     
                  

    
               

  
 

   

0
2

22 2

2 2

0 0
55 44 02 2

22 2 2

0 0
11 12 11 122 2 2

22 2 2

0 0
66 662 2

0
55

yx

ys sx

yx

yx

s

v

B
x y y

w w
A A w

x x y y

u v
B B X X

x x x y x

u v
B X

y x y y x y

w
A

x











 
 
 
 

 
    

      
       

       

  
  

    

    
                


 



22 2 2

0 0
66 662 2

2 2 2

0 0
21 22 21

2

0
22 442

...

x

x

yx

x
y

y S

y

u v
B X

y x x y x x

u v
B B X

x y x y x y

w
X A

y y






























  
  
  

 
 
 
 

  
    

     
               

 
      

      
 

   
       



0
S

dS






















 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 



38 

 

   

 

       

0 0 0 0
0 0 0 0

0 0
1 0

0 0 0 0
0 0 0

0 0
1 0

...

x x
x

y y

y

u u u u
J u u J

x x y y

u u
J u

x x y y

v v v v
J v v

x x y y

v v
J v

x x y y

 
 

   
  

 
 

  
  

    
  

    

     
    

     

     
    

     

    
    

    



0 0 0 0
1 0 0

0 0 0 0

2 2 2 2

0 0 0 0

2 2 2 2 2

2 2 2 2

0 0 0 0

2 2 2 2

2 2

0 0
0 2 2

w w w w
k w w

x x y y

w w w w

x x y y

w w w w
k

x x y y

w w w w

x y y x

w w
F w

x y

 
 

 

 


 

 
 





     
    

     

    
    

 
     

   
     

     
   
      

  
  

  

0 0 0 0
0 0 0

0 0
1 0 1

2

0 0
1 0

x x
x

x x x x
x x

y y

y

w w w w
J w w

x x y y

u u
J u J

x x y y

J
x x y y

v v
J v

x x y y

 
 

 
 

   
  

 
 

 
 
 

     
    

     

    
  

    

     
    

     

   
   

    

2

y y y y

y yJ
x x y y

   
  




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   
   
 

                    

0
S

dS






















































  (2.53) 
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2.4. Finite element formulations 

 Finite element model 

In this thesis, the eight-node rectangular element, which consisted of four 

nodes at the vertices of the quadrilateral and four nodes being the midpoints of 

the element's edge, is used. Each node has five degrees of freedom (DOFs) 

0 0 0{ }x yu v w   . 
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Figure 2.5. The eight-node rectangular element. 

 Element matrices and element vectors 

2.4.2.1. Element displacement vector 

The displacement vector of a point in the element is defined as follows: 

  
T

u v wu   (2.54) 

The displacement vector of any point on the mid-plane can be presented by 

  0 0 0 0

T

x yu v w  u   (2.55) 

From the equation (2.3), the relation between u  and 0u  as follows: 
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0

0

0 0

1 0 0 0

0 1 0 0

0 0 1 0 0

z

x

y

u

vz

wz





 
 

   
    
   
    

 
 

u L u   (2.56) 

The node displacement vector is expressed by 

 0 0 0

5 1

{ }T

i i i i xi yiu v w  q   (2.57) 

The element displacement vector is  

 
1 2 3 4 5 6 7 8

40 1

T
T T T T T T T T

eq q q q q q q q q   (2.58) 

The author uses the Lagrange approximation function, which has forty 

coefficients according to the Pascal diagram. 

The displacement vector at any point on the mid-plane is approximated by 

bilinear functions as follows: 

 0

40 15 1 5 40

(x, )y
 

u P a   (2.59) 

where 

a: is the vector of approximate function coefficients. 

P(x, y): is the matrix containing a polynomial approximation function. 

Substituting the equation (2.59) into (2.57), the displacement at node i  can 

be obtained by 

 
40 15 1 5 40

i i

 

q A a   (2.60) 

where iA  is the matrix containing the coordinates of the node i i( x , y ) in the 

element, defined as in appendices. 
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 Substituting the equation (2.60) into (2.58), the element's node 

displacement vector is defined as follows: 

 
40 140 1 40 40

e n

 

q A a   (2.61) 

where  1 2 3 4 5 6 7 8

T

n A A A A A A A A A  is the matrix containing 

the coordinates of the element nodes (see Appendices). 

 From the equation (2.61), the approximate function coefficients vector can 

be expressed by 

 
1

e

a A q   (2.62) 

Substituting the equation (2.62) into (2.59), the displacement vector of any 

point on the mid-plane can be defined as follows: 

 
1

0

5 405 1 40 1

( , )e n e er s 

 

 u P A q N q   (2.63) 

The shape function is defined by 

 1 2 3 4 5 6 7 8

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 40

N N N N N N N N
       

 
  
 

N I I I I I I I I   (2.64) 

where iN  is a polynomial in terms of r, s and the node coordinates (r , s )i i : 

 

2

1 1 1 1 1 5 5

2

2 2 2 2 2 6 6

2

3 3 3 3 3 7 7

2

4 4 4 4 4 8 8

1 1
(1 )(1 )( 1); (1 )(1 );

4 2

1 1
(1 )(1 )( 1); (1 )(1 );

4 2

1 1
(1 )(1 )( 1); (1 )(1 );

4 2

1 1
(1 )(1 )( 1); (1 )(1 ).

4 2

N rr ss rr ss N r ss

N rr ss rr ss N rr s

N rr ss rr ss N r ss

N rr ss rr ss N rr s

       

       

       

       

  (2.65) 
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Substituting the node coordinates 1( 1, 1)M   , 2(1, 1)M  , 3(1,1)M , 

4( 1,1)M  , 5(0, 1)M  , 6(1,0)M , 7(0,1)M , 8( 1,0)M   into equation (2.65), the 

shape functions in terms of the natural coordinates r, s are defined as follows: 

 

      

      

      

      

2

1 2

2

3 4

2

5 6

2

7 8

1 1
1 1 1 ; 1 1 ;

4 2

1 1
1 1 1 ; 1 1 ;

4 2

1 1
1 1 1 ; 1 1 ;

4 2

1 1
1 1 1 ; 1 1 .

4 2

N r s r s N r s

N r s r s N r s

N r s r s N r s

N r s r s N r s

        

        

        

        

 (2.66) 

2.4.2.2. The element stiffness matrix 

The variation of strain energy is 

 

 21 .

e

nl

e

V

U dV     σ ε   (2.67)

.

e

l

e

V

U dV  σ ε   (2.68)

e

T

e

V

U dV   ε D ε   (2.69) 

    0 1 0 1 0 0

1 1 1 1 2 2

e

T
T

e b s

V

U z z dV      
   ε ε D ε ε ε D ε   (2.70) 

 

0 0 0 1 1 0 1 2 1

1 1 1 1 1 1 1 1

0 0

2 2e

T T T T

b b b b

e T
V s

z z z
U dV

   




   
  

  

ε D ε ε D ε ε D ε ε D ε

ε D ε
  (2.71) 

 

0 0 0 1 1 0 1 1

1 1 1 1 1 1 1 1

0 0

2 2e

T T T T

e T s
S

U dxdy
   




   
  

  

ε A ε ε B ε ε B ε ε X ε

ε A ε
  (2.72) 

 .
e

T T T T

1 1 1 2 2 2 2 2T

e e eT s T
S 3 3

+ + +
U dxdy

+
 

 
  

  


B AB B BB B BB B XB
q q

B A B
  (2.73) 
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From the equation (2.73), the element stiffness matrix is defined by 

 

e

1b T T

e 1 2

2S

= dxdy
   
     

    


BA B
K B B

BB X
  (2.74) 

  
e

s T s

e 3 3

S

= dxdyK B A B   (2.75) 

The element stiffness matrix is written in the natural coordinate as follows: 

 
1 1

1 1

det
1b T T

e 1 2

2

= J drds
 

   
     

    
 

BA B
K B B

BB X
  (2.76) 

  
1 1

1 1

dets T s

e 3 3= J drds
 

 K B A B   (2.77) 

where 

andb s

e eK K  are the bending stiffness matrix and the shear stiffness matrix, 

respectively 

 
1 2 3; ;

xu

w
x

yv

w
y

u v yx

xx

x

y y

y

y x y x










   
  

          
            
       

         

NN

N
N

NN
B B B

N
N

N N NN

  (2.78) 

From the equation (2.52), the elastic foundation stiffness matrix is 

determined as follows: 
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1

2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2

T T
T w w w w
w w

T T

w w w w

f

e
T T

w w w w

T T

w w w w

k
x x y y

x x y y

k
x x y y

x y y x

      
    

      
 

                
      

                  
       

N N N N
N N

N N N N

K

N N N N

N N N N





eS

dxdy




   (2.79) 

The elastic foundation stiffness matrix is written in the natural coordinate 

as follows: 

 

1

2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2

T T
T w w w w
w w

T T

w w w w

f

e
T T

w w w w

T T

w w w w

k
x x y y

x x y y

k
x x y y

x y y x

      
    

      
 

                
      

                  
       

N N N N
N N

N N N N

K

N N N N

N N N N





1 1

1 1

det J drds
 




    (2.80) 

2.4.2.3. The element mass matrix 

The variation of kinetic energy is written by 

    21

e

e

V

T z u u v v w w dV            (2.81) 

   
   

   
0 02

0 0 0 0

1
e

x x

e

V y y

u z u z
T z dV

v z v z w w

  
  

   

  
   
     

   (2.82) 
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   

2

0 0 0 0

2 2

0 0 0 0

0 0

1
e

x x x x

e y y y y

V

u u zu z u z

T z v v zv z v z dV

w w

     

        



   
 

       
 
 

   (2.83) 

  
0 1 1 2

2

0 1 1 2

0

1
e

T T T T

u u u x x u x x

T T T T T

e e v v v y y v y y e

S
T

w w

J J J J

T J J J J dxdy

J

   

     

   
 

       
 
  



N N N N N N N N

q N N N N N N N N q

N N

 

 (2.84) 

 From the equation (2.84), the element mass matrix is : 

 

e

T T
T

e m m m

S

dxdy
x x y y


     

    
     


N N N N

M N D N D D   (2.85) 

The element mass matrix is written in the natural coordinate as follows: 

 
1 1

1 1

det
T T

T

e m m m J drds
x x y y

 

     
    

     
 

N N N N
M N D N D D   (2.86) 

where 

 
T

T T T T T

u v w x y 
   N N N N N N   (2.87) 

 

0 1

0 1

0

2

2

0 0 0

0 0

0 0

0

m

J J

J J

J

J

sym J

D   (2.88) 

2.4.2.4. The element load vector 

The element load vector is defined by 

 
2

e (1 )

e

T

w

S

Fdxdy  F N   (2.89) 
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e 2 2 2 2

e

T T
T Tw w
w w

S

F F
F F dxdy

x y x y


         
         

         


N N
F N N   (2.90) 

The element load vector is written in the natural coordinate as follows: 

1 1 2 2 2 2

e 2 2 2 2

1 1

det
T T

T Tw w
w w

F F
F F J drds

x y x y
 

         
         

         
 

N N
F N N   (2.91) 

 All integrations in equations (2.76), (2.77), (2.80), (2.86), and (2.91)  are 

calculated using full Gauss integration with three integral points. 

From equation (2.14), the real state of the plate corresponding to the 

minimum of eH  leads to: 

 0e e e e

e e e e

U V W d T

q q q dt q

    
     

    
  (2.92) 

The equation (2.92) is rewritten as: 

 
 e ee e

e e e

U Vd T W

dt q q q

   
   
   

  (2.93) 

From the equation (2.93), the governing equation of motion of the plate 

element without resistance has the form: 

 . .e e e e e M q K q F  (2.94) 

where , ,e e eM K F  are the element mass matrix, the element stiffness matrix, 

and the element load vector, respectively. 

After gathering the element mass matrix, element stiffness matrix, and 

element node force vector, the governing equation of motion of the plate 

without resistance as follows: 

 . . M q K q F  (2.95) 
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where , ,M K F  are the global mass matrix, the global stiffness matrix, and 

global load vector, respectively. 

2.5. Boundary conditions 

Considering plates with different bonding conditions such as simply 

supported, clamped supported. Boundary conditions for each specific case are 

as follows: 

 Rectangular nanoplate 

2.5.1.1.  Completely simply supported (CSS) 

 At 00, : 0i i yix x a v w      . 

At 00, : 0i i xiy y b u w     . 

2.5.1.2.  Completely clamped supported (CCS) 

 At 0 00, : 0i i i xi yix x a u v w         . 

At 0 00, : 0i i i xi yix x a u v w         . 

 L-shape nanoplate 

2.5.2.1.  Completely simply supported 

At 00; , 0 ; , : 0
2 2 2

i i yi

a b b
x x y x a y b v w           . 

At 00; , 0 ; , : 0
2 2 2

i i xi

b a a
y y x y b x a u w           . 

2.5.2.2.  Completely clamped supported 

At 0 00; , 0 ; , : 0
2 2 2

i i i xi yi

a b b
x x y x a y b u v w              . 

At 0 00; , 0 ; , : 0.
2 2 2

i i i xi yi

b a a
y y x y b x a u v w               
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 Annular nanoplate 

2.5.3.1. Simply supported 

- Simply supported at the inner border: At 1 : 0.i ir r w   

- Simply supported at the outer border: At : 0.i ir R w   

- Completely simply supported: At 1, : 0.i i ir r r R w    

2.5.3.2. Clamped supported 

- Clamped at the inner border: At 1 0 0: 0.i i i i xi yir r u v w        

- Clamped at the outer border: At 0 0: 0.i i i i xi yir R u v w        

- Completely clamped: At 1 0 0, : 0.i i i i i xi yir r r R u v w         

 Half-annular nanoplate 

2.5.4.1.  Simply supported 

- Simply supported at the inner border: At 1 : 0.i ir r w   

- Simply supported at the outer border: At : 0.i ir R w   

- Completely simply supported: At 1, : 0.i i ir r r R w    

2.5.4.2.  Clamped supported 

- Clamped at the inner border: At 1 0 0: 0.i i i i xi yir r u v w        

- Clamped at the outer border: At 0 0: 0.i i i i xi yir R u v w        

- Completely clamped: At 1 0 0, : 0.i i i i i xi yir r r R u v w         

2.6. Summary of Chapter 2 

Using the finite element method based on first-order shear deformation 

theory and nonlocal elasticity theory, the author has built a stiffness matrix, 

mass matrix, and load vector. From there, based on Hamilton's principle, the 

motion equation is established for calculating FGP nanoplates with different 

shapes resting on elastic foundation. 

Đúng 

Sai 
Sai 

Đúng 



49 

 

   

 

Defining specific boundary conditions for different shapes nanoplates. 

The formulations in this chapter are the scientific basis for building 

algorithms and calculation programs to solve the static problem in chapter 3, 

the free vibration problem, and forced vibration in chapter 4. 

The expanded expressions in this chapter are used for calculations in the 

next studies. 
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 STATIC ANALYSIS OF FGM POROUS NANOPLATES 

RESTING ON ELASTIC FOUNDATION 

 

In this chapter, the author establishes the static equilibrium equation and 

a program to solve the static bending problem. Simultaneously, the influence 

of some parameters on the static response of nanoplates such as nonlocal factor, 

material characteristics, and elastic foundation, are investigated. 

3.1. Problem formulation 

Consider the FGP nanoplates resting on an elastic foundation subjected 

to static loads, as shown in Figure 3.1. Geometric parameters are presented 

specifically in each model. With the flexible imposition of boundary 

conditions, the finite element method allows the analysis of complex structures 

that are difficult or even impossible to perform with analytical methods. 

 
          

 

 

 

 

 

 

Spring 
stiffener

Shear

layer

h

a

b

O

z

x

y

q

Rigid 
foundation

0q

 

a) Rectangular nanoplate 

h

a

b

x

y

a/2

b/2

0q

 

b) L-shape nanoplate 

R

z y

x

O

hq

0q

1r

 

c) Annular nanoplate 

 

z
y

x

O

R

h

0q

1r

 

d) Half-annular nanoplate 

Figure 3.1. The model of FGP nanoplates subjected to static load. 
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3.2. Finite element algorithm and calculation programs 

The equilibrium equation of nanoplates subjected to static loads is: 

 . K q F  (3.1) 

in which , ,K q F  are the global stiffness matrix, the global force vector, and 

the global displacement vector. They are gathered from the element stiffness 

matrix, the element force vector, and the element displacement vector. 

From the equation (3.1), the global node displacement vector is 

calculated according to the following formulation: 

 
1q K F  (3.2) 

Algorithm diagram for solving FGP nanoplates subjected to static load as 

shown in Figure 3.2. 

Start

Input data

,K FCalculating

Handling boundary conditions

Results

End

Calculating displacement and stress

 

Figure 3.2. Algorithm diagram for solving FGP nanoplates subjected to the 

static load. 

Based on the above algorithm presented, the calculation program 

FGP_Nanoplates_FSDT_Nonlocal_Static_2022 (FNFNS_2022) is built in 
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Matlab software to analyze the static behavior of the FGP nanoplates resting on 

the elastic foundation. The program consists of the following main modules: 

- The module for input data and meshing elements. 

- The module solves the static behavior for FGP nanoplate resting on the 

elastic foundation. 

- The module outputs the results. 

The program FGP_Nanoplates_FSDT_Nonlocal_Static_2022 can solve 

the static behavior of FGP nanoplates resting on an elastic foundation and 

investigate the influence of factors such as boundary conditions, material 

properties, elastic foundation characteristics on the static behavior of the 

nanoplates. 

3.3. Verification study 

Considering completely simply supported FGM square nanoplates. 

Material properties of the individual materials as shown in Table 3.1, and 

geometry parameters as a=b=10 nm, h=a/10, k = 0, K2 = 0. 

The dimensionless quantities are introduced by 

 

3
* * *2

4

0 0 0

4 2 3

2
1 2 2

100 10 10
, , ,

, ,
12(1 )

xx xx xy xy

w s

E h h h
w w

q a q a q a

k a k a E h
K K H

H H

  

  


   



  (3.3) 

Table 3.1. Material properties 

Materials E (GPa)    (kg/m3) 

Al2O3 (ceramic) 380 0.3 3800 

Al (metal) 70 0.3 2707 
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As exhibited in Table 3.2 the present results are in good agreement with 

an analytical method of Sobhy [73]. It means that the present method is highly 

reliable. 

Table 3.2. The displacement and stress of square nanoplates. 

Method K1 

0   4   

* ; ;0
2 2

a b
w
 
 
 

 * ; ;
2 2 2

xx

a b h 
 
 

  * ; ;0
2 2

a b
w
 
 
 

 * ; ;
2 2 2

xx

a b h 
 
 

  

[73] 
0 2.9603 19.9550 5.2977 35.7108 

100 2.3290 15.6991 3.5671 24.0455 

Thesis 

0 
2.9600 

(0.01%) 

19.8990 

(0.28%) 

5.2971 

(0.01%) 

35.6106 

(0.28%) 

100 
2.3288 

(0.01%) 

15.6555 

(4.36%) 

3.5669 

(0.01%) 

23.9791 

(0.28%) 

 

 

3.4. Numerical results and discussion 

Based on the calculation program, in this section, the author analyzes the 

static bending of FGP nanoplates with different shapes, geometrical 

parameters, material properties, boundary conditions, and elastic stiffness. The 

static load is evenly distributed in the direction perpendicular to the plate 

surface. 

 Rectangular nanoplate 

Considering the completely simply supported FGP square nanoplates as 

in Figure 3.1 a. Geometric dimensions 10 ; /10.a b nm h a    Material 

properties of the individual materials as shown in  Table 3.1, power-law index 

k=1, porosity factor 0.1,  nonlocal factor 2,   the stiffness of foundation: 
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K1=50, K2=10. The plate is subjected to uniform load 0q  in perpendicular 

directions. The deformation and stress of the square nanoplate with various 

mesh sizes are shown in Table 3.3. It can be seen that the results converge at a 

mesh size of 8 8 . 

Table 3.3. The deformation and stress of the square nanoplate with various 

mesh sizes. 

 Mesh size 2 2  4 4  6 6  8 8  10 10  

Even 

porosity 

Max  *w  10.9205 10.9174 10.9150 10.9135 10.9135 

* ( ; ;0)
2 2

xx

a b
  -6.3154 -6.3010 -6.2841 -6.2831 -6.2831 

Uneven 

porosity 

Max  *w  10.0801 10.0785 10.0777 10.0772 10.0772 

* ( ; ;0)
2 2

xx

a b
  -5.4740 -5.4732 -5.4726 -5.4722 -5.4722 

  

The deformation field of the nanoplate is shown in Figure 3.3 a, b. The 

stresses at the midpoint of the plate according to plate thickness are presented 

in Figure 3.3 c, d. It can be seen that the law of stress distribution according to 

the thickness of the plate at a point is consistent with the law of effective 

mechanical properties of FGP materials. In addition, in the case of a square 

plate, with completely simply supported, the maximum displacement will be at 

the center of the plate, and the strain field varies uniformly from this point to 

the surrounding. 
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a) The deformation field 

 

b) The top view deformation field 

 

c) The stress  
*

xx  at the midpoint 

 

d) The stress *

xy at the midpoint 

Figure 3.3. The deformation and stresses of the completely simply supported 

square nanoplate (Case 1: Even porosity, Case 2: Uneven porosity). 

 

 L-shape nanoplate 

Considering the completely simply supported FGP L-shape nanoplates 

as in Figure 3.1 b. Geometric dimensions a = b = 10 nm, h = 1 nm. Material 

properties of the individual materials as shown in Table 3.1, power-law index 

k=5, porosity factor 0.2,  nonlocal factor 4,   the foundation stiffness: K1 

= 100, K2 = 10. The FGP nanoplate is subjected to uniformly load q0 in 

perpendicular directions. The deformation and stress of the L-shape nanoplate 
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with various mesh sizes are listed in Table 3.4. It can be seen that the results 

converge at a mesh size of 48 elements. 

The deformation field of the nanoplate is shown in Figure 3.4 a, b. The 

stresses at the  A-point of the nanoplate are presented in Figure 3.4 c, d. From 

the deformation field can be seen that the vicinity of the L-angle is most 

susceptible to failure due to stress concentration because of the sudden change 

in shape at the L-angle. 

 

a) The deformation field 

 

b) The top view deformation field 

  

 

c) The stress  
*

xx  at A-point 

 

d) The stress *

xy at A-point 

Figure 3.4. The deformation and stresses of the completely simply supported 

L-shape nanoplate (Case 1: Even porosity, Case 2: Uneven porosity). 
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Table 3.4. The deformation and stress of the L-shape nanoplate with various 

mesh sizes. 

 Mesh size 12 24 32 48 96 

Even 

porosity 

Max  *w  6.1217 6.1202 6.1198 6.1193 6.1192 

* (5;5.625;0)xx  -1.2134 -1.2123 -1.2117 -1.2113 -1.2112 

Uneven 

porosity 

Max  *w  4.2618 4.2609 4.2601 4.2598 4.2597 

* (5;5.625;0)xx  -0.6362 -0.6353 -0.6348 -0.6343 -0.6342 

 

 Annular nanoplate 

Consider the FGP annular nanoplates as in Figure 3.1c with clamped 

supported at the outer border. Material properties of the individual materials 

are listed in Table 3.1 with geometric dimensions R = 5 nm, r1 = 2.5 nm, h = 1 

nm, power-law index k=2, porosity factor 0.3,  nonlocal factor 1,   the 

stiffness of foundation: K1 = 50, K2 = 50.  The FGP annular nanoplate is 

subjected to uniformly load q0 in perpendicular directions. The deformation and 

stress of the annular nanoplate with various mesh sizes are shown in Table 3.5. 

It can be seen that the results converge at a mesh size of 64 elements. 

Table 3.5. The deformation and stress of the annular nanoplate with various 

mesh sizes. 

 Mesh size 8 16 32 64 128 

Even 

porosity 

Max  *w  1.5192 1.5185 1.5180 1.5177 1.5176 

* (0;2.8125;0)xx  -0.0386 -0.0381 -0.0377 -0.0370 -0.0370 

Uneven 

porosity 

Max  *w  1.0142 1.0137 1.0131 1.0128 1.0127 

* (0;2.8125;0)xx  -0.0236 -0.0230 -0.0226 -0.0221 -0.0220 
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The deformation field of the FGP annular nanoplate is indicated in Figure 

3.5 a, b. The stresses of the A-point through the thickness of the FGP annular 

nanoplate are presented in Figure 3.5 c, d. It can be seen that with the annular 

shape, the displacement and deformation fields are symmetric to the center of 

the plate. 

 

a) The deformation field 

 

b) The top view deformation field 

 

c) The stress *

xx  at the A-point 

 

d) The stress *

xy at the A-point 

Figure 3.5. The deformation and stresses of the clamped supported at the outer 

border FGP annular nanoplate (Case 1: Even porosity, Case 2: Uneven porosity). 

 

 Half-annular nanoplate 

Considering the FGP annular nanoplates as in Figure 3.1c with clamped 

supported at the outer border. Material properties of the individual materials as 
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shown in Table 3.1 and geometric dimensions R = 5 nm, r1 = 2.5 nm, h = 1 nm, 

power-law index k=5, porosity factor 0.3,  nonlocal factor 3,   the 

foundation stiffness: K1 = 75, K2 = 25.  The deformation and stress of the L-

shape nanoplate with various mesh sizes are displayed in Table 3.6. It can be 

seen that the results converge at a mesh size of 32 elements. 

Table 3.6. The deformation and stress of the half-annular nanoplate with 

various mesh sizes. 

 Mesh size 4 8 24 32 64 

Even 

porosity 

Max  *w  1.0325 1.0318 1.0312 1.0306 1.0305 

* (2.8125;0;0)xx  0.3210 0.3200 0.3194 0.3189 0.3188 

Uneven 

porosity 

Max  *w  0.2983 0.2988 0.2982 0.2977 0.2976 

* (2.8125;0;0)xx  -0.4674 -0.4668 -0.4662 -0.4656 -0.4655 

 

The FGP plate is subjected to uniformly load q0 in perpendicular 

directions. The deformation field of the FGP annular nanoplate is indicated in 

Figure 3.6a, b. The stresses at the A-point through the thickness of the FGP 

annular nanoplate are presented in Figure 3.6 c, d. It can be seen that the 

displacement and deformation fields of the plate are symmetric to the x-axis. 
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a) The deformation field 

 

b) The top view deformation field 

 

c) The stress  
*

xx  at the A-point 

 

d) The stress *

xy at the A-point 

Figure 3.6. The deformation and stresses of the clamped supported at outer 

border FGP half-annular nanoplate (Case 1: Even porosity, Case 2: Uneven 

porosity). 

3.5. The influence of some factors on the static response of FGP nanoplates 

The main objective of this section is to investigate the influence of 

geometrical parameters, material properties, and boundary conditions on the 

static behavior of FGP nanoplates. The mechanical properties of the component 

materials are shown in Table 3.1. 

 Influence of the nonlocal factor 

To investigate the effect of the nonlocal factor on the static bending of 

nanoplate, in this survey, authors choose the nonlocal factor in range 0 4    
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with 0   is the classical plate. Porosity volume fraction 0.1,  power-law 

index k=1. The foundation stiffness: K1 = 100, K2 = 10. It can be found that 

nonlocal factor increases make the displacement increase due to the increase of 

nonlocal factor leading to reduce the FGP nanoplate stiffness. 

Table 3.7. Displacement and stress of FGP nanoplates versus the nonlocal 

factor. 

    0 1 2 3 4 

Square 

nanoplate 

*w  
Case 1 7.964 9.147 10.2936 11.4065 12.488 

Case 2 7.3465 8.464 9.5466 10.5978 11.6201 

*

xx  
Case 1 25.1153 28.7036 32.1849 35.5692 38.8635 

Case 2 24.9304 28.5908 32.1379 35.585 38.9413 

L-shape 

nanoplate 

*w  
Case 1 1.7263 2.0036 2.2776 2.551 2.8203 

Case 2 1.5809 1.8395 2.0931 2.347 2.5976 

*

xx  
Case 1 8.7668 10.2498 11.7086 13.1449 14.5598 

Case 2 8.6256 10.1046 11.5593 12.9919 14.4038 

Annular 

nanoplate 

*w  
Case 1 0.8996 1.0571 1.2138 1.369 1.5225 

Case 2 0.8199 0.9653 1.1098 1.2531 1.3948 

*

xx  
Case 1 5.2235 6.108 6.9973 7.8844 8.7663 

Case 2 5.0972 5.9732 6.8516 7.7272 8.5977 

Half-

annular 

nanoplate 

*w  
Case 1 0.0717 0.0855 0.0996 0.1137 0.1277 

Case 2 0.0667 0.0795 0.0928 0.1059 0.119 

*

xx  
Case 1 0.3825 0.4505 0.5196 0.589 0.6585 

Case 2 0.4995 0.5891 0.6799 0.771 0.8622 
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a) The maximum displacement of 

completely simply supported square 

nanoplate 

 
b) The maximum displacement of  

completely simply supported L-shape 

nanoplate 
  

  

 
c) The maximum displacement of 

clamped supported at outer border 

annular nanoplate 

 
d) The maximum displacement of 

clamped supported at outer border 

half-annular nanoplate 

Figure 3.7. Effect of nonlocal factor on displacement of FGP nanoplates. 
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a) Stress at middle-point of square 

completely simply supported 

nanoplate 

 
b) Stress at A-point of L-shape 

completely simply supported 

nanoplate 

 
c) Stress at A-point of annular 

clamped outer border nanoplate 

 
d) Stress at A-point of half-annular 

clamped outer border nanoplate 

Figure 3.8. Effect of nonlocal factor on stresses of FGP nanoplates. 

 

 Influence of the volume fraction index  

Considering nanoplate with porosity factor 0.1,   nonlocal factor 

2,   the foundation stiffness: K1 = 100, K2 = 10.  The power-law index k 

gets a value from 0 to 100. From Figure 3.9 and Figure 3.10 it can be concluded 

that when k increases lead to displacement increase due to the nanoplate 

stiffness decrease. The displacement of the nanoplate decreases rapidly when k 
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increases from 0 to 10. We also find that the FGP annular nanoplates with 

porosity distribution case 2 are harder than case 1. Note that, k is larger the 

nanoplate becomes metal-rich and thus the nanoplate stiffness decreases. 

Table 3.8. Displacement and stress of FGP nanoplates according to the 

power-law index. 

  k 0 1 2 5 10 

Square 

nanoplate 

*w  

Case 1 5.6955 10.2936 12.7027 14.6521 15.5987 

Case 2 5.4854 9.5466 11.4985 13.0441 13.8905 

*

xx  

Case 1 23.3473 32.1849 35.4019 38.9136 45.2147 

Case 2 23.8698 32.1379 34.9899 38.5843 44.7592 

L-shape 

nanoplate 

*w  

Case 1 1.1807 2.2776 2.9696 3.6934 4.1212 

Case 2 1.1352 2.0931 2.6419 3.1997 3.5522 

*

xx  

Case 1 7.879 11.7086 13.5162 15.6399 18.6602 

Case 2 8.0319 11.5593 13.0982 15.0667 17.8879 

Annular 

nanoplate 

*w  

Case 1 0.6113 1.2138 1.5995 1.9967 2.2332 

Case 2 0.5869 1.1098 1.412 1.7143 1.9072 

*

xx  

Case 1 4.5272 6.9973 8.2189 9.5334 11.3514 

Case 2 4.6058 6.8516 7.8547 9.0219 10.6917 

Half-

annular 

nanoplate 

*w  

Case 1 0.053 0.0996 0.1341 0.1898 0.2349 

Case 2 0.0512 0.0928 0.1215 0.1666 0.2021 

*

xx  

Case 1 1.4395 2.3207 2.7894 3.2739 3.9042 

Case 2 1.4618 2.2538 2.6269 3.0351 3.600 
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a) The maximum displacement of 

completely simply supported square 

nanoplate 

 
b) The maximum displacement of 

completely simply supported L-shape 

nanoplate 

  

  

 
c) The maximum displacement of 

clamped supported at outer border 

annular nanoplate 

 
d) The maximum displacement of 

clamped supported at outer border 

half-annular nanoplate 

Figure 3.9. Effect of power-law index on stresses of FGP nanoplates. 
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a) Stress at the middle-point of 

completely simply supported square 

nanoplate 

 
b) Stress at the A-point of 

completely simply supported L-

shape nanoplate 

 
c) Stress at the A-point of clamped 

supported at outer border annular 

nanoplate 

 
d) Stress at the A-point of clamped 

supported at outer border half-

annular nanoplate 

Figure 3.10. Effect of power-law index on stresses of FGP nanoplates. 

 

 Influence of the porosity factor 

To investigate the effect of the porosity factor, in this section, nanoplate 

with power-law index k=1, nonlocal factor 2.  The foundation stiffness: 

K1=100, K2=10 is considered. The porosity factor   gets a value from 0 to 0.4. 
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From Figure 3.11 and Figure 3.12 it can be concluded that when the porosity 

factor increases lead to displacement increase due to the nanoplate stiffness 

decrease. 

Table 3.9. Displacement and stress of FGP nanoplates versus the porosity 

factor 

    0 0.1 0.2 0.3 0.4 

Square 

nanoplate 

*w  

Case 1 9.2687 10.2936 11.6287 13.4685 16.2327 

Case 2 9.2687 9.5466 9.8499 10.1834 10.5536 

*

xx  

Case 1 31.6889 32.1849 32.8621 33.8554 35.4906 

Case 2 31.6889 32.1379 32.586 33.0294 33.4624 

L-shape 

nanoplate 

*w  

Case 1 2.016 2.2776 2.6322 3.1478 3.9925 

Case 2 2.016 2.0931 2.1781 2.2726 2.3789 

*

xx  

Case 1 11.3265 11.7086 12.2346 13.0183 14.3474 

Case 2 11.3265 11.5593 11.8001 12.049 12.3057 

Annular 

nanoplate 

*w  

Case 1 1.0682 1.2138 1.4136 1.7103 2.2131 

Case 2 1.0682 1.1098 1.156 1.2075 1.2656 

*

xx  
Case 1 6.7078 6.9973 7.4066 8.0393 9.1761 

Case 2 6.7078 6.8516 7.0019 7.1591 7.3237 

Half-

annular 

nanoplate 

*w  

Case 1 0.0885 0.0996 0.1144 0.1352 0.1685 

Case 2 0.0885 0.0928 0.0975 0.1028 0.1088 

*

xx  
Case 1 0.1482 0.1583 0.1727 0.1959 0.2428 

Case 2 0.1482 0.1542 0.1606 0.1675 0.1749 
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a) The maximum displacement of 

completely simply supported square 

nanoplate 

 
b) The maximum displacement of 

completely simply supported L-shape 

nanoplate 

  

  

 
c) The maximum displacement of 

clamped supported at outer border 

annular nanoplate 

 
d) The maximum displacement of 

clamped supported at outer border 

half-annular nanoplate 

Figure 3.11. Effect of porosity factor on the displacement of FGP nanoplates. 
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a) Stress at middle-point of completely 

simply supported square nanoplate 

 
b) Stress at A-point of completely 

simply supported L-shape nanoplate 

 
c) Stress at A-point of clamped 

supported at outer border annular 

nanoplate 

 
d) Stress at A-point of clamped 

supported at outer border half-

annular nanoplate 

Figure 3.12. Effect of porosity factor on stresses of FGP nanoplates. 

 

 Influence of the plate thickness 

To investigate the effect of plate thickness, in this example, nanoplate 

with power-law index k=1, porosity factor 0.1,   nonlocal factor 2.   The 

stiffness foundation: K1=100, K2=10 is considered. The plate thickness a/h gets 

a value from 10 to 80 (a is const). From Figure 3.11 and Figure 3.12, it can be 
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concluded that plate thickness increases lead to displacement decrease because 

the thicker plate has a greater stiffness. This is consistent with mechanical law. 

In this study, a/h=10 corresponds to the thick plate, and a/h=80 corresponds to 

the thin plates. 

Table 3.10. Displacement and stress of FGP nanoplates versus the porosity 

factor 

  a/h 10 20 40 60 80 

Square 

nanoplate 

*w  
Case 1 0.0103 0.0796 0.6305 2.1228 5.0261 

Case 2 0.0095 0.0738 0.5842 1.9668 4.6569 

*

xx  
Case 1 3.2185 12.8818 51.3564 115.2453 204.4133 

Case 2 3.2138 12.8725 51.3349 115.2084 204.3636 

L-shape 

nanoplate 

*w  
Case 1 0.0023 0.0145 0.0957 0.2945 0.6621 

Case 2 0.0021 0.0133 0.0876 0.2691 0.6044 

*

xx  
Case 1 1.1709 4.0637 13.3425 26.9615 44.7016 

Case 2 1.1559 4.0228 13.2182 26.6863 44.229 

Annular 

nanoplate 

*w  
Case 1 0.0012 0.0085 0.0645 0.2129 0.4937 

Case 2 0.0011 0.0077 0.0587 0.1937 0.4495 

*

xx  
Case 1 0.6997 2.7536 10.5875 22.8657 39.0835 

Case 2 0.6852 2.701 10.4087 22.5108 38.517 

Half-

annular 

nanoplate 

*w  
Case 1 0.0001 0.0004 0.0023 0.0068 0.0149 

Case 2 0.0001 0.0004 0.0021 0.0062 0.0135 

*

xx  
Case 1 0.052 0.2061 0.7252 1.3987 2.1675 

Case 2 0.068 0.2708 0.9594 1.8588 2.8866 
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a) The maximum displacement of 

completely simply supported square 

nanoplate 

 
b) The maximum displacement of 

completely simply supported L-shape 

nanoplate 

  

  

 
c) The maximum displacement of 

clamped supported at the outer 

border annular nanoplate 

 
d) The maximum displacement of 

clamped supported at the outer 

border half-annular nanoplate 

Figure 3.13. Effect of plate thickness on the displacement of FGP 

nanoplates. 
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a) Stress at the middle-point of 

completely simply supported square 

nanoplate 

 
b) Stress at the A-point of 

completely simply supported L-

shape nanoplate 
  

 
c) Stress at the A-point of clamped 

supported at the outer border 

annular nanoplate 

 
d) Stress at the A-point of clamped 

supported at the outer border half-

annular nanoplate 

Figure 3.14. Effect of plate thickness on stresses of FGP nanoplates. 

 Influence of the parameters of the elastic foundation 

Finally, consider the influences of the stiffness of the foundation on the 

static bending of the FGP nanoplate. The author changed K1 from 0 to 100 and 

K2 from 0 to 10 with plate thickness h=a/10, power-law index k = 1, porosity 

factor ξ = 0.1, and nonlocal factor μ = 2. From the numerical results shown in 
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Figure 3.15, it can be concluded that when increasing K1 and K2 leads to the 

displacement of nanoplates decrease. This is perfectly reasonable because when 

the foundation stiffness increases, the stiffness of the plate increase. 

Furthermore, the Pasternak foundation supports more strongly than the Winkler 

foundation. In other words, the shear layer of the foundation provides better 

support than the spring layer. 

 

 
a) Completely simply supported 

square nanoplate 

 
b) Completely simply supported L-

shape nanoplate 
  

  

 
c) Clamped supported at outer 

border annular nanoplate 

 
d) Clamped supported at outer 

border half-annular nanoplate 

Figure 3.15. Effect of K1 and K2 on the displacement of FGP nanoplates. 
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3.6. Summary of Chapter 3 

In this chapter, the author presents the algorithm to analyze the FGP 

nanoplates with different shapes resting on an elastic foundation subjected to 

static loads. From the proposed formulation and the numerical results, the 

author can withdraw some following points: 

The author has built an algorithm and a calculation program 

FGP_Nanoplates_FSDT_Nonlocal_Static_2022 (FNFNS_2022) to calculate 

the FGP nanoplates resting on an elastic foundation under static load. The 

calculation results of the program are compared with other published results 

showing accuracy and reliability. 

The survey results show that there are many factors affecting the static 

response of FGP nanoplates resting on the elastic foundation. However, there 

are significant influencing factors, such as the nonlocal factor, the parameters 

of FGP, and the foundation stiffness. Therefore, when designing nanoplates for 

special requirements, engineers must attention to the above issues for the 

structure to operate at high efficiency. 

The obtained results in this chapter have been shown in paper number 2 

and number 4 (List of publications). 

  

Đúng 

Sai 
Sai 

Đúng 
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 DYNAMIC ANALYSIS OF FGM POROUS NANOPLATES 

RESTING ON ELASTIC FOUNDATION 

 

In this chapter, the author established the equations, an algorithm, and a 

calculation program algorithms to calculate the free vibration and forced 

vibration of the FGP nanoplates. Simultaneously, the influence of some 

parameters on plate vibrations, such as nonlocal factor, material characteristics, 

elastic foundation, and boundary conditions, are investigated. 

4.1. Free vibration 

 Finite element algorithm and calculation programs 

From the equation of motion (2.95), in case of the external load is zero, 

the free vibration equation of the plate is as follows: 

  Mq Kq 0   (4.1) 

Assuming that the oscillations are harmonic with amplitude q0 and 

frequency  , then the solution of the equation (4.1) has form 
0 sin( ).tq q  

From there, the free vibration equation (4.1) leads to: 

  2

0 K M q 0  (4.2) 

The equations (4.2) are homogeneous linear equations. It has a non-trivial 

solution 0 q 0  if and only if: 

  2 0 K M  (4.3) 

The equation (4.3) is a polynomial equation of order N. Solving this 

equation give N values of natural frequencies .i  Substituting natural 

frequencies 
i  into the equation (4.2) we find the corresponding eigenvector.  
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The algorithm diagram to solve the free vibration problem of FGP 

nanoplates is shown in Figure 4.1. 

Based on the calculation algorithm, the program 

FGP_Nanoplates_FSDT_Nonlocal_Freevibration_2022 (FNFNF_2022) is 

developed in Matlab software to analyze the free vibrations of FGP nanoplates 

resting on an elastic foundation. The program consists of the following main 

modules: 

- The module for input data and meshing elements. 

- The module solves the free vibration for FGP nanoplate resting on an 

elastic foundation. 

- The module outputs the results. 

The program FGP_Nanoplates_FSDT_Nonlocal_Freevibration_2022 can 

analyze the free vibration of FGP nanoplates resting on an elastic foundation. 

In addition, it is also able to investigate the influence of factors such as 

boundary conditions, material properties, and elastic foundation characteristics 

on the free vibration of nanoplates. 
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Start

Input data

,K MCalculating

Handling boundary conditions

Results

End

Calculating free vibration frequencies

 

Figure 4.1. Algorithm diagram to solve the free vibration problem of FGP 

nanoplates. 

 Convergence and verification study 

To verify the accuracy and convergence of the present work, the 

numerical results of the free vibration of the nanoplate are compared with the 

other published results. 

Example 1: Considering a completely simply supported FGM square 

nanoplate without a nonlocal factor ( 0) . The material properties are 

presented in Table 4.1.  

Table 4.1. Material properties 

Materials E (GPa)    (kg/m3) 

Al2O3 (ceramic) 380 0.3 3800 

Al (metal) 70 0.3 2707 
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For comparison convenience, the author uses the dimensionless 

frequencies of FGP nanoplates as follows [74]: 

 

2 4 3

1 2 2
10 ; ; ;

12(1 )

m w s m
m

m m m

k a k a E h
h K K D

E D D v



   (4.4) 

The numerical results with various mesh sizes compared with the AM in 

[74] are listed in Table 4.2 and presented in Figure 4.2. It can be seen that using 

the Q8 element converges faster and more accurately than using the mixed 

interpolation of tensorial components (MITC) for the four-node quadrilateral 

element (MITC4) and the 4-node quadrilateral (Q4) element. Specifically, 

using the Q8 element with mesh 4×4 is exactly as MITC4 element with mesh 

12×12 and more exactly the Q4 element with mesh 12×12. For the free 

vibration problem, with mesh 8×8, numerical results are obtained as accurately 

as those in the published work of Thai et al. [74]. Therefore, the thesis uses 

mesh 8×8 to investigate the free vibration of FGP nanoplates. 

Table 4.2. The convergence of the natural frequency 
1  of the completely 

simply supported FGM nanoplate (a/h = 10). 

k Mesh 4 4  6 6  8 8  10 10  12 12  [74] 

0 

Q4 0.0727 0.0617 0.0603 0.0591 0.0588 

0.0577 MITC4 0.0617 0.0587 0.0584 0.0580 0.0580 

Q8 0.0580 0.0578 0.0578 0.0578 0.0577 

1 

Q4 0.0572 0.0477 0.0465 0.0454 0.0451 

0.0442 MITC4 0.0473 0.0449 0.0447 0.0444 0.0444 

Q8 0.0444 0.0443 0.0442 0.0442 0.0442 
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4 

Q4 0.0484 0.0409 0.040 0.0391 0.0389 

0.0381 MITC4 0.0409 0.0389 0.0387 0.0384 0.0384 

Q8 0.0384 0.0383 0.0383 0.0383 0.0383 

10 

Q4 0.0451 0.0388 0.0380 0.0373 0.0372 

0.0364 MITC4 0.0391 0.0372 0.0370 0.0368 0.0368 

Q8 0.0367 0.0366 0.0366 0.0366 0.0366 

 

 
a) k = 0 

 
b) k = 1 

 
c) k = 4 

 
d) k = 10 

Figure 4.2. The convergence of element mesh to the dimensionless 

frequency of the FGM nanoplate. 
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Example 2: The completely clamped supported L-shape isotropic plate 

with /10h a  (a is fixed), 0.3  is considered. The first four dimensionless 

natural frequencies 
2(1 )

a
E

 
 


  of the plate are listed in Table 4.2. It 

can be concluded that the results of the proposed method are in good agreement 

with those of Roque et al. [75] using the finite-difference technique (FDT) and 

results of Thai et al. [76] using IGA based on the HSDT. The error between the 

results of our work and those of references is less than 3%, which is perfectly 

acceptable. 

Table 4.3. Dimensionless natural frequencies  of the completely clamped 

isotropic L-shape plates. 

Method Parameters 1  2  3  4  

FDT  

[75] 

  1.8832 2.3450 2.7698 3.5714 

Er (%) 1.64 0.37 2.82 1.19 

IGA  

[76] 

  1.8395 2.3735 2.7507 3.6030 

Er (%) 0.70 0.83 2.14 2.06 

Thesis   1.8524 2.3537 2.6918 3.5288 

 

Example 3: The completely simply supported homogeneous square 

nanoplate with geometrical parameters a = b = 10 nm, h = a/10 and material 

properties: E = 30MPa, 0.3  is studied. The dimensionless natural 

frequencies 
* / Gh    are listed in Table 4.4. It can be seen that the 

obtained results in the thesis are closed to those of Belkorissat et al. [77] based 

on hyperbolic refined plate theory (the maximum error is 1.18 %) and results 

of Aghababaei et al. [78] using Navier solution based on the first-order shear 

deformation theory and the third-order shear deformation theory (the maximum 

error is less than 1%). Numerical results also indicate that the obtained 

frequencies based on the classical plate theory are significantly greater than the 
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obtained results using other theories, the maximum error is 3 % in the case of 

moderately thick plates. Overall, the results of the thesis method are more 

reliable than those of the classical plate theory. 

Table 4.4. The first dimensionless natural frequency 
*  of homogeneous 

square nanoplates. 

/a h    
HSDT [77] CPT [78] FSDT [78] TSDT [78] 

Thesis 
*

1  Er *

1  Er *

1  Er *

1  Er 

10 

0 0.0930 0.32 0.0936 0.32 0.0930 0.32 0.0935 0.21 0.0933 

1 0.0850 0.35 0.0880 3.07 0.0850 0.35 0.0854 0.12 0.0853 

2 0.0787 0.51 0.0816 3.06 0.0788 0.38 0.0791 0.00 0.0791 

3 0.0737 0.14 0.0763 3.28 0.0737 0.14 0.0741 0.40 0.0738 

4 0.0695 0.29 0.0720 3.19 0.0696 0.14 0.0699 0.29 0.0697 

5 0.0659 0.30 0.0683 3.22 0.0660 0.15 0.0663 0.30 0.0661 

20 

0 0.0238 0.00 0.0239 0.42 0.0239 0.42 0.0238 0.00 0.0238 

1 0.0218 0.00 0.0220 0.91 0.0218 0.00 0.0218 0.00 0.0218 

2 0.0202 0.50 0.0204 0.49 0.0202 0.50 0.0202 0.50 0.0203 

3 0.0189 0.53 0.0191 0.52 0.0189 0.53 0.0189 0.53 0.0190 

4 0.0178 0.56 0.0180 0.56 0.0179 0.00 0.0179 0.00 0.0179 

5 0.0169 1.18 0.0171 0.00 0.0170 0.59 0.0170 0.59 0.0171 

 

 Numerical results and discussion 

For this problem, consider the FGP nanoplate resting on the elastic 

foundation. Figure 4.3 and Figure 4.4 show the first four mode shapes of FGP 

square nanoplate, which has geometric dimensions a = b =10 nm, /10,h a

K1 = 100, K2 = 10, k = 1, 2, 0.2.  It can be observed that the second 

dimensionless frequency is equal to the third dimensionless frequency. This is 
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suitable for symmetrical nanoplates under the same supported conditions. With 

the L-shape nanoplate, the first four mode shapes are shown in Figure 4.5 and 

Figure 4.6. It can be seen that the L-shape nanoplate has higher dimensionless 

frequencies due to limited boundary conditions. 

4.1.3.1. Square nanoplate 

 
a) 1st mode, 

1 = 0.8442 
 

b) 2nd mode, 
2 = 1.5156 

 
c) 3rd mode, 

3 = 1.5156 
 

d) 4th mode, 
4 = 1.9983 

Figure 4.3. The first four mode shapes of the completely simply supported 

FGP square nanoplate with even porosity. 

Figure 4.7 and Figure 4.8 show the first four-mode shapes of the annular 

and half-annular FGP nanoplates with geometric dimensions R = 5 nm, r1 = 2.5 

nm, h = a/10. For asymmetric and complex structures, such as L-shape and 

half-annular with different boundary conditions, the numerical method proves 

its great efficiency compared to the analytical method. 
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a) 1st mode, 

1 = 0.8682 
 

b) 2nd mode, 
2 = 1.5853 

  

 
c) 3rd mode, 

3 = 1.5853 
 

d) 4th mode, 
4 = 2.091 

Figure 4.4. The first four mode shapes of the completely simply supported 

FGP square nanoplate with uneven porosity.  
 

4.1.3.2. L-shape nanoplate 

 
a) 1st mode, 

1 = 1.5102 
 

b) 2nd mode, 
2 = 1.7367 

  

 
c) 3rd mode, 

3 = 1.9983 
 

d) 4th mode, 
4 = 2.4818 

Figure 4.5. The first four mode shapes of the completely simply supported 

FGP L-shape nanoplate with even porosity. 
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a) 1st mode, 

1 = 2.1559 
 

b) 2nd mode, 
2 = 2.4591 

  

 
c) 3rd mode, 

3 = 2.6306 
 

d) 4th mode, 
4 = 2.9559 

Figure 4.6. The first four mode shapes of the completely clamped supported 

FGP L-shape nanoplate with even porosity.  

4.1.3.3. Annular nanoplate 

 
a) 1st mode, 

1 = 1.7710 
 

b) 2nd mode, 
2 = 1.9901 

  

 
c) 3rd mode, 

3 = 1.9901 
 

d) 4th mode, 
4 = 2.4671 

Figure 4.7. The first four mode shapes of the completely clamped supported 

FGP annular nanoplate with even porosity.  
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4.1.3.4. Half-annular nanoplate 

 
a) 1st mode, 

1 = 0.6367 
 

b) 2nd mode, 
2 = 1.0892 

  

 
c)3rd mode, 

3 = 1.3944 
 

d) 4th mode, 
4 = 1.6566 

Figure 4.8. The first four mode shapes of the completely clamped supported 

FGP half-annular nanoplate with even porosity.  

 Influence of some factors on the natural frequency of FGP nanoplate 

4.1.4.1. Influence of the elastic foundation 

Firstly, in order to consider the influences of dimensionless parameters of 

elastic foundation stiffness on free vibration of the FGP square nanoplate, 

change 1K  from 100 to 1000 and 2K  from 10 to 100 with respect to 1,k   0.2   

and nonlocal factor gets values 0,1, 2, 4.   The first natural frequencies of the 

FGP nanoplate with two cases of porosity distribution are presented in Table 

4.5, Table 4.6, Table 4.7, Table 4.8 and shown in Figure 4.9. It can be found 

that when increasing 
1K  and 

2K  lead to the natural frequency of nanoplates 

also increase. Furthermore, the effects of the Pasternak foundation are stronger 

than the Winkler foundation for all cases of porosity distributions.  
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Specifically, with the same geometry parameters and material properties 

(see Table 4.5 with nonlocal factor 1),  when 2 100K   and 1K  increases 

from 100 to 1000, the first non-dimensional natural frequency increases from 

1.4841 to 1.7447 (17.6 %), but when 1 100K   and 2K  only increase from 10 

to 100, the first non-dimensional natural frequency fast increases from 0.9026 

to 1.4841 (64,4%). In addition, the frequencies of the completely clamped FGP 

nanoplate are greater than the completely simply supported FGP nanoplate. The 

results are quite reasonable because the simply supported boundary condition 

is more flexible than the clamped boundary condition. 
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Table 4.5. Natural frequencies of the completely simply supported FGP square 

nanoplate with even porosity versus K1 and K2. 

Nonlocal 

factor  

(μ) 

 K1 

K2 
100 250 500 750 1000 

0 

10 0.9783 1.0476 1.1538 1.2510 1.3412 

25 1.1109 1.1723 1.2681 1.3572 1.4408 

50 1.3022 1.3550 1.4387 1.5177 1.5929 

75 1.4687 1.5157 1.5910 1.6628 1.7317 

100 1.6182 1.6610 1.7300 1.7963 1.8602 

1 

10 0.9026 0.9773 1.0904 1.1928 1.2871 

25 1.0228 1.0892 1.1917 1.2861 1.3740 

50 1.1965 1.2537 1.3437 1.4281 1.5077 

75 1.3479 1.3990 1.4802 1.5572 1.6305 

100 1.4841 1.5306 1.6051 1.6764 1.7447 

2 

10 0.8442 0.9236 1.0425 1.1492 1.2468 

25 0.9546 1.0254 1.1337 1.2325 1.3240 

50 1.1145 1.1758 1.2713 1.3602 1.4436 

75 1.2542 1.3089 1.3954 1.4768 1.5539 

100 1.3798 1.4298 1.5093 1.5849 1.6570 

4 

10 0.7590 0.8464 0.9748 1.0881 1.1907 

25 0.8549 0.9333 1.0512 1.1571 1.2540 

50 0.9944 1.0626 1.1674 1.2636 1.3529 

75 1.1165 1.1777 1.2731 1.3618 1.4451 

100 1.2266 1.2825 1.3706 1.4534 1.5317 
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 Table 4.6. Natural frequencies of the completely clamped supported FGP 

square nanoplate with even porosity versus K1 and K2. 

Nonlocal 

factor  

 (μ) 

 K1 

K2 
100 250 500 750 1000 

0 

10 1.5338 1.5788 1.6512 1.7205 1.7872 

25 1.6350 1.6774 1.7457 1.8114 1.8748 

50 1.7894 1.8282 1.8911 1.9519 2.0109 

75 1.9299 1.9659 2.0245 2.0815 2.1369 

100 2.0595 2.0933 2.1484 2.2022 2.2547 

1 

10 1.3857 1.4352 1.5141 1.5891 1.6607 

25 1.4775 1.5241 1.5986 1.6698 1.7381 

50 1.6179 1.6605 1.7291 1.7952 1.8589 

75 1.7457 1.7853 1.8494 1.9113 1.9712 

100 1.8639 1.9010 1.9613 2.0198 2.0766 

2 

10 1.2744 1.3279 1.4126 1.4925 1.5683 

25 1.3588 1.4092 1.4892 1.5652 1.6376 

50 1.4881 1.5341 1.6080 1.6786 1.7464 

75 1.6060 1.6488 1.7177 1.7840 1.8479 

100 1.7151 1.7552 1.8202 1.8828 1.9435 

4 

10 1.1167 1.1772 1.2716 1.3594 1.4419 

25 1.1901 1.2470 1.3365 1.4203 1.4995 

50 1.3027 1.3549 1.4376 1.5159 1.5903 

75 1.4057 1.4542 1.5317 1.6053 1.6758 

100 1.5013 1.5468 1.6198 1.6896 1.7567 
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Table 4.7. Natural frequencies of the completely simply supported FGP with 

uneven porosity square nanoplate versus K1 and K2. 

Nonlocal 

factor  

 (μ) 

 K1 

K2 
100 250 500 750 1000 

0 

10 1.0092 1.0692 1.1623 1.2485 1.3291 

25 1.1245 1.1787 1.2637 1.3434 1.4187 

50 1.2941 1.3414 1.4167 1.4883 1.5565 

75 1.4439 1.4865 1.5548 1.6202 1.6831 

100 1.5796 1.6185 1.6815 1.7422 1.8008 

1 

10 0.9297 0.9945 1.0940 1.1851 1.2698 

25 1.0343 1.0929 1.1842 1.2689 1.3483 

50 1.1884 1.2398 1.3209 1.3973 1.4698 

75 1.3247 1.3710 1.4447 1.5149 1.5820 

100 1.4482 1.4907 1.5588 1.6241 1.6868 

2 

10 0.8682 0.9372 1.0422 1.1375 1.2255 

25 0.9645 1.0271 1.1237 1.2126 1.2954 

50 1.1064 1.1614 1.2477 1.3283 1.4043 

75 1.2322 1.2818 1.3604 1.4347 1.5054 

100 1.3462 1.3918 1.4645 1.5338 1.6001 

4 

10 0.7783 0.8547 0.9686 1.0705 1.1635 

25 0.8621 0.9316 1.0372 1.1329 1.2212 

50 0.9861 1.0475 1.1423 1.2299 1.3117 

75 1.0962 1.1517 1.2386 1.3198 1.3963 

100 1.1962 1.2472 1.3279 1.4039 1.4760 
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Table 4.8. Natural frequencies of the completely clamped supported FGP 

square nanoplate with uneven porosity versus  K1 and K2. 

Nonlocal 

factor  

 (μ) 

 K1 

K2 
100 250 500 750 1000 

0 

10 1.6016 1.6400 1.7022 1.7622 1.8202 

25 1.6880 1.7245 1.7838 1.8411 1.8967 

50 1.8218 1.8557 1.9109 1.9645 2.0167 

75 1.9451 1.9769 2.0288 2.0794 2.1288 

100 2.0601 2.0901 2.1393 2.1874 2.2344 

1 

10 1.4462 1.4885 1.5564 1.6215 1.6841 

25 1.5247 1.5649 1.6296 1.6919 1.7520 

50 1.6464 1.6837 1.7440 1.8024 1.8589 

75 1.7587 1.7937 1.8505 1.9056 1.9591 

100 1.8636 1.8966 1.9504 2.0028 2.0538 

2 

10 1.3293 1.3750 1.4481 1.5176 1.5841 

25 1.4015 1.4450 1.5147 1.5813 1.6452 

50 1.5136 1.5540 1.6190 1.6815 1.7417 

75 1.6173 1.6551 1.7163 1.7754 1.8326 

100 1.7141 1.7499 1.8079 1.8640 1.9186 

4 

10 1.1631 1.2149 1.2967 1.3737 1.4465 

25 1.2260 1.2753 1.3534 1.4273 1.4976 

50 1.3238 1.3696 1.4427 1.5122 1.5787 

75 1.4145 1.4574 1.5263 1.5922 1.6555 

100 1.4993 1.5399 1.6052 1.6680 1.7285 
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a) The completely simply supported 

FGP nanoplate with even porosity 

 

b) The completely clamped supported 

FGP nanoplate with even porosity 

  

 

c) The completely simply supported 

FGP nanoplate with uneven porosity 

 

d) The completely clamped supported 

FGP nanoplate with uneven porosity 

Figure 4.9. Natural frequencies of FGP square nanoplate versus K1 and K2. 

4.1.4.2. Influence of material properties 

Secondly, let’s consider the effect of material properties on the free 

vibration of the FGP square nanoplate. The power-law index k gets values from 

0 to 10, and the porosity factor   changes from 0 to 0.3, the foundation stiffness 

1 2100, 10,K K    and nonlocal factor 0,1, 2, 4.    The authors only choose 

the power-law index k in the range from 0 to 10 for investigation because many 

published works show that when k is greater than 10, the natural frequency of 

FGP structures does not change much and the recommended value of porosity 

volume fraction   is in the range (0-0.3). 
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The natural frequencies of FGP nanoplate with different boundary 

conditions are listed in Table 4.9, Table 4.10, Table 4.11, and Table 4.12 and 

are shown in Figure 4.10 and Figure 4.11. It can be seen that when k increases, 

the stiffness of the FGP nanoplate decreases (nanoplate is metal-rich), and 

hence natural frequencies decrease. We also found that when the increase of 

nonlocal factor   leads to natural frequencies of FGP nanoplates decrease. The 

results are quite reasonable because the increase of the nonlocal factor reduces 

the stiffness of structures in the nonlocal elastic theory. Specifically, with 

nonlocal factor 0  (classical elastic theory), the natural frequencies of FGP 

nanoplates are maximum. 

From Figure 4.11, we can see that with the power-law index, 0k   when 

the porosity volume fraction   increases, the natural frequencies of FGP 

nanoplates increase for both cases of porosity distribution. This is because 

porosity affects both the stiffness and the mass of nanoshells. This simultaneous 

interaction causes the natural frequency to increase. Besides, the natural 

frequencies of the FGP nanoplate with porosity distribution of case 1 are larger 

than the FGP nanoplate with porosity distribution of case 2. For the case of 

2k  when   increases from 0 to 0.3, the natural frequencies of FGP 

nanoplates with even porosity decrease. However, the natural frequencies of 

FGP nanoplates with uneven porosity are less change and larger than the natural 

frequencies of FGP nanoplates with even porosity. Basically, the pore 

appearance in the material reduces the stiffness of the structure. It can also be 

concluded that the rule of the porosity distribution largely affects the free 

vibration of FGP nanoplates. 
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Table 4.9. Natural frequencies of the completely simply supported FGP square 

nanoplate with even porosity versus k and  . 

 

Nonlocal 

factor  

 (μ) 

k  
    

0 2 4 6 8 10 

0 

0 1.2171 0.9272 0.9018 0.8944 0.8878 0.8811 

0.06 1.2301 0.9166 0.8873 0.8804 0.8747 0.8688 

0.12 1.2445 0.9025 0.8669 0.8602 0.8558 0.8511 

0.18 1.2604 0.8830 0.8370 0.8297 0.8268 0.8238 

0.24 1.2781 0.8552 0.7904 0.7793 0.7772 0.7764 

0.30 1.2980 0.8140 0.7101 0.6829 0.6747 0.6723 

1 

0 1.1170 0.8550 0.8324 0.8259 0.8200 0.8141 

0.06 1.1291 0.8460 0.8199 0.8138 0.8088 0.8036 

0.12 1.1425 0.8337 0.8021 0.7964 0.7925 0.7884 

0.18 1.1573 0.8168 0.7760 0.7697 0.7673 0.7647 

0.24 1.1737 0.7926 0.7350 0.7254 0.7238 0.7232 

0.30 1.1922 0.7566 0.6644 0.6405 0.6335 0.6316 

2 

0 1.0393 0.7992 0.7788 0.7730 0.7678 0.7624 

0.06 1.0507 0.7914 0.7679 0.7625 0.7581 0.7533 

0.12 1.0633 0.7808 0.7522 0.7472 0.7438 0.7402 

0.18 1.0773 0.7659 0.7291 0.7236 0.7216 0.7194 

0.24 1.0928 0.7445 0.6926 0.6842 0.6829 0.6825 

0.30 1.1102 0.7126 0.6296 0.6084 0.6022 0.6006 

4 

0 0.9252 0.7179 0.7008 0.6961 0.6917 0.6871 

0.06 0.9357 0.7119 0.6922 0.6879 0.6843 0.6804 

0.12 0.9471 0.7036 0.6798 0.6759 0.6732 0.6702 

0.18 0.9598 0.6919 0.6611 0.6569 0.6554 0.6538 

0.24 0.9739 0.6748 0.6314 0.6248 0.6240 0.6239 

0.30 0.9898 0.6490 0.5797 0.5624 0.5577 0.5566 
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Table 4.10. Natural frequencies of the completely clamped supported FGP 

square nanoplate with even porosity versus k and  . 

Nonlocal 

factor  

 (μ) 

k  
  

0 2 4 6 8 10 

0 

0 1.9954 1.4548 1.3900 1.3658 1.3473 1.3310 

0.06 2.0139 1.4273 1.3534 1.3286 1.3107 1.2949 

0.12 2.0344 1.3915 1.3038 1.2781 1.2611 1.2465 

0.18 2.0572 1.3434 1.2329 1.2046 1.1892 1.1765 

0.24 2.0825 1.2758 1.1229 1.0856 1.0709 1.0615 

0.30 2.1110 1.1746 0.9226 0.8422 0.8123 0.7996 

1 

0 1.7996 1.3144 1.2574 1.2363 1.2202 1.2060 

0.06 1.8165 1.2900 1.2247 1.2034 1.1879 1.1741 

0.12 1.8351 1.2581 1.1805 1.1584 1.1439 1.1313 

0.18 1.8558 1.2152 1.1173 1.0929 1.0799 1.0692 

0.24 1.8788 1.1550 1.0192 0.9867 0.9744 0.9667 

0.30 1.9047 1.0650 0.8414 0.7708 0.7448 0.7339 

2 

0 1.6518 1.2088 1.1574 1.1388 1.1244 1.1116 

0.06 1.6673 1.1867 1.1280 1.1090 1.0953 1.0830 

0.12 1.6846 1.1579 1.0880 1.0684 1.0557 1.0445 

0.18 1.7037 1.1192 1.0308 1.0092 0.9978 0.9885 

0.24 1.7250 1.0647 0.9419 0.9130 0.9024 0.8958 

0.30 1.7489 0.9834 0.7815 0.7184 0.6953 0.6858 

4 

0 1.4407 1.0589 1.0155 1.0000 0.9880 0.9772 

0.06 1.4545 1.0403 0.9907 0.9751 0.9637 0.9535 

0.12 1.4697 1.0161 0.9569 0.9409 0.9305 0.9212 

0.18 1.4866 0.9834 0.9086 0.8909 0.8818 0.8742 

0.24 1.5054 0.9375 0.8334 0.8096 0.8012 0.7961 

0.30 1.5266 0.8689 0.6985 0.6460 0.6271 0.6194 
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Table 4.11. Natural frequencies of the completely simply supported FGP 

square nanoplate with uneven porosity versus k and  . 

Nonlocal 

factor  

 (μ) 

k  
      

0 2 4 6 8 10 

0 

0 1.2171 0.9272 0.9018 0.8944 0.8878 0.8811 

0.06 1.2279 0.9298 0.9032 0.8962 0.8901 0.8839 

0.12 1.2392 0.9322 0.9040 0.8974 0.8919 0.8862 

0.18 1.2509 0.9343 0.9041 0.8979 0.8931 0.8880 

0.24 1.2632 0.9361 0.9033 0.8974 0.8933 0.8890 

0.30 1.2761 0.9374 0.9013 0.8955 0.8922 0.8887 

1 

0 1.1170 0.8550 0.8324 0.8259 0.8200 0.8141 

0.06 1.1270 0.8576 0.8339 0.8278 0.8224 0.8168 

0.12 1.1373 0.8600 0.8349 0.8292 0.8244 0.8193 

0.18 1.1482 0.8622 0.8354 0.8300 0.8258 0.8213 

0.24 1.1595 0.8641 0.8350 0.8299 0.8264 0.8225 

0.30 1.1714 0.8656 0.8336 0.8286 0.8258 0.8227 

2 

0 1.0393 0.7992 0.7788 0.7730 0.7678 0.7624 

0.06 1.0486 0.8018 0.7805 0.7750 0.7702 0.7652 

0.12 1.0583 0.8043 0.7817 0.7766 0.7723 0.7677 

0.18 1.0684 0.8066 0.7824 0.7776 0.7739 0.7699 

0.24 1.0790 0.8086 0.7824 0.7779 0.7748 0.7714 

0.30 1.0901 0.8103 0.7814 0.7770 0.7746 0.7719 

4 

0 0.9252 0.7179 0.7008 0.6961 0.6917 0.6871 

0.06 0.9336 0.7205 0.7026 0.6982 0.6943 0.6900 

0.12 0.9423 0.7231 0.7042 0.7001 0.6966 0.6928 

0.18 0.9514 0.7255 0.7053 0.7015 0.6985 0.6952 

0.24 0.9609 0.7277 0.7058 0.7023 0.6999 0.6971 

0.30 0.9708 0.7297 0.7055 0.7022 0.7003 0.6981 
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Table 4.12. Natural frequencies of the completely clamped supported FGP 

square nanoplate with uneven porosity versus k and  . 

Nonlocal 

factor  

 (μ) 

k  
   

0 2 4 6 8 10 

0 

0 1.9954 1.4548 1.3900 1.3658 1.3473 1.3310 

0.06 2.0114 1.4546 1.3865 1.3621 1.3439 1.3280 

0.12 2.0280 1.4538 1.3816 1.3570 1.3392 1.3236 

0.18 2.0455 1.4522 1.3751 1.3502 1.3327 1.3176 

0.24 2.0637 1.4496 1.3665 1.3410 1.3240 1.3094 

0.30 2.0828 1.4458 1.3553 1.3288 1.3121 1.2981 

1 

0 1.7996 1.3144 1.2574 1.2363 1.2202 1.2060 

0.06 1.8141 1.3144 1.2543 1.2333 1.2175 1.2036 

0.12 1.8292 1.3138 1.2502 1.2290 1.2136 1.2001 

0.18 1.8450 1.3125 1.2446 1.2232 1.2082 1.1951 

0.24 1.8615 1.3104 1.2371 1.2152 1.2007 1.1881 

0.30 1.8788 1.3071 1.2272 1.2045 1.1904 1.1784 

2 

0 1.6518 1.2088 1.1574 1.1388 1.1244 1.1116 

0.06 1.6651 1.2090 1.1549 1.1362 1.1221 1.1097 

0.12 1.6790 1.2086 1.1513 1.1325 1.1189 1.1068 

0.18 1.6935 1.2075 1.1463 1.1274 1.1142 1.1025 

0.24 1.7087 1.2057 1.1397 1.1204 1.1076 1.0965 

0.30 1.7247 1.2029 1.1308 1.1109 1.0986 1.0880 

4 

0 1.4407 1.0589 1.0155 1.0000 0.9880 0.9772 

0.06 1.4524 1.0592 1.0136 0.9981 0.9865 0.9760 

0.12 1.4646 1.0592 1.0108 0.9954 0.9841 0.9740 

0.18 1.4773 1.0586 1.0069 0.9914 0.9805 0.9709 

0.24 1.4906 1.0573 1.0015 0.9858 0.9754 0.9662 

0.30 1.5046 1.0552 0.9943 0.9780 0.9681 0.9595 
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a) The completely simply supported 

FGP nanoplate even porosity 

 

b) The completely clamped supported 

FGP nanoplate even porosity 

 

c) The completely simply supported 

FGP nanoplate uneven porosity 

 

d) The completely clamped supported 

FGP nanoplate with uneven porosity 

Figure 4.10. Natural frequencies of FGP square nanoplate versus k and  . 
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a) The CSS FGP nanoplate, k = 0 

 

b) The CCS FGP nanoplate, k = 0 

  

 

c) The CSS FGP nanoplate, k = 2 

 

d) The CCS FGP nanoplate, k = 2 

  

 

e) The CSS FGP nanoplate, k = 4 

 

f) The CCS FGP nanoplate, k = 4 

Figure 4.11. Natural frequencies of the FGP square nanoplate versus  . 
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4.2. Forced vibration 

 Problem formulation 

Consider functionally graded porous nanoplates with different shapes 

resting on an elastic foundation subjected to dynamic load, as shown in Figure 

4.12. 
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d) Half-annular nanoplate 

Figure 4.12. The model of FGP nanoplates subjected to dynamic load. 
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 Finite element algorithm and calculation programs 

Considering the drag coefficient, which is linearly dependent on velocity, 

the governing equations of motion for forced vibration of the plate have the 

following form [71]: 

 Mq + Cq + Kq = F  (4.5) 

in which , , ,M K F q  are the global mass matrix, the global stiffness matrix, the 

global force vector, and the global displacement vector 

Due to the difficulties in computing the exact values of the drag 

coefficient, it was essential to use Rayleigh's theory of drag. After this stage, 

the mass matrix and element stiffness matrix are linearly blended to give the 

drag matrix [71]: 

   C M K  (4.6) 

where   and   are the Rayleigh constant based on the natural frequency and 

the drag coefficient .  Normally, the drag coefficient is determined mostly by 

the first two modes of vibrations corresponding to the two lowest natural 

frequencies. Assuming the drag coefficient ratio   is constant, one obtains: 

 
1 2

1 2

2
, 




   

 
 (4.7) 

The equations (4.5) are linear differential equations of second order with 

constant coefficients. There are two primary methods for solving the system 

(4.5), which are direct integration and the mode superposition method. 

- Among the direct integration techniques are the Newmark method, the 

central difference method, the Houblt method, and the Wilson method  , 

among others; nevertheless, the Newmark method is the one that is used most 

often. 
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- Mode superposition method: This method is often used to solve 

equations involving forced vibration. Utilizing eigenforms, which is another 

way of saying taking use of the outcomes of the eigen-oscillation issue, is very 

useful in this regard (modes). 

To solve the system of differential equations (4.5), the thesis uses the 

Newmark method of direct integration. The following is a synopsis of the 

procedure. 

To begin, let's assume that the equation of motion for the structure takes 

the following form: 

 Mq + Cq + Kq = F  (4.8) 

When the obtained solution of (4.8) at time t is the sth step. Find the 

solution at time t+t  which is the (s + 1)th step as follows: 

 
1 1 1 1 1 1 1s s s s s s s      M q + C q + K q = F  (4.9) 

Step 1: Determine the initial conditions: 

  1

0 0 0 0 0 0 0 0(0) ; (0) ; (0)     q q q q q M F K q C q  (4.10) 

Calculation time step: tolt
t

n
    

The coefficients: 

 

 

0 1 2 3 42

5 6 7

2 2 2 1 2
; ; ; 1; 1;

1 ; 1 ; .

a a a a a
t t t

a t a t a t

 
      
    

 
        

 

 (4.11) 

in which   and   are selected according to the linear law for the varying 

acceleration: 

 1( ) s s s
t




   


q q q q  with 1s st t    and 1s st t t    . 
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To ensure solution accuracy, choose 
1 1

; .
2 3

    

Step 2: Compute the efficiency stiffness matrix and the efficiency nodal 

force vector: 

 
*

0 1a a  K K M C   (4.12) 

    *

1 0 2 3 1 4 5s i i i i i ia a a a a a      F F M q q q C q q q   (4.13) 

Step 3: Determine the required quantities. 

- Vector 1sq  according to the equation: 

 
* *

1 1 1.s s s  K q F   (4.14) 

- Vectors 1 1,s s q q  according to the equations: 

  1 0 1 2 3s s s s sa a a    q q q q q   (4.15) 

 
1 6 7 1s s s sa a   q q q q  (4.16) 

and then repeat the loop until the time runs out. 

A flowchart of Newmark’s method for solving the dynamic response of 

nanoplate is shown in Figure 4.13. 

Based on the algorithm, the calculation program 

FGP_Nanoplates_FSDT_Nonlocal_Dynamic_2022 (FNFNS_2022) is built in 

Matlab software to analyze the dynamic behavior of the FGP nanoplate resting 

on an elastic foundation. The program consists of the following main modules: 

- The module for input data and meshing elements. 

- The module solves the dynamic behavior for FGP nanoplate resting on 

an elastic foundation. 

- The module outputs the results. 

The program FGP_Nanoplates_FSDT_Nonlocal_Dynamic_2022 can 

solve the dynamic behavior of FGP nanoplate resting on an elastic foundation 



103 

 

   

 

and investigate the influence of factors such as boundary conditions, material 

properties, elastic foundation stiffness on the dynamic behavior of the 

nanoplates. 

Start

Input data

, , , ,...tK,M,C  
Calculating

Results

End

No j < n

,n /calt t *

o o o
q ,q ,q ,K

t t t  

Calculating
*

t tF

Calculating
* 1 *

t t t t



 q K F

Calculating ,t t t t q q

Calculating , ,t t t t t t  σ ε F

Y
es

 j
 =

 n

 

Figure 4.13. Flowchart of Newmark’s method for solving the dynamic 

response of FGP nanoplates. 
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 Verification study 

The completely clamped supported homogeneous square plate with 

parameters 1 ,a b m  /10,h a  30E GPa , 32800 /kg m and 0.3   is 

considered. The plate is subjected to a sudden distribution load p0 = 10 kPa. 

The non-dimensional deflection is given by the formula 
3

*

4 2

0

100

12 (1 )

Eh
w w

p a 



. 

The deflection response of the midpoint of the plate is shown in Figure 4.14, 

(integral time is 5ms, and acting time of load is 2ms). Observing this figure, it 

can be seen that the center deflection response of plates is similar in both shape 

and value with Ref. [79] using Meshless Petrov-Galerkin (MLPG) method. 

From the above examples, it can be concluded that the author's formula and 

program ensure accuracy and reliability. 

 

Figure 4.14. The deflection response of the center square plate over time. 
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 Numerical results and discussion 

4.2.4.1. Square nanoplate 

Considering FGP (Al2O3/Al) square nanoplate with geometric dimensions 

a = 10 nm, h = 1 nm. The plate is subjected to a load p(t) over time as follows: 

 
 

0

1 0
( ) . ( ); ( )

0

hd

hd

t
t

p t q F t F t

otherwise





  

  



  (4.17) 

with 
0q  is uniformly distributed load. 

a) Influence of the nonlocal factor 

Figure 4.15 presents the effect of nonlocal factor  on the displacement 

response of the completely clamped supported  FGP nanoplate with even 

porosity,  porosity factor 0.5  , power-law index 1k  , time step 0.08.t   

The stiffness of foundation: K1=100, K2=10. It can be seen that the vibration is 

damped after the application time of the load and nonlocal factor reduce 

stiffness of nanoplate hence displacement increase. 

 

Figure 4.15. The displacement response of the completely clamped 

supported  FGP square nanoplate with even porosity. 
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b) Influence of the power-law index 

Furthermore, Figure 4.16 displays the influence of the power-law index k 

on the displacement response of the completely clamped supported FGP 

nanoplate with uneven porosity, porosity factor 0.2  , and nonlocal factor 

1.  The stiffness of foundation: K1=150, K2=50. It can be observed that the 

power-law index k increase, and the stiffness of nanoplate gets stronger. This 

leads to the displacement increase. Besides, rich-metal nanoplate’s stiffness is 

smaller than rich-ceramic nanoplate’s stiffness. In this example, the damping 

ratio 0.008   is used. 

 

Figure 4.16. The displacement response of the completely clamped 

supported FGP square nanoplate with uneven porosity. 

 

4.2.4.2. L-shape nanoplate 

Consider FGP (Al2O3/Al) nanoplate with geometric dimensions a = b =10 

nm. The FGP nanoplate is subjected to a load p(t) over time as follows the 

formula (4.17).  

a) Influence of the nonlocal factor 

Figure 4.17 - Figure 4.19 present the effect of the nonlocal factor   on 

the displacement and stress response of the completely simply supported FGP 

L-shape nanoplate with uneven porosity at A-point has coordinates (3.75, 6.25) 
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with the thickness h = a/20, the porosity volume fraction 0.3  , the power-

law index k = 4 in two cases: without damping ratio 0   and include damping 

ratio 0.1  . The foundation stiffness: 1 2200, 20K K  . It can be seen that 

the vibration is damped after the application time of the load, and the nonlocal 

factor reduces the stiffness of nanoplates; hence displacement and stress 

increase. In general, structural resistance always exists, and after a period of 

application of the load, the nanoplate oscillates and then fades away 

(displacement and stress equal to 0). 

 

a) The damping ratio 0   

 

b) The damping ratio 0.1   

Figure 4.17. The deflection response of the A-point over time t. 

 

 

a) The damping ratio 0   

 

b) The damping ratio 0.1   

Figure 4.18. The stress response 
*

xx  of the A-point over time t at z = h/2. 
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a) The damping ratio 0   

 

b) The damping ratio 0.1   

Figure 4.19. The stress 
*

xx  of the A-point of nanoplates along thickness at 

0.005 .t s  
b) Influence of the power-law index 

Figure 4.20 - Figure 4.22 display the influence of the power-law index k  

on the displacement and stress response of completely clamped supported  FGP 

L-shape nanoplates at A-point with porosity volume fraction 0.2,  the plate 

thickness / 50,h a  nonlocal factor 1  , the foundation stiffness 

1 2100, 10K K   in two cases: without the damping ratio 0  and include 

the damping ratio 0.1 . It can be observed that the power-law index k  

increase and the stiffness of nanoplate obtains higher. As a result, the 

displacement increase. Besides, rich-metal nanoplate stiffness is smaller than 

rich-ceramic nanoplate stiffness. 

 

a) The damping ratio 0   

 

b) The damping ratio 0.1   

Figure 4.20. The deflection response of the A-point over time t. 
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a) The damping ratio 0   

 

b) The damping ratio 0.1   

Figure 4.21. The stress response 
*

xx  of the A-point over time t at z = h/2. 

 

 

 

a) The damping ratio 0   

 

b) The damping ratio 0.1   

Figure 4.22. The stress 
*

xx  of the A-point of nanoplates along thickness at 

0.005 .t s  

 

4.2.4.3. Annular nanoplate 

Consider FGP (Al2O3/Al) annular nanoplate with geometric dimensions R 

= 2r = 10 nm, h = 1 nm. The FGP nanoplate is subjected to a load p(t) over time 

as follows the formula (4.17). 
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a) Influence of the nonlocal factor 

Figure 4.23 presents the effect of the nonlocal factor   on the 

displacement response of the completely clamped supported FGP nanoplate 

with even porosity, porosity factor 0.5  , and the power-law index 1k  . The 

foundation stiffness: K1=100, K2=10. It can be seen that the vibration is damped 

after the application time of the load, and the nonlocal factor reduces the 

stiffness of nanoplate hence the displacement increase. 

 

Figure 4.23. The displacement response of the completely clamped 

supported  FGP annular nanoplate with even porosity. 

b) Influence of the power-law index 

Figure 4.24 displays the influence of the power-law index k  on the 

displacement response of the completely clamped supported  FGP nanoplate 

with uneven porosity, porosity factor 0.2   , and nonlocal factor 1  . The 

foundation stiffness: K1=150, K2=50. It can be observed that the power-law 

index k  increase makes reduce the stiffness of nanoplate, leading to 

displacement increase. Besides, rich-metal nanoplate’s stiffness is smaller than 

rich-ceramic nanoplate’s stiffness. It can also be seen that, after the time of 
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application of the load, the displacement response of the plate decreases 

gradually due to the consideration of the damped structure. 

 

Figure 4.24. The displacement response of the completely clamped 

supported  FGP annular nanoplate with uneven porosity. 

 

c) Influence of the porosity factor 

Finally, Figure 4.25 demonstrates the effect of the porosity factor   on 

the displacement response of the completely simply supported FGP nanoplate 

with two cases of porosity distributions, power-law index 1k  , and nonlocal 

factor 2  . The foundation stiffness: K1=50, K2=10. It can be found that the 

increase in porosity factor   makes reduce the stiffness of nanoplates resulting 

in an increase in displacement. Furthermore, the maximum displacement 

response of the completely simply supported FGP nanoplate with even porosity 

is larger than the nanoplate with even porosity. In this example, the Rayleigh 

coefficient 0.1   is used. 
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a) Even porosity b) Uneven porosity 

Figure 4.25. The displacement response of the completely simply supported 

FGP annular nanoplate. 

4.3. Summary of Chapter 4 

In this chapter, the author presented the free vibration problem and 

forced vibration problem. From the proposed formulation and the numerical 

results, the author can withdraw some following points: 

The author has built an algorithm and a calculation program 

FGP_Nanoplates_FSDT_Nonlocal_Freevibration_2022 (FNFNF_2022) to 

calculate the free vibration of the FGP nanoplates resting on an elastic 

foundation. The calculation results of the program are compared with other 

published results showing accuracy and reliability. 

The author has built an algorithm and a calculation program 

FGP_Nanoplates_FSDT_Nonlocal_Dynamic_2022 (FNFND_2022) to 

calculate the FGP nanoplates resting on an elastic foundation under dynamic 

load. The calculation results of the program are compared with other published 

results showing accuracy and reliability. 

The survey results show that there are many factors affecting the free 

vibration of FGP nanoplates resting on an elastic foundation. However, there 

Đúng 

Sai 
Sai 

Đúng 
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are large influencing factors such as nonlocal factor, the parameters of the 

functionally graded porous material, stiffness of the elastic foundation 

The survey results show that there are many factors affecting the 

dynamic response of FGP nanoplates resting on an elastic foundation. 

However, there are large influencing factors, such as the nonlocal factor, the 

parameters of the functionally graded porous material, and the stiffness of the 

elastic foundation. Therefore, when designing nanoplates for special 

requirements, engineers need to pay attention to the above issues for the 

structure to operate at high efficiency. 

The obtained results in this chapter have been shown in papers number 

1, number 3, and number 5 (List of publications).  



114 

 

   

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES 

1. Novel contributions of the thesis 

Based on the finite element method and nonlocal elastic theory, the static 

and dynamic responses of FGP nanoplates resting on an elastic foundation have 

been investigated in this thesis. The following are some of the significant 

contributions of the thesis: 

- The thesis established a model, a finite element algorithm, and a 

collection of programs to analyze of static bending, free and forced vibration 

of the FGP nanoplates resting on an elastic foundation with various plate shapes 

and boundary conditions. The findings demonstrate the difference between 

nonlocal elasticity theory and local elasticity theory. 

- The influence of parameters such as nonlocal coefficients, material 

properties, geometric dimensions, elastic foundation stiffness, etc., on the static 

response, and natural and forced vibrations of FGP nanoplates have been 

examined in this thesis. From there, the thesis provides scientifically and 

practically relevant commentary. 

- The data set of the dissertation may be used as a reference in the 

computation and design of nanostructures to handle static and dynamic loads 

encountered in sensors, electronic chips, and sensors. 

2. Recommendations for future studies 

- Using higher-order shear deformation theories to examine the 

vibrations of nanoplates and nanoshells subjected to various types of 

mechanical loads while taking temperature into consideration. 
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- Investigating the buckling problems of nanoplates in a viscoelastic 

environment while subjected to a variety of mechanical loads. 

- Computing the shape optimization problem and material optimization 

issue for nanoplates. 

- Calculation of nanomaterial-reinforced structures exposed to various 

sorts of loads.  
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APPENDICES 

1. Appendix 1: Matrices and Expressions 
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- The matrix contains the coordinates of the i node elements 
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 - Functional partial derivatives in the form of variables r, s: 
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2. Appendix 2: The calculation programs 

2.1. The calculation programs for solving static behavior of FGP nanoplate 

resting on elastic foundation: FGP_Nanoplates_FSDT_Nonlocal_Static_2022 

(FNFNS_2022) 

%------------------------------------------------------------------------      
clear  
clc 

 
disp('Please wait Programme is under Run') 
%------------------------------------------------------------------------ 
%  Input data % Geometrical and material properties of plate 
%------------------------------------------------------------------------ 
material=[1 2]; 
for dem=1:length(material) 
    mater=material(dem) 
% file_name='tamchuL' 
% eval(file_name);       % Read input file 
a=10; % nm 
b=a/1; % nm 
h=a/10;% nm 
nX=8; 
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nY=nX; 
%-------------------------------- 
Ec=380e9; 
Em=70e9; 
rhoc=3800; 
rhom=2707; 
nuc=0.3; 
num=0.3; 
nu=0.3; 
muy=4; 
k=5; 
phii=0.2;  
kss=5/6; 
%----------------- 
%% He so nen 
D11=Em*h^3/12/(1-nu^2); 
Kw=100; 
K1=Kw*D11/a^4; 
Gb=10; 
K2=Gb*D11/a^2; 

  
alphac=3.3e-6; 
alpham=17.3e-6; 

  
P0=-1; 
dz=h/1e5; 
hesom=zeros(5); 
Dm=zeros(3); 
Dmb=Dm; 
Db=Dm; 
Ds=zeros(2); 

  
tu=0; 
mau=0; 

  
NxT=0; 
NyT=0; 
if mater==1 
material_porous_1; 
elseif mater==2 
    material_porous_2; 
else 
material_porous_3; 
end 
h0=0; 
 [coordinates, nodes] = rectangularMesh8nut(a,b,nX,nY); 
%     
nel = length(nodes);                   % number of elements 
nnel=8;                                % number of nodes per element 
ndof=5;                                % number of dofs per node 
nnode = length(coordinates) ;          % total number of nodes in system 
sdof=nnode*ndof;                       % total system dofs   
edof=nnel*ndof;                        % degrees of freedom per element 
%------------------------------------------------------------------------ 
% PlotMesh8node(coordinates,nodes); 
%------------------------------------------------------------------------ 
[pointb,weightb]=GaussQuadrature('night'); 
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[points,weights] = GaussQuadrature('second'); 
%------------------------------------------------------------------------ 
force = zeros(sdof,1) ;             % System Force Vector 
stiffness=zeros(sdof,sdof);         % system stiffness matrix 
mass=zeros(sdof,sdof);              % system stiffness matrix 
index=zeros(edof,1);                % index vector 
%------------------------------------------------------------------------ 

  
for iel=1:nel                       % loop for the total number of 

elements 
for i=1:nnel 
node(i)=nodes(iel,i);               % extract connected node for (iel)-th 

element 
xx(i)=coordinates(node(i),1);       % extract x value of the node 
yy(i)=coordinates(node(i),2);       % extract y value of the node 
P(i) = P0*1; sin(xx(i)*pi/a)*sin(yy(i)*pi/b); 
Px(i)=-01*(pi/a)^2*P(i); 
Py(i)=-01*(pi/b)^2*P(i); 
end 
knenw = zeros(edof,edof);   
knens = zeros(edof,edof); 
ke = zeros(edof,edof);              % initialization of element stiffness 

matrix  
me = zeros(edof,edof);              % initialization of element stiffness 

matrix  
kb = zeros(edof,edof);              % initialization of bending matrix  
ks = zeros(edof,edof);              % initialization of shear matrix  
f = zeros(edof,1) ;                 % initialization of force vector                    
k_T = zeros(edof,edof);  
%------------------------------------------------------------------------ 
%------------------------------------------------------------------------ 
for intx=1:9 
xi=pointb(intx,1);                     % sampling point in x-axis 
wtx=weightb(intx,1);                   % weight in x-axis 
% for inty=1:3 
eta=pointb(intx,2);                    % sampling point in y-axis 
wty=weightb(intx,2) ;                  % weight in y-axis 
% [shape,dhdr,dhds,shapeQ]=Shapefunctions(xi,eta); % compute shape 

functions and derivatives at sampling point 
[shape,dhdr,dhds,d2hdr2,d2hdrds,d2hds2,shapeQ]=Shapefunctions8nut(xi,eta)

; 
% [dhdr,dhds,d2hdr2,d2hdrds,d2hds2]=Shapefunctions1(xi,eta); 
% [detjacobian,invjacobian]=Jacobian(nnel,dhdr,dhds,xx,yy);  % compute 

Jacobian 
[jacobian,detjacobian,invjacobian]=Jacobian1(nnel,dhdr,dhds,xx,yy); 
[dhdx,dhdy,dshapex,dshapey]=ShapefunctionDerivatives(nnel,dhdr,dhds,invja

cobian); 
% 

[d2xdr,dNx,dNy,d2Nxx,d2Nyy,d2Nxy,d2hdx2,d2hdxdy,d2hdy2]=ShapefunctionDeri

vatives2(nnel,... 
%              

dhdr,dhds,d2hdr2,d2hdrds,d2hds2,jacobian,detjacobian,invjacobian,xx,yy); 
[d2hdx2,d2hdxdy,d2hdy2]=ShapefunctionDerivatives22(nnel,... 
           

dhdr,dhds,d2hdr2,d2hdrds,d2hds2,jacobian,detjacobian,invjacobian,xx,yy); 
 %--------------- 
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 Nw=[0 0 shapeQ(1) 0 0, 0 0 shapeQ(2) 0 0,0 0 shapeQ(3) 0 0,0 0 shapeQ(4) 

0 0,... 
     0 0 shapeQ(5) 0 0, 0 0 shapeQ(6) 0 0,0 0 shapeQ(7) 0 0,0 0 shapeQ(8) 

0 0]; 
 Nwxx=[0 0 d2hdx2(1) 0 0, 0 0 d2hdx2(2) 0 0,0 0 d2hdx2(3) 0 0,0 0 

d2hdx2(4) 0 0,... 
       0 0 d2hdx2(5) 0 0, 0 0 d2hdx2(6) 0 0,0 0 d2hdx2(7) 0 0,0 0 

d2hdx2(8) 0 0]; 
Nwyy=[0 0 d2hdy2(1) 0 0, 0 0 d2hdy2(2) 0 0,0 0 d2hdy2(3) 0 0,0 0 

d2hdy2(4) 0 0,... 
      0 0 d2hdy2(5) 0 0, 0 0 d2hdy2(6) 0 0,0 0 d2hdy2(7) 0 0,0 0 

d2hdy2(8) 0 0]; 

  
[B1,B2]=PlateBending8nut(nnel,dhdx,dhdy); 
Bs=PlateShear8nut(nnel,dhdx,dhdy,shape);  
fe = Force(nnel,shapeQ,P,Px,Py,muy); 
% fe = ForcePBD(nnel,shapeQ,P,Px,Py,muy); 
% fe = ForceNano(nnel,shapeQ,P,Px,Py,muy,d2hdx2,d2hdy2); 
kb=kb+[B1' B2']*[Dm Dmb; 
                 Dmb Db]*[B1; B2]*wtx*wty*detjacobian; 
% k_T= k_T + 

NxT*(dshapex(3,:)'*dshapex(3,:)+dshapey(3,:)'*dshapey(3,:))*wtx*wty*detja

cobian; 
ks=ks+Bs'*Ds*Bs*wtx*wty*detjacobian; 
knenw = knenw + K1*(Nw'*Nw + muy*(dshapex(3,:)'*dshapex(3,:) + 

dshapey(3,:)'*dshapey(3,:)))*wtx*wty*detjacobian; 
knens = knens + 

K2*(dshapex(3,:)'*dshapex(3,:)+dshapey(3,:)'*dshapey(3,:)... 
    +muy*(Nwxx'*Nwxx + Nwyy'*Nwyy + Nwxx'*Nwyy + 

Nwyy'*Nwxx))*wtx*wty*detjacobian; 
f = f+fe*wtx*wty*detjacobian ; 
me=me+(shape'*hesom*shape+... 
       muy*dshapex'*hesom*dshapex+... 
       muy*dshapey'*hesom*dshapey)*wtx*wty*detjacobian; 
end  % end of numerical integration loop for bending term 
 ke = kb+ks+knenw+knens; 
 index=elementdof(node,nnel,ndof);% extract system dofs associated with 

element     
 stiffness(index,index) = stiffness(index,index) + ke; 
 mass(index,index) =  mass(index,index) + me; 
 force(index,1) = force(index,1) + f;   
end 
%------------------------------------------------------------------------ 
%% Boundary conditions 
typeBC = 'ssss' ;        % Boundary Condition type 
% typeBC = 'cccc'   
% typeBC = 'cscs' ; 
% typeBC = 'sssc' ; 
% typeBC = 'sfsc' ; 
bcdof = BoundaryCondition(typeBC,coordinates) ; 
btd=setdiff([1:sdof]',[bcdof]);    
displacement = zeros(sdof, 1);  
displacement(btd,1) = stiffness(btd, btd)\(force(btd,1)) ; 
w = displacement(3:5:sdof) ; 
format short 
% D1 = 100*Ec*h^3/12/(1-nuc^2) ; 
% D2 = 100*Ec*h^3 ; 
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maxw2 = 100*Ec*h^3*min(w)/(P0*a^4) 
% PlotFieldonDefoMesh(coordinates,nodes,w,w) 
% colormap HSV 
% return 
%% Tinh ung suat 
% Sigma_xx 
demus=0; 
dzz=h/20; 
for z=-h/2:dzz:h/2 
demus=demus+1; 
if mater==1 
    Eus=(Em +(Ec-Em)*(0.5+z/h)^k -0.5*phii*(Ec+Em)); 
elseif mater==2 
    Eus=(Em +(Ec-Em)*(0.5+z/h)^k -0.5*phii*(Ec+Em)*(1-2*abs(z)/h)); 
else 
    Eus=(Em +(Ec-Em)*(0.5+z/h)^k -log10(0.5*phii+1)*(Ec+Em)*(1-

2*abs(z)/h)); 
end 
    nu=num; 
    C11=Eus/((1-nu)*(1+nu)); 
    C22=C11; 
    C12=nu*C11; 
    C66=Eus/2/(1+nu); 
Dus1=[C11 C12 0; 
      C12 C22 0; 
      0   0   C66]; 
Dus2=[C66 0; 
      0 C66]; 
phantu=  nX/2 + nX*(nX/2 -1);                      
for i=2 
node(i)=nodes(phantu,i);            % extract connected node for (iel)-th 

element 
xx(i)=coordinates(node(i),1);       % extract x value of the node 
yy(i)=coordinates(node(i),2);       % extract y value of the node 
end 
xi=0;eta=-1; 
% [shape,dhdr,dhds,shapeQ]=Shapefunctions(xi,eta); % compute shape 

functions and derivatives at sampling point 
[shape,dhdr,dhds,d2hdr2,d2hdrds,d2hds2,shapeQ]=Shapefunctions8nut(xi,eta)

; 
[detjacobian,invjacobian]=Jacobian(nnel,dhdr,dhds,xx,yy);  % compute 

Jacobian 
[dhdx,dhdy,dshapex,dshapey]=ShapefunctionDerivatives(nnel,dhdr,dhds,invja

cobian); 
[B1,B2]=PlateBending8nut(nnel,dhdx,dhdy); 
% kinmtps=shearNaturalStrain(nnel,xx,yy,dhdr,dhds); 
% Bs=invjacobian*kinmtps; 
Bs=PlateShear8nut(nnel,dhdx,dhdy,shape);  
 index=elementdof(node,nnel,ndof); 
ungsuat1=  Dus1*[B1 + (z-h0)*B2]*(displacement(index));     
ungsuat2=  Dus2*Bs*(displacement(index)); 
xichma_xx(dem,demus) =10* ungsuat1(1)*h/P0/a; 
xichma_yy(dem,demus) =10* ungsuat1(2)*h/P0/a; 
xichma_xy(dem,demus) =10* ungsuat1(3)*h/P0/a; 
xichma_xz(dem,demus) =10* ungsuat2(1)*h/P0/a; 
xichma_yz(dem,demus) =10* ungsuat2(2)*h/P0/a; 
end 
end 
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zz = [-h/2:dzz:h/2]; 
figure(3); 
plot(xichma_xx(1,:),zz/h,'*-

r','MarkerIndices',1:1:length(xichma_xx(1,:)),'LineWidth',1.5); 
hold on 
plot(xichma_xx(2,:),zz/h,'-

<b','MarkerIndices',1:1:length(xichma_xx(2,:)),'LineWidth',1.5); 
 set(gca,... 
    'Units','normalized',... 
    'Position',[0.15 0.2 .7 .75],... 
    'FontUnits','points',...  
    'FontWeight','bold',... 
    'FontSize',14, ...  
    'FontName','Times'); 
xlabel('\sigma^*_{xx}','Fontsize',14, 'FontName','times'); 
yticks([-0.5 :0.1: 0.5]); 
ylabel('z/h','Fontsize',14, 'FontName','times'); 
grid on 
legend({'Case 1','Case 2'},'Fontsize',12, 'FontName','times') 

  
figure(4); 
plot(xichma_xy(1,:),zz/h,'*-

r','MarkerIndices',1:1:length(xichma_xy(1,:)),'LineWidth',1.5); 
hold on 
plot(xichma_xy(2,:),zz/h,'-

<b','MarkerIndices',1:1:length(xichma_xy(2,:)),'LineWidth',1.5); 
 set(gca,... 
    'Units','normalized',... 
    'Position',[0.15 0.2 .7 .75],... 
    'FontUnits','points',...  
    'FontWeight','bold',... 
    'FontSize',14, ...  
    'FontName','Times'); 
xlabel('\sigma^*_{xy}','Fontsize',14, 'FontName','times'); 
yticks([-0.5 :0.1: 0.5]); 
ylabel('z/h','Fontsize',14, 'FontName','times'); 
grid on 
legend({'Case 1','Case 2'},'Fontsize',12, 'FontName','times') 

  

  
return 

 

2.2. The calculation programs for solving free vibration of FGP nanoplate 

resting on elastic foundation:  

FGP_Nanoplates_FSDT_Nonlocal_Freevibration_2022 (FNFNF_2022) 

%------------------------------------------------------------------------           
clear  
clc 
% 
disp('Please wait Programme is under Run') 
%------------------------------------------------------------------------ 
%  Input data % Geometrical and material properties of plate 
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%------------------------------------------------------------------------ 

  
file_name='tamchuL111' 
eval(file_name);       % Read input file 
a=1; % nm 
b=a/1; % nm 
h=a/5;% nm 
nX=8; 
nY=nX; 
%-------------------------------- 
Ec=1; 
Em=Ec; 
rhoc=1; 
rhom=1; 
nuc=0.3; 
num=0.3; 
nu=0.3; 
muy=0; 
k=0; 
phii=0.0;  
kss=1; 
%----------------- 
%% He so nen 
D11=Em*h^3/12/(1-nu^2); 
Kw=0; 
K1=Kw*D11/a^4; 
Gb=0; 
K2=Gb*D11/a^2; 

  
alphac=3.3e-6; 
alpham=17.3e-6; 

  
P0=-1; 
dz=h/4; 
hesom=zeros(5); 
Dm=zeros(3); 
Dmb=Dm; 
Db=Dm; 
Ds=zeros(2); 

  
tu=0; 
mau=0; 

  
NxT=0; 
NyT=0; 

  
material_porous_1; 
% material_porous_2; 
% material_porous_3; 

  
%  [coordinates, nodes] = rectangularMesh8nut(a,b,nX,nY); 
%     
nel = length(nodes) ;                  % number of elements 
nnel=8;                                % number of nodes per element 
ndof=5;                                % number of dofs per node 
nnode = length(coordinates) ;          % total number of nodes in system 
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sdof=nnode*ndof;                       % total system dofs   
edof=nnel*ndof;                        % degrees of freedom per element 
%------------------------------------------------------------------------ 
PlotMesh(coordinates,nodes); 
%------------------------------------------------------------------------ 
[pointb,weightb]=GaussQuadrature('night'); 
[points,weights] = GaussQuadrature('second'); 
%------------------------------------------------------------------------ 
force = zeros(sdof,1) ;             % System Force Vector 
stiffness=zeros(sdof,sdof);         % system stiffness matrix 
mass=zeros(sdof,sdof);            % system stiffness matrix 
index=zeros(edof,1);                % index vector 
%------------------------------------------------------------------------ 

  
for iel=1:nel                       % loop for the total number of 

elements 
for i=1:nnel 
node(i)=nodes(iel,i);               % extract connected node for (iel)-th 

element 
xx(i)=coordinates(node(i),1);       % extract x value of the node 
yy(i)=coordinates(node(i),2);       % extract y value of the node 
P(i) = P0*sin(xx(i)*pi/a)*sin(yy(i)*pi/b); 
Px(i)=-01*(pi/a)^2*P(i); 
Py(i)=-01*(pi/b)^2*P(i); 
end 
knenw = zeros(edof,edof);   
knens = zeros(edof,edof); 
ke = zeros(edof,edof);              % initialization of element stiffness 

matrix  
me = zeros(edof,edof);              % initialization of element stiffness 

matrix  
kb = zeros(edof,edof);              % initialization of bending matrix  
ks = zeros(edof,edof);              % initialization of shear matrix  
f = zeros(edof,1) ;                 % initialization of force vector                    
k_T = zeros(edof,edof);  
%------------------------------------------------------------------------ 
%------------------------------------------------------------------------ 
for intx=1:9 
xi=pointb(intx,1);                     % sampling point in x-axis 
wtx=weightb(intx,1);                   % weight in x-axis 
% for inty=1:3 
eta=pointb(intx,2);                    % sampling point in y-axis 
wty=weightb(intx,2) ;                  % weight in y-axis 
% [shape,dhdr,dhds,shapeQ]=Shapefunctions(xi,eta); % compute shape 

functions and derivatives at sampling point 
[shape,dhdr,dhds,d2hdr2,d2hdrds,d2hds2,shapeQ]=Shapefunctions8nut(xi,eta)

; 
% [dhdr,dhds,d2hdr2,d2hdrds,d2hds2]=Shapefunctions1(xi,eta); 
% [detjacobian,invjacobian]=Jacobian(nnel,dhdr,dhds,xx,yy);  % compute 

Jacobian 
[jacobian,detjacobian,invjacobian]=Jacobian1(nnel,dhdr,dhds,xx,yy); 
[dhdx,dhdy,dshapex,dshapey]=ShapefunctionDerivatives(nnel,dhdr,dhds,invja

cobian); 
[d2xdr,dNx,dNy,d2Nxx,d2Nyy,d2Nxy,d2hdx2,d2hdxdy,d2hdy2]=ShapefunctionDeri

vatives2(nnel,... 
             

dhdr,dhds,d2hdr2,d2hdrds,d2hds2,jacobian,detjacobian,invjacobian,xx,yy); 
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[B1,B2]=PlateBending8nut(nnel,dhdx,dhdy); 

  
Bs=PlateShear8nut(nnel,dhdx,dhdy,shape);  
fe = Force(nnel,shapeQ,P,Px,Py,muy); 
% fe = ForceNano(nnel,shapeQ,P,Px,Py,muy,d2hdx2,d2hdy2); 
kb=kb+[B1' B2']*[Dm Dmb; 
                 Dmb Db]*[B1; B2]*wtx*wty*detjacobian; 
% k_T= k_T + 

NxT*(dshapex(3,:)'*dshapex(3,:)+dshapey(3,:)'*dshapey(3,:))*wtx*wty*detja

cobian; 
ks=ks+Bs'*Ds*Bs*wtx*wty*detjacobian; 
knenw=knenw+K1*(muy*(dshapex(3,:)'*dshapex(3,:)+dshapey(3,:)'*dshapey(3,:

))+... 
                                     

shape(3,:)'*shape(3,:))*wtx*wty*detjacobian; 
knens=knens+K2*(dshapex(3,:)'*dshapex(3,:)+dshapey(3,:)'*dshapey(3,:))*wt

x*wty*detjacobian; 
f = f+fe*wtx*wty*detjacobian ; 
me=me+(shape'*hesom*shape+... 
       muy*dshapex'*hesom*dshapex+... 
       muy*dshapey'*hesom*dshapey)*wtx*wty*detjacobian; 
end 
% end  % end of numerical integration loop for bending term 
 ke = kb+ks+knenw+knens; 
 index=elementdof(node,nnel,ndof);% extract system dofs associated with 

element     
 stiffness(index,index) = stiffness(index,index) + ke; 
 mass(index,index) =  mass(index,index) + me; 
 force(index,1) = force(index,1) + f;   
end 
%------------------------------------------------------------------------ 
%% Boundary conditions 
% typeBC = 'ssss' ;        % Boundary Condition type 
typeBC = 'cccc'   
% typeBC = 'cscs' ; 
% typeBC = 'sssc' ; 
% typeBC = 'sfsc' ; 
bcdof = BoundaryConditionL(typeBC,coordinates) ; 
bcval = zeros(1,length(bcdof)) ; 
activeDof=setdiff([1:sdof]',[bcdof]);    
%------------------------------------------------------------------------ 
% Solution 
w2 = 

eigs(stiffness(activeDof,activeDof),mass(activeDof,activeDof),4,'sm');    
% w2 = diag(w2);   
w2=sqrt(w2); 
Gc=Ec/2/(1+nuc); 
omega_ktn=w2*a*sqrt(rhoc/Gc) 
return 
%------------------------------------------------------------------------ 
[Fi, w2] = eig(stiffness(activeDof,activeDof),mass(activeDof,activeDof));    
w2 = diag(w2);   
[w2,tt]=sort(w2);   
w2=sqrt(w2); 
% omega_ktn=w2(1:6)*a*sqrt(rhom/Em) 
Fi=Fi(:,tt); 
%  break 
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for k=1:length(activeDof); 
    ak=sqrt(Fi(:,k)'*mass(activeDof,activeDof)*Fi(:,k)); 
    Fi(:,k)=Fi(:,k)/ak; 
end 

  
Dang_DD = zeros(sdof, length(activeDof)); 
Dang_DD(activeDof,:) = Fi; 
% Ve dang dao dong rieng 
mod1 = Dang_DD(3:5:sdof, 1); 
mod2 = Dang_DD(3:5:sdof, 2); 
mod3 = Dang_DD(3:5:sdof, 3); 
mod4 = Dang_DD(3:5:sdof, 4); 
mod5 = Dang_DD(3:5:sdof, 5); 
mod6 = Dang_DD(3:5:sdof, 6); 
% mod7 = Dang_DD(3:5:sdof, 7); 
% mod8 = Dang_DD(3:5:sdof, 8); 
% mod9 = Dang_DD(3:5:sdof, 9); 
% mod10 = Dang_DD(3:5:sdof, 10); 

  
PlotFieldonDefoMesh(coordinates,nodes,mod1,mod1)   
%      title('Mode 1');    
colormap HSV 
     PlotFieldonDefoMesh(coordinates,nodes,mod2,mod2)   
%      title('Mode 2'); 
colormap HSV 
     PlotFieldonDefoMesh(coordinates,nodes,mod3,mod3)   
%      title('Mode 3');  
colormap HSV 
     PlotFieldonDefoMesh(coordinates,nodes,mod4,mod4)   
%      title('Mode 4');  
colormap HSV 

 

2.3. The calculation programs for solving dynamic behavior of FGP nanoplate 

resting on elastic foundation: FGP_Nanoplates_FSDT_Nonlocal_Dynamic_2022 

(FNFND_2022) 

%------------------------------------------------------------------------           
clear  
clc 
disp('Please wait Programme is under Run') 
%------------------------------------------------------------------------ 
%  Input data % Geometrical and material properties of plate 
%------------------------------------------------------------------------ 
a=10;   % nm 
b=a/1;  % nm 
h=a/10; % nm 
nX=8; 
nY=nX; 
%-------------------------------- 
Ec=380e9; 
Em=70e9; 
rhoc=3800; 
rhom=2707; 
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nuc=0.3; 
num=0.3; 
nu=0.3; 
muy=1; 
k=1; 
phii=0.2;  
kss=5/6; 
%----------------- 
%% He so nen 
D11=Em*h^3/12/(1-nu^2); 
Kw=100; 
K1=Kw*D11/a^4; 
Gb=10; 
K2=Gb*D11/a^2; 

  
alphac=3.3e-6; 
alpham=17.3e-6; 

  
P0=-1; 
dz=h/1000; 
hesom=zeros(5); 
Dm=zeros(3); 
Dmb=Dm; 
Db=Dm; 
Ds=zeros(2); 

  
tu=0; 
mau=0; 

  
NxT=0; 
NyT=0; 

  
% material_porous_1; 
material_porous_2; 
% material_porous_3; 

  
[coordinates, nodes] = rectangularMesh8nut(a,b,nX,nY);   
nel = length(nodes) ;                  % number of elements 
nnel=8;                                % number of nodes per element 
ndof=5;                                % number of dofs per node 
nnode = length(coordinates) ;          % total number of nodes in system 
sdof=nnode*ndof;                       % total system dofs   
edof=nnel*ndof;                        % degrees of freedom per element 
%------------------------------------------------------------------------

-- 
% PlotMesh(coordinates,nodes) 
%------------------------------------------------------------------------

-- 
[pointb,weightb]=GaussQuadrature('night'); 
[points,weights] = GaussQuadrature('second'); 
%------------------------------------------------------------------------

-- 
force = zeros(sdof,1) ;             % System Force Vector 
stiffness=zeros(sdof,sdof);         % system stiffness matrix 
mass=zeros(sdof,sdof);              % system stiffness matrix 
index=zeros(edof,1);                % index vector 
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%------------------------------------------------------------------------ 

  
for iel=1:nel                       % loop for the total number of 

elements 
for i=1:nnel 
node(i)=nodes(iel,i);               % extract connected node for (iel)-th 

element 
xx(i)=coordinates(node(i),1);       % extract x value of the node 
yy(i)=coordinates(node(i),2);       % extract y value of the node 
P(i) = P0*sin(xx(i)*pi/a)*sin(yy(i)*pi/b); 
Px(i)=-01*(pi/a)^2*P(i); 
Py(i)=-01*(pi/b)^2*P(i); 
end 
knenw = zeros(edof,edof);   
knens = zeros(edof,edof); 
ke = zeros(edof,edof);              % initialization of element stiffness 

matrix  
me = zeros(edof,edof);              % initialization of element stiffness 

matrix  
kb = zeros(edof,edof);              % initialization of bending matrix  
ks = zeros(edof,edof);              % initialization of shear matrix  
f = zeros(edof,1) ;                 % initialization of force vector                    
k_T = zeros(edof,edof);  
%------------------------------------------------------------------------ 
%------------------------------------------------------------------------ 
for intx=1:9 
xi=pointb(intx,1);                  % sampling point in x-axis 
wtx=weightb(intx,1);                % weight in x-axis 
% for inty=1:3 
eta=pointb(intx,2);                 % sampling point in y-axis 
wty=weightb(intx,2) ;               % weight in y-axis 
% [shape,dhdr,dhds,shapeQ]=Shapefunctions(xi,eta); % compute shape 

functions and derivatives at sampling point 
[shape,dhdr,dhds,d2hdr2,d2hdrds,d2hds2,shapeQ]=Shapefunctions8nut(xi,eta)

; 
% [dhdr,dhds,d2hdr2,d2hdrds,d2hds2]=Shapefunctions1(xi,eta); 
% [detjacobian,invjacobian]=Jacobian(nnel,dhdr,dhds,xx,yy);  % compute 

Jacobian 
[jacobian,detjacobian,invjacobian]=Jacobian1(nnel,dhdr,dhds,xx,yy); 
[dhdx,dhdy,dshapex,dshapey]=ShapefunctionDerivatives(nnel,dhdr,dhds,invja

cobian); 
[d2xdr,dNx,dNy,d2Nxx,d2Nyy,d2Nxy,d2hdx2,d2hdxdy,d2hdy2]=ShapefunctionDeri

vatives2(nnel,... 
             

dhdr,dhds,d2hdr2,d2hdrds,d2hds2,jacobian,detjacobian,invjacobian,xx,yy); 

          
% [d2hdx2,d2hdxdy,d2hdy2]=ShapefunctionDerivatives22(nnel,... 
%              

dhdr,dhds,d2hdr2,d2hdrds,d2hds2,jacobian,detjacobian,invjacobian,xx,yy); 

          
 %--------------- 
 Nw=[0 0 shapeQ(1) 0 0, 0 0 shapeQ(2) 0 0,0 0 shapeQ(3) 0 0,0 0 shapeQ(4) 

0 0,... 
     0 0 shapeQ(5) 0 0, 0 0 shapeQ(6) 0 0,0 0 shapeQ(7) 0 0,0 0 shapeQ(8) 

0 0]; 
 Nwxx=[0 0 d2hdx2(1) 0 0, 0 0 d2hdx2(2) 0 0,0 0 d2hdx2(3) 0 0,0 0 

d2hdx2(4) 0 0,... 
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       0 0 d2hdx2(5) 0 0, 0 0 d2hdx2(6) 0 0,0 0 d2hdx2(7) 0 0,0 0 

d2hdx2(8) 0 0]; 
Nwyy=[0 0 d2hdy2(1) 0 0, 0 0 d2hdy2(2) 0 0,0 0 d2hdy2(3) 0 0,0 0 

d2hdy2(4) 0 0,... 
      0 0 d2hdy2(5) 0 0, 0 0 d2hdy2(6) 0 0,0 0 d2hdy2(7) 0 0,0 0 

d2hdy2(8) 0 0]; 

  
[B1,B2]=PlateBending8nut(nnel,dhdx,dhdy); 
Bs=PlateShear8nut(nnel,dhdx,dhdy,shape);  
fe = Force(nnel,shapeQ,P,Px,Py,muy); 
% fe = ForceNano(nnel,shapeQ,P,Px,Py,muy,d2hdx2,d2hdy2); 
kb=kb+[B1' B2']*[Dm Dmb; 
                 Dmb Db]*[B1; B2]*wtx*wty*detjacobian; 
% k_T= k_T + 

NxT*(dshapex(3,:)'*dshapex(3,:)+dshapey(3,:)'*dshapey(3,:))*wtx*wty*detja

cobian; 
ks=ks+Bs'*Ds*Bs*wtx*wty*detjacobian; 
knenw = knenw + K1*(Nw'*Nw + muy*(dshapex(3,:)'*dshapex(3,:) + 

dshapey(3,:)'*dshapey(3,:)))*wtx*wty*detjacobian; 

  
knens = knens + 

K2*(dshapex(3,:)'*dshapex(3,:)+dshapey(3,:)'*dshapey(3,:)... 
    +muy*(Nwxx'*Nwxx + Nwyy'*Nwyy + Nwxx'*Nwyy + 

Nwyy'*Nwxx))*wtx*wty*detjacobian; 
f = f+fe*wtx*wty*detjacobian ; 
me=me+(shape'*hesom*shape+... 
       muy*dshapex'*hesom*dshapex+... 
       muy*dshapey'*hesom*dshapey)*wtx*wty*detjacobian; 
end 
% end  % end of numerical integration loop for bending term 
 ke = kb+ks+knenw+knens; 
 index=elementdof(node,nnel,ndof);% extract system dofs associated with 

element     
 stiffness(index,index) = stiffness(index,index) + ke; 
 mass(index,index) =  mass(index,index) + me; 
 force(index,1) = force(index,1) + f;   
end 
%------------------------------------------------------------------------ 
%% Boundary conditions 
typeBC = 'ssss' ;        % Boundary Condition type 
% typeBC = 'cccc'   
% typeBC = 'cscs' ; 
% typeBC = 'sssc' ; 
% typeBC = 'sfsc' ; 
bcdof = BoundaryCondition(typeBC,coordinates) ; 
bcval = zeros(1,length(bcdof)); 
btd=setdiff([1:sdof]',[bcdof]);    
so_btd=sdof; 
%------------------------------------------------------------------------ 
% Solution 
w2 = eigs(stiffness(btd,btd),mass(btd,btd),2,'sm');    
% w2 = diag(w2);   
ww=sqrt(w2); 
betaR=2*0.0/(ww(1)+ww(2)); % 0.008, 0.1; 0.25 
alphaR=betaR*ww(1)*ww(2); 
C0=alphaR*mass+betaR*stiffness; 
C0=C0; 
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C=zeros(sdof,sdof); 
TT=2*pi/ww(1); 
%% programe moving load 
 t_max=TT*20; 
 t1=t_max/1; 
%  thd=0.028; 
%  deltaPhi=0.20679*1e6; 

  
 t=0:t_max/500:t_max; 
 nt=length(t); 
 F0=zeros(sdof,1); 
 beta=1/4; 
 gamma=1/2; 
 for i=1:nt-1 

        
       M=mass; 
       C=C0; 
       K=stiffness; 
       %--------Force------------ 
       if  t(i)<=t1 
      epsilon=0.05*ww(1); Omega=ww(1)+2*epsilon; 
       Ft(i)=sin(Omega*t(i)); 
       else 
       Ft(i)=0; 
       end 
       F=force*Ft(i); 

      
     if i==1 

  
        U = zeros(so_btd, nt); 
        V = zeros(so_btd, nt); 
        A = zeros(so_btd, nt); 

  
        u0 = zeros(so_btd, 1); 
        v0 = zeros(so_btd, 1); 
        a0 = zeros(so_btd, 1); 

  
        U(:,1) = u0;     
        V(:,1) = v0 
        A(:,1) = a0;     

  
        dt = t(2)-t(1);  
    end; 
    % giai bai toan dong 
%     Keff = M + 0.5*dt*C + 0.25*(dt^2)*K; 
%     
%     A(btd,i+1) = Keff(btd,btd)\(F(btd) - C(btd,btd)*(V(btd,i) + 

0.5*dt*A(btd,i)) ... 
%                  - K(btd,btd)*(U(btd,i) + dt*V(btd,i) + 

0.25*(dt^2)*A(btd,i))); 
%     V(btd,i+1) = V(btd,i) + 0.5*dt*A(btd,i) + 0.5*dt*A(btd,i+1); 
%     U(btd,i+1) = U(btd,i) + dt*V(btd,i) + dt^2*0.25*A(btd,i) + 

dt^2*0.25*A(btd,i+1); 
    Keff = M + gamma*dt*C + beta*(dt^2)*K; 
    A(btd,i+1) = Keff(btd,btd)\(F(btd) - C(btd,btd)*(V(btd,i) + (1-

gamma)*dt*A(btd,i)) ... 



147 

 

   

 

                 - K(btd,btd)*(U(btd,i) + dt*V(btd,i) + (1/2-

beta)*(dt^2)*A(btd,i))); 
    V(btd,i+1) = V(btd,i) + (1-gamma)*dt*A(btd,i) + gamma*dt*A(btd,i+1); 
    U(btd,i+1) = U(btd,i) + dt*V(btd,i) + dt^2*(1/2-beta)*A(btd,i) + 

dt^2*beta*A(btd,i+1); 
 end 
figure(1); 
Dofs=floor(nnode/2)*ndof+3;  
% Dd = E*h^3/12/(1-nu^2); 
ktn=10*Ec*h^3/P0/a^4; 
plot(t/TT,-U(Dofs,:)*ktn,'-r','LineWidth',2); 

  
%  ylim([-0.35 0.22]); 
set(gca,... 
 'Units','normalized',... 
    'Position',[0.15 0.2 .72 .72],... 
    'FontUnits','points',...  
    'FontWeight','bold',... 
    'FontSize',13, ...  
    'FontName','Times') 
xlabel('t (s)'); 
ylabel('w') 
% legend('Present','[44]','Fontsize',16, 'FontName','times'); 
grid on 
hold on 
box on 

 

 

 


