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CONCLUSIONS AND FUTURE WORK

This dissertation focuses on developing an efficient navigation system that
enables a mobile robot to navigate autonomously, safely and proactively in the
dynamic environment. The dissertation has the following main contributions.

• First, two sensor fusion-based localization algorithms are proposed to
improve accuracy of the conventional localization systems, including the
EKF -based localization algorithm and the Particle filter (PF)-based lo-
calization algorithm, when the robot moves in the environments with
sufficient information and the interrupted signal situation, respectively.

• Second, three new local planning algorithms, including EDWA, PTEB
and ETEB algorithms. The mobile robots equipped with the proposed
algorithms are capable of proactively avoiding dynamic obstacles and
potential collisions, and navigating safely towards the given goal.

• Third, the integrated navigation system based on the proposed algo-
rithms, including the EKF-based localization algorithm and the ETEB
algorithm, is utilized in real - world environments to illustrate efficient
and feasibility of the proposed system.

However, the dissertation still suffers from some limitations. The dissertation
lacks of examining the proposed PF based-localization and proposed PTEB
algorithm on the mobile robot platform in real-world environments. And we
only conduced experiments in indoor environments.

Building upon this research, there are a number of directions for future
work arisen from the dissertation. Firstly, we will conduct the experiments in
various type of environments including indoor and outdoor, semi-dynamic and
dynamic environments. Secondly, applying powerful techniques [77] and [78] for
predicting the future position and trajectory of obstacles in the robot’s vicinity
and then incorporating into the motion planning system of the mobile robot.
Thirdly, efficient motion planning systems should be proposed for a mobile
robot in crowded dynamic environments. Finally, deep neural networks [79]
and deep reinforcement learning techniques [80] should also be considered to
improve navigation performance of the mobile robot.
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INTRODUCTION

Navigation is an essential issue for an autonomy of mobile robots in a dy-
namic environment. To develop an efficient navigation system that enables a
mobile robot to navigate autonomously, safely and proactively in a dynamic en-
vironment, we can break down into two objectives: (i) improving the accuracy
of the localization system and (ii) enhancing the performance of the motion
planning system. In the former, localization algorithms for the mobile robot
in the dynamic environment with sufficient as well as insufficient information
are proposed. In the later, we propose new local planning algorithms for the
motion planning system of the mobile robot in the dynamic environment. The
main contributions of the dissertation are outlined as follows.

• Two sensor fusion-based localization algorithms are proposed, including
EKF -based localization and the Particle filter (PF)-based localization
algorithms. We used these algorithms to improve the accuracy of the
localization system when the mobile robot moves in the environments
with sufficient information as well as the interrupted signal situation.

• Three new local planning algorithms for the motion planning system
of autonomous mobile robots in dynamic environments are proposed, in-
cluding EDWA, PTEB and ETEB algorithms. The mobile robots equipped
with the proposed algorithms are capable of proactively avoiding dynamic
obstacles and potential collisions, and navigating safely towards the given
goal.

• The integrated navigation system based on the previous proposed algo-
rithms including the EKF-based localization algorithm with the ETEB
algorithm is utilized in real - world environments.

The dissertation is organized into fives chapters except for references. Chap-
ter 2 gives the backgrounds related to this research. Chapter 3 presents two
proposed localization algorithms. Chapter 3 introduces three new proposed lo-
cal planning algorithms to enhancing performance of the motion planning sys-
tem and conduct experiments in both simulation and real-world environments.
The final, conclusions and future works are drawn in the Chapter 5.
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Chapter 1

BACKGROUND

1.1 Mobile robot models
In order to verify the performance, efficiency and feasibility of proposed

algorithms, that are going to be presented in the thesis, two robot platforms in
The-More-Than-One Robot Laboratory, University of Prince Edward Island,
Canada1 which used in our experiments are firstly presented. Secondly, the
typical kinematic model of differential-drive robots will be used in simulations
in the next chapters is also introduced.

1.1.1 Mobile robot platforms
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Figure 1.1: (a) Eddie mobile robot platform;(b) QBot-2e mobile robot plat-
form; (c) The global reference frame and the robot reference frame.
1.1.2 Kinematic model of a differential - drive robot

In our studies, kinematic model of the differential drive robot is utilized in
both simulations and experiments. For the differential drive robot, shown in
Fig. 1.1(c), the position can be estimated starting from a known position by
the incremental travel distances in an interval time ∆t. Let uk−1 = [vk−1, ωk−1]T

denotes the control command at time k-1. Suppose that we keep the control

1http://morelab.org
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position. In the next block, the A* algorithm-based global path planning algo-
rithm is utilized to find the path from the starting position to the given goal.
Then the proposed ETEB-based local planner is used to generate the optimal
trajectory of the robot from the current position of the robot to the local tar-
get. Once the control command of the robot is obtained and used as input of
the motor control block. We then installed the proposed completed navigation
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Figure 3.13: (a) The Eddie mobile robot platform; (b) The QBot-2e mobile
robot platforms.
system on the robot platform seen as Fig. 3.13(b) and conducted experiments
in a corridor-like environment to examine the effectiveness and feasibility of
its. A video with our experimental results can be found at the hyperlink6. The
experimental results illustrated that, the proposed entire navigation system is
capable of driving the mobile robots to safely and proactively avoid dynamic
obstacles in the surrounding environment, providing the safe navigation for the
robots.

3.5 Conclusions
Three effective local planning algorithms in the motion planning system for

autonomous mobile robots in dynamic environments have proposed, including
EDWA, PTEB and ETEB algorithms. The entire navigation system including
four typical components have been presented. We conducted experiments in
both simulation and real-world environments. The results demonstrated the
effectiveness and feasibility of the proposed algorithms.

6https://www.youtube.com/watch?v=LmIf26qeTg8
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in Figs. 3.11(b), 3.11(d). are generated behind the left person, it illustrates
that, the robot is able to proactively avoid people.

(a) T2 [s] (b) T2 [s] (c) T3 [s] (d) T3 [s]

Figure 3.11: Snapshots at two times tamps of the two experiments.
b. Simulation experiment in Stage environment
We continue to validate the effectiveness of the TEB algorithm in terms of

quantitative by experimenting in the Stage environment. Firstly, we incorporate
the proposed ETEB algorithm into the conventional navigation scheme. Then
the developed ETEB-based navigation system, as presented in Fig. 3.10(b)
are built in Stage environment and conducted two experiments in the scenario
shown in Fig. 3.8(b). The set of parameter is also presented in Table 3.3 and the
threshold of the CI value is 0.54. The experiments results Fig. 3.12 prove that
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Figure 3.12: The simulation results of the two experiments.
the ETEB algorithm incorporating both the current and future sates of the
surrounding obstacles into the conventional TEB algorithm is more effective
than PTEB algorithm in terms of proactively avoiding potential collisions in
dynamic environment.

3.4 Proposed integrated navigation system
The main contribution of this section is to demonstrate the integration of

using EKF-based localization algorithm with ETEB algorithm. A completed
navigation system is combined from four fundamental models including per-
ception, localization, motion planning, and motor control model, as shown in
Fig. 3.1(b). In first block, the obstacles in the robot’s vicinity are detected
and tracked by the human detection and tracking algorithm developed in [75].
The proposed EKF-based localization system is used to estimate the robot’s

22

command uk−1 = [vk−1, ωk−1]T constant for some time ∆t, with the linear velocity
command vk−1 and the angular velocity command ωk−1. After the duration ∆t

the velocity motion model of the robot is as follows:
xk

yk

θk

 =


xk−1

yk−1

θk−1

 +


vk−1∆t cos(θk−1 +

ωk−1∆t

2
)

vk−1∆t sin(θk−1 +
ωk−1∆t

2
)

ωk−1∆t

 (1.1)

1.2 Bayesian filters for localization systems
Consider a mobile robot moving in a realistic environment, it can keep track

of its position over time using odometry. Due to odometry uncertainty, after
some movement, the robot will become very uncertain about its position. To
keep the uncertainty about the position not growing, the robot must localize the
relationship of itself to its environment. Thus, the robot might use its extero-
ceptive sensors to make observations of the environment. After that combining
the information got from such exteroceptive observations with the information
provided by the robot’s odometry can enable the robot to localize more pre-
cisely. Two different methods of probabilistic localization are described, includ-
ing the Extended Kalman Filter (EKF)-based localization and Particle filter
(PF)- based localization.

1.3 Typical obstacle avoidance algorithms
The motion planning systems include of two sub-systems: (i) global plan-

ner (or path planning); (ii) local planner (or obstacle avoidance). The Global
planner is used to construct safe and collision free paths of the robot from an
initial point to the given goal point with a given map. In contrast, the local
planner means recalculating the constructed paths to avoid possible collision,
especially moving obstacles. In order to the mobile robots move safely in the
dynamic environments, we focus on developing the local planning algorithms
(or obstacle avoidance algorithms) for the motion planning system. Some typ-
ical local planning algorithms are presented in this section, including Dynamic
Window Approach(DWA), Hybrid Reciprocal Velocity Obstacle(HRVO) and
Time Elastic Band (TEB) algorithms.
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Chapter 2

SENSOR DATA FUSION - BASED

LOCALIZATION ALGORITHMS

2.1 Introduction
The localization system suffers from two main problems, including inaccu-

racy or/and incompleteness of sensors (or sensor noise), and with Gaussian/Non-
Gaussian distribution of noises, when a robot moves in a real-world environ-
ment. In order to deal with these problems effectively, two multiple sensor
fusion-based localization algorithms are proposed to improve the performance
of the localization system with two different cases, including sufficient informa-
tion and Gaussian distribution noises, and insufficient information and Non-
Gaussian/Gaussian distribution noises, respectively. The main idea of two al-
gorithms is to fuse the data from different sensors composing of wheel encoders,
IMU and GPS sensors to get more accurate estimations of robot’s pose.

2.2 Extended Kalman Filter - based localization algorithm
In the first case, we utilize wheel encoders, IMU (9-axis family) and GPS

to determine the position and orientation of the mobile robot in the dynamic
environment. The robot uses wheel encoders to estimate its pose or odometry
motion model. Due to odometry uncertainty, the uncertainty of the robot con-
figuration increases due to the integration of the odometric error over time.
Meanwhile, IMU (accelerometers, gyroscopes and compasses) is used to esti-
mate a relative position, velocity, and acceleration of a moving robot. In this
study we only use the orientation component of the IMU sensor data to correct
the orientation estimated from the wheel encoders. However, after long period
of operation, all IMUs drift. To eliminate this drift of IMU and accumulated
error of encoders, GPS is used to correct the estimated pose every time the GPS
signal is received. GPS provides the absolute position and heading of the mobile
robot. Moreover, each sensor has its own advantages and disadvantages. Thus,
the extended Kalman filter algorithm to fuse the data from aforementioned
sensors was utilized to improve the accuracy of the localization system.

The EKF -based localization algorithm composes of two steps as shown

4

Algorithm 4: Proposed ETEB algorithm
input : robot state sr, start pose ps, goal pose pg , set of obstacles O

output: Control command ur
begin

G ← createGraph(sr, ps, pg , O);

D ← depthFirstSearch(G);

H ← computeH-Signature(D, G);

R ← removeRedundantPath(D, H, G);

T ← initializeTrajectories(R, G);

Ôk ← Motion prediction of obstacles;

for each trajectory Bp ∈ T do

V ← objectiveFunction(); B using (3.13)

V̂(Bp) = V(Bp) + δo‖min{0, Ôk}‖22 using (3.14);

B∗p ← Optimizer(Bp,O, V̂);

B∗ ← storeLocalOptimalTrajectory(B∗p);

end for;

Vc ← newObjectiveFunction(); B using (3.11);

B̂
∗ ← Call Optimizer(B∗,O, Vc) B Solve (3.10;)

ur ← According to (2.35)(2.36) and B̂
∗

Return ur = [υr, ωr]T

using the TEB optimization in parallel. In the second step, the future sates
of the surrounding obstacles, which is adopted from the motion prediction
model, are incorporated into the conventional TEB model. In the third step,
the future states of obstacles are added into the conventional objective function.
In the fourth step, the optimal robot trajectory B̂

∗ is selected from the set of
alternatives B∗p by solving (3.10). Finally, the control command ur = [υr, ωr]

T

of the mobile robot is extracted directly from the selected trajectory B̂
∗. This

control command is then utilized to control the mobile robot.

3.3.2 Algorithm validation by simulations
To verify the effectiveness of the proposed ETEB algorithm, we conducted

examinations in RViz environment4 and Stage simulator5 with the set of pa-
rameters shown in the Table 3.3.

a. Simulation experiment in RViz Environment
The mobile robot is requested to navigate from left to right, while avoiding

two crossing people. Figure. 3.11(a), 3.11(c) show the results of the TEB algo-
rithm, whereas Figs. 3.11(b), 3.11(d) present the results of the proposed ETEB
algorithm. The optimal trajectories(the green curve with red arrows) as shown

4http://wiki.ros.org/rviz
5http://pedsim.silmaril.org
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[42]. The mobile robots equipped with the ETEB algorithm can proactively
avoid obstacles better and safely navigate to the given goal.

3.3.1 Construction of the ETEB algorithm
The ETEB algorithm is presented in Fig 3.10(a) and Algorithm 4. The future

states of the surrounding obstacles is firstly predicted by using the extended
Kalman filter algorithm [52] and the data association technique [74]. The output
of the motion prediction model is the future states of the obstacles ŝo, as shown
in Fig 3.10(a). Then the proposed algorithm incorporates both the current
states so and the future states ŝo of the obstacles O into the exploration step
of the TEB algorithm, as shown in Fig. 3.10(a). In stead of using only current
states and potential collision as PTEB algorithm, the ETEB algorithm takes
both the current and future states into account.
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Figure 3.10: (a) The flowchart of proposed extended TEB algorithm; (b)
The navigation framework based on the ETEB algorithm.

Assuming that the number of obstacles in the robot’s vicinity at time k is R
(Oi, i=1, 2, . . . , R). The future state of the obstacles predicted by the robot is
ŝo (Ôi, i=1, 2, . . . , R). Therefore, the total number of obstacles used as input
of the the conventional TEB algorithm becomes 2R. As a result, the objective
function in (3.13) is added a new part, as presented in (3.14).

V (B) =

N−1∑
k=1

[ ∆T 2
k + δh‖hk‖22 + δv‖min{0, νk}‖

2
2+

δo‖min{0,ok}‖22 + δα‖min{0, αk}‖22 ] (3.13)

V̂(Bp) = V(Bp) + δo‖min{0, Ô}‖22 (3.14)

The proposed ETEB algorithm is presented detail in Algorithm 4. In the
first step, we generate M locally optimal trajectories B∗p with p=1, 2,..., M by

20

in Fig. 2.2, including (i) prediction and (ii) correction step. In the first step,
the robot’s state predictions are made based on a kinematic motion model
(odometry motion model) using encoders. In the second step, the predicted
states are corrected based on measurement observations from the sensor system
(GPS/IMU).
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Figure 2.1: The block diagram of the proposed EKF - based localization
systems

The EKF algorithm uses a two steps including prediction and correction
process to estimate the states of the robot. In the prediction step, the robot’s
state predictions are made based on a nonlinear kinematic motion model (in
this case motion model is odometry motion model). In the correction step,
the predicted states are corrected based on measurement observations from
multiple sensor (GPS/IMU).

To verify the usefulness of the EKF-based localization algorithm, we im-
plemented and tested this algorithm in Matlab - based simulations with the
kinematic model of the differential drive mobile robot. Three approaches in
two scenarios are presented, including (I) Combining Encoder and GPS; (II)
Combining Encoder and IMU; (III) Combining Encoder, GPS and IMU. In ad-
dition, a statistical data analysis of all the simulations is carried out by using
the Mean Error (ME) (2.1) and Mean Square Error (MSE)(2.2).

The simulation results of the two scenarios are shown in Figs. 2.2, Fig. 2.2
and Fig. 2.4. Figure 2.2 shows the robot trajectories. Figure. 2.2 and Fig. 2.4
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illustrate the statistical data analysis of the two conducted simulations.

ME =
1

n

n∑
k=1

NEk; MSE =
1

n

n∑
k=1

(NEk −ME)2 (2.1)

where, n is the number of samples, NE is calculated in (2.2).

NEk =
√

(xekf − xtrue)2 + (yekf − ytrue)2 (2.2)

In summary, the simulation results show that the goal of the proposed EKF-
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Figure 2.2: The circular and sinusoidal trajectories in three approaches.
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Figure 3.8: (a) The example scenario;(b) A hallway-like scenario with walls,
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threshold value is 0.54) is applied to measure the physical safety of the robot
and each individual obstacle.
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Figure 3.9: The simulation results of the two experiments.

As can be seen in Fig. 3.9(b), the CI value is maintained as lower than
0.54 along the robot trajectory. It indicates that, the mobile robot equipped
with the proposed PTEB algorithm is able to proactively dynamic objects in
the vicinity of the robot, and significantly reduces collision than that with the
TEB algorithm, as shown in 3.9(a).

Although the proposed PTEB algorithm has been achieved consider suc-
cesses. It still lacks of robustness in various environments, because it only
incorporates the velocity obstacles-based potential collision. In order to deal
with this weakness, in the next study, an extended timed elastic band (ETEB)
algorithm, which takes into account future states of the surrounding obstacles,
will be proposed.

3.3 Proposed extended timed elastic band algorithm
In this section, we propose an extended timed elastic band (ETEB) al-

gorithm for the mobile robot navigation system using motion prediction al-
gorithm. The motion prediction model utilizes the obstacle’s states including
position, orientation and velocity, to predict future positions of the surrounding
obstacles. The main idea of the ETEB is incorporating both current and future
states of the obstacles into the exploration step of the extensionTEB model
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Figure 3.6: (a) The flowchart of the PTEB algorithm; (b) The PTEB - based
navigation framework.

Table 3.3: Parameters set in experiments - PTEB algorithm
Parameters Value Parameters Value

vrmax 1 [m/s] rr, ro 0.3[m]

ωrmax 2.5[m/s2] δhrvo 0.5

δv 2.0 δh 1000

δo 50 δα 1.0

(a) T2 [s] (b) T2 [s] (c) T3 [s] (d) T3 [s]

Figure 3.7: Snapshots at two timestamps of the two simulations.
crossing person, it illustrates that, the robot is able to proactively avoid people,
as shown in Figs. 3.7(b) and 3.7(d). Because, the proposed PTEB algorithm
takes into account the potential collision of the robot with the surrounding
humans.
b. Simulation experiment in Stage environment

In order to conduct experiments in simulation and real-world environments,
the proposed PTEB algorithm is also integrated into the conventional navi-
gation scheme, as presented in Fig. 3.6(b). We conducted two experiments in
the simulated Stage environment (seen in Fig. 3.8(b)) to examine the effective-
ness of proposed PTEB algorithm. Parameters of the system as well as of the
objective function (3.12) are set up in Table 3.3.

We adopted the collision index (CI) proposed by Truong et al.[24] to quanti-
tatively validate the proposed PTEB algorithm. Specifically, the CI value (the
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Figure 2.4: ME and MSE of three approaches in two scenarios.
based localization algorithm is using the sensor fusion method with the higher
precision sensor, the lower the error. Thus, the proposed localization system is
capable of providing higher accuracy mobile robot’s pose than the conventional
localization systems, which uses the encoder-based odometry method.

2.3 Particle filter-based localization algorithm
In the second case, an effective localization system based on the particle

filter and fusion sensor technique is proposed to estimate and predict the pose
of the mobile robot equipped with an encoder, GPS and IMU sensors. The PF
- based localization algorithm includes two steps.

Prediction: The step uses the previous state to predict the current state
based on the system model (1.1). In order to predict the probability distribution
of the pose of the moving robot after a motion needs to have a model of the
effect of noise on the resulting pose.

Update: Using a current sensor measurement to correct the predicted state.
According to the measurement model, weights are assigned by likelihood re-
sponse (in Algorithm 1). The measurement likelihood function computes the
likelihood for each predicted particle based on the error norm (EN) between
predicted measurement and actual measurement.

The proposed PF-based localization algorithm is summarized in Algorithm
1. To verify the usefulness of the PF-based localization algorithm, we created
four scenarios: (a) robot receives [x, y, θ] in the entire trajectory, (b) robot gets
[x, y], (c) the [θ] information is available, (d) all the sensor signals are lost, in
the roofed area. Here the sensor reading is just simulated by adding Gaussian
noise to the ground truth data (with the noise standard deviation sd = 0.2)
and defused noise into the system model with noise standard deviations: sd1
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Algorithm 1: Proposed PF algorithm
input : Particle filter input (Sk−1,uk−1, zk)

output: Sk, w
[j]
k

begin

Initialize parameter set Sk = Sk = ∅
for j=1 to N do

Generate a particle

//Motion model

xjk using (1.1)

//Measurement model

zk =

 xk
yk
θk

 =

 xgps
ygps
θimu


//Calculate an important weight

Ejk = xjk − zjk
if(ẑjk = [x̂k, ŷk]T )

EN [j] = Sqrt(
[
Ejk (1)

]2
+
[
Ejk (2)

]2
)

elseif(ẑjk =
[
θ̂k

]
)

EN [j] = Sqrt(
[
Ejk (3)

]2
)

elseif(ẑjk =
[
x̂k, ŷk, θ̂k

]T
)

EN [j] = Sqrt(
[
Ejk (1)

]2
+
[
Ejk (2)

]2
+
[
Ejk (3)

]2
)

Endif

w
[j]
k = |2πRk|−

1
2 exp

{
− 1

2

(
EN [j]

)0.4}
S̄k = S̄k +

[
x

[j]
k , w

[j]
k

]
Normalize: w

[j]
k =

w
[j]
k∑N

j=1 w
j
k

Resampling using algorithm 4

end for

= 4; sd2 = 1.2; sd3 = 0.35. The trajectory of the mobile robot is divided into
three parts to show the performance of the particle filter-based localization
system of the mobile robot, as shown in Fig. 2.5. In the first part, the mobile
robot navigates in a good environment condition, where the localization system
receives all the sensor data. In the second part, the mobile robot navigates into
the roofed area. In this area, all of the signals are lost or a part of them is
received by the localization system. If the entire signals are lost, the particle
filter-based localization only uses the prediction model to predict the pose of
the robot. While in the later, the localization system can use the available
signal to correct the prediction step. In the third part, the mobile robot goes
out of the roofed area. With new measurements, the estimated pose gradually
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where, δhrvo is a predefined value. Using the new objective function (3.12),
the result of solving (3.10), give the optimal trajectory (curved dashed line),
as presented in Fig. 3.8(a). The proposed PTEB algorithm is presented more
detail in Figure. 3.6(a) and Algorithm 3.

Algorithm 3: Proposed PTEB algorithm
input : robot state sr, start pose ps, goal pose pg , set of obstacles O

output: Control command ur
begin

G ← createGraph(sr, ps, pg , O);

D ← depthFirstSearch(G);

H ← computeH-Signature(D, G);

R ← removeRedundantPath(D, H, G);

T ← initializeTrajectories(R, G);

for each trajectory Bp ∈ T do

V ← objectiveFunction(); B using (3.13)

B∗p ← Optimizer(Bp,O,V);

B∗ ← storeLocalOptimalTrajectory(B∗p);

end for

vhrvor = [υy , υx]T ← Run HRVO(sr, O)

θhrvor = atan2(υy , υx)

θtebp = atan2(ytebp − yr, xtebp − yr)
∆θteb = min(|θhrvor − θtebp |) with p= 1, 2, ..., M.

Vc ← newObjectiveFunction(); B using (3.11)

V̂c(B
∗
p) = Vc(B

∗
p) + δhrvo∆θ

teb using (3.12)

B̂
∗ ← Call Optimizer(B∗,O, V̂c) B Solve (3.10)

ur ← According to (Eq. 2.35 and 2.36) and B̂
∗

Return ur = [υr, ωr]T

3.2.2 Algorithm validation by simulations
The scenario in Fig 3.8(a) is utilized to describe and prove the efficiency of

the proposed planning algorithm.
a. Simulation experiment in RViz Environment
Firstly examining the proposed PTEB algorithm in a simple simulation

environment, and visualizing the results in RViz environment3 with parameters
set up in Table 3.3.

At the time stamps T2 and T3, the globally obtimal trajectory is generated
in font of two crossing people, as shown in Figs. 3.7(a) and 3.7(c), in these
cases, the mobile robot can safely avoid people but its behavior might not be
smooth. In contrast, the globally optimal trajectory is generated behind the left

3http://wiki.ros.org/rviz
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trajectory among the candidate trajectories of distinctive topologies. Therefore,
it enables the robot to transit across obstacles. However, these approaches only
take into account the current position of the obstacle and do not anticipate
obstacle’s future trajectory as well as do not incorporate the potential collision
with the surrounding obstacle. Thus, such developed navigation systems lack
robustness in diverse situations in the dynamic environments.

A proactive timed elastic band (PTEB) algorithm is proposed to overcome
these shortcomings. The main idea of the proposed algorithm is to combine the
advantages of the TEB technique and the HRVO model by incorporating the
potential collision between the robots and the obstacles into the selection step
of the extension TEB model [42].

3.2.1 Construction of the PTEB algorithm
The PTEB algorithm takes into account both the dynamic constraints of

the mobile robot and its potential collision with the surrounding obstacles.
To accomplish this, in the objective function of conventional extension TEB,
one more factor using the orientation of the velocity vector generated by the
HRVO model is added. The orientation θhrvor of the velocity vector vhrvor =

[υx, υy]T generated by the HRVO model in (3.3) is used to compute the difference
between it and the angles θtebp of the M locally optimal trajectories, with p =
1, 2, ..., M.

θhrvor = atan2(υy, υx) (3.7)

θtebp = atan2(ytebp − yr, xtebp − xr) (3.8)

∆θtebp = |θhrvor − θtebp | (3.9)

where, (xtebp , ytebp ) is the coordinates of the node ζp, which is added beside the
obstacles.

B̂
∗

= arg min
B∗

p∈{B∗
1
,B∗

1
,...,B∗

M
}
Vc(B

∗
p) (3.10)

where,the objective function Vc(B
∗
p) is presented as follows:

Vc(B
∗
p) = wT

c fc(B
∗
p) (3.11)

Finally, the new objective function of PTEB algorithm is obtained as follows:

V̂c(B
∗
p) = Vc(B

∗
p) + δhrvo∆θ

teb
p (3.12)
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converges back to the actual pose.

Figure 2.5: The simulation results using PF localization

Table 2.1: ME of robot’s position.
Observed Signal Encoder-based odometry algorithm Proposed localization algorithm

[x, y, θ] 0.2510 0.1098

[x, y] 0.2479 0.1451

[θ] 0.9648 0.2406

[] 0.9722 0.3957

The simulation results indicate that the proposed particle filter-based lo-
calization algorithm is able to apply and improve the performance of the au-
tonomous mobile robot when it navigates in interrupted sensor data informa-
tion.

2.4 Conclusion
In this chapter, two efficient localization algorithms have been proposed in-

cluding EKF-based and PF-based localization algorithm. The first case, when
sensor signals are sufficient and noise distributions are Gaussian distribution,
the EKF - based localization algorithm has been made of used. The second
case, when information get from sensor systems is insufficient or the sensor
data signals are interrupted, and noises have Non-Gaussian/Gaussian distri-
bution, PF - based localization algorithm has been proposed. The output of
the proposed localization systems are the robot’s pose including robot’s posi-
tion and orientation, which are then used as the input of the motion planning
system, as shown in Fig. 3.1(a).
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Chapter 3

DEVELOPING EFFICIENT MOTION

PLANNING SYSTEMS

The motion planning systems include of two sub-systems, as shown in Fig. 3.1(a):
(i) global planner (or path planning); (ii) local planner (or obstacle avoidance).
We only focus on developing the local planning algorithms for the motion plan-
ning systems which are capable of driving the mobile robots to proactively and
safely avoid dynamic obstacles in the real-world environments. To accomplish
that motion planning systems should take into account robot’s kinodynamic
constraints, the potential collisions of the robots with surrounding obstacles
and obstacle’s future states as well as future trajectory of the obstacles in their
vicinity. Three new local planning algorithms of the motion planing system
for the mobile robots are proposed, including the enhanced dynamic window
approach (EDWA), proactive timed elastic band (PTEB), and extended timed
elastic band (ETEB) algorithm. In addition, an efficient navigation system,
which integrates the proposed EKF-based localization algorithm and a pro-
posed ETEB algorithm, is also introduced.

Perception Localization Motor control 

 

 

 

Real – world environment 

Local planner 

Global planner 

Motion planning 

Perception 

 EKF – based 

localization 

system 
Motor control 

 

 

 

Real – world environment 
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 𝒔𝑟 
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 𝒖𝑟 

Figure 3.1: (a) The conventional navigation framework; (b)The proposed
integrated navigation system.

3.1 Proposed enhanced dynamic window approach - based

algorithm
Various navigation systems have been proposed to ensure the safe navigation

of the mobile robot in dynamic environments. The navigation frameworks can
be divided into two categories based on the information used as the input of the
motion planning system: (i) position-based approaches and (ii) velocity-based
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Table 3.2: The average passing velocity [m/s] of the robot
Robot and Obstacles Sceario 1 Sceario 2 Sceario 3 Sceario 4

DWA-DWA 0.8895 0.8693 0.8910 0.7937

EDWA-DWA 0.9531 0.9441 0.9439 0.9361

EDWA-EDWA 0.9711 0.9630 0.9527 0.9461

introduced in [1] is proposed to accomplish this, as shown in Fig. 3.2(b). The
proposed system consists of two major parts: (i) the conventional navigation
scheme, and (ii) the extended part. The proposed EDWA algorithm has been
installed on the mobile robot platform with data flow diagram, á shown in
Fig. 3.13(a). Four experiments in a laboratory-like environment are then con-
ducted. In this study, using humans as moving obstacles in all experiments is
made. The experimental results of the four experiments are shown in the sec-
ond row in Fig. 3.5 and the first row shows the snapshot of the scenarios. A
video with our experimental results can be found at the hyperlink2.
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Figure 3.5: The experimental results of four experiments.
Overall, the simulation and experimental results shown illustrate that, the

proposed EDWA algorithm is feasibility and effectiveness in real-world envi-
ronments. It enables the mobile robot to proactively avoid dynamic humans in
the vicinity of the robot, and safely navigate to the given goal. However, the
robot equipped the EDWA algorithm sometimes gets stuck in a locally optimal
trajectory and unable to transit across obstacles if they are very close to it.

3.2 Proposed proactive timed elastic band algorithm
Recently Rosmann et al. [54] proposed extensions of the TEB technique

by using parallel trajectory planning in spatially distinctive topologies. Using
this technique, the mobile robots can switch to the current globally optimal

2https://youtu.be/wAfgDIxm0Ak
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closer the value of δmin(t) to 1 is. The simulation results shown in Fig. 3.3,
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Figure 3.3: Trajectories of the robot and obstacles in four Scenarios.

Table 3.1: Parameters set in experiments - EDWA algorithm
Parameters Value Parameters Value Parameters Value

α 3 rr, ro 0.3[m] vmax 1[m/s]

β, γ 0.1 tsim 3[s] ωmax 0.35[rad/s]

αvision 270o rvision 8[m] ∆t 0.25[s]

Fig. 3.4 and Table 3.2 (a video clip of our simulation results can be found at
this link1) illustrate that, our proposed EDWA algorithm is capable of driving
the mobile robot to deal with potential collisions with various situations in the
surrounding environment of the robot in dynamic environments.
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Figure 3.4: (First row) The minimum passing distance; (Second row) Robot
velocity along the robot’s trajectory.

b. Experimental setup and results
An extended navigation scheme based on the conventional navigation scheme

1https://youtu.be/oypDiSQTYPQ
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techniques. In the first group, the navigation systems take into account the
robot dynamics, including actual speed, acceleration and physical limits. How-
ever, these methods only incorporate current positions of obstacles, so it does
not proactively deal with potential collisions. Whereas in the second group,
the navigation systems have a big advantage of proactive collision avoidance
by incorporating both the current position and velocity of the obstacles. Thus,
the robot is able to avoid the potential collision with the surrounding obstacles.
Nevertheless, the systems does not consider robot dynamics. Thus, it is difficult
to directly use this velocity to control the mobile robot in real-world environ-
ments. In order to overcome the mentioned drawbacks, an EDWA algorithm is
proposed. The main idea of the EDWA algorithm is to combine the advantages
of the DWA technique and the HRVO model, which are typical techiques in
the two aforementioned groups.

3.1.1 Construction of the EDWA algorithm
The EDWA algorithm takes into account both the robot dynamics and

its potential collision with the surrounding obstacles. To accomplish this, in
the objective function (3.1) of conventional DWA model, the target heading
function head(υ, ω) is modified.

G(υ, ω) = αhead(υ, ω) + βdist(υ, ω) + γvel(υ, ω) (3.1)

where, α, β, γ are the weights of the target heading, obstacle clearance and
velocity, and predefined values.

head(υ, ω) = 180o − |θgoal − θr| (3.2)

where, θgoal is the orientation of the vector pointing from the predicted position
of the robot to the goal

vhrvor = arg min
v/∈HRVOr

‖v− vprefr ‖2 (3.3)

Particularly, in (3.2) instead of using the predicted orientation of the mobile
robot θr, the orientation of the velocity vector generated by the HRVO model
is utilized. More specifically, the orientation θhrvor of the velocity vector vhrvor =

[υx, υy]T generated by the HRVO model in (3.3) is used to compute the new
target heading function as follows:

headhrvo(υ, ω) = 180o − |θgoal − θhrvor | (3.4)
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θhrvor = atan2(υy, υx) (3.5)

Finally, the objective function of the DWA model in (3.1) is replaced by the
new objective function as follows:

G′(υ, ω) = αheadhrvo(υ, ω) + βdist(υ, ω) + γvel(υ, ω) (3.6)

The proposed EDWA algorithm consists of three steps including: (i) calculate
the search space of the velocities Vr , (ii) compute the orientation of the velocity
vector generated by the HRVO model, and (iii) select the efficient velocity con-
trol command. Using the proposed EDWA algorithm is to generate an efficient
velocity command ur=[υr, ωr]T . Then, to generate directly control signals for
the motor control model (vrr , vlr) which are the linear velocity commands of the
right and left wheels of the robot, respectively.

Algorithm 2: Proposed enhance dynamic window approach algorithm

input : robot state sr, goal position pg , obstacle state so
output: Control command u = [υr, ωr]T

begin
Initialize parameter set α, β, γ

Set motion dynamic vmax, ωmax, v̇max, ω̇max
Compute Vs = possible velocities

Compute Va = admissible velocities

Compute Vd = reachable velocities

Compute Vr = Vs ∩ Va ∩ Vd
Run HRVO to generate vhrvor = [υy , υx]T

Compute θhrvor = atan2(υy , υx)

for each pair of velocity (υi, ωi)∈ Vr do

Predict robot position (xi, yi) using (1.1)
θgoali = atan2(yg − yi, xg − xi)
headhrvoi = 180o − |θgoali − θhrvor |
Compute obstacle clearance function disti using the closest distance to

obstacles

Compute velocity function veli = |vi|
Compute the scorei using (3.6)

Store scorei in the score vector S

end for

Select u = [υr, ωr]T using maximum score from S

3.1.2 Algorithm validation by simulations and experiments
To verify effectiveness of the proposed algorithm, we created a scenario,

as shown Fig. 3.2(a). Assuming that the robot state is sr = [xr, yr, θr, vr, ωr]
T .

The robot’s goal position is pg = [xg, yg]
T . There are N obstacles appearing
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Figure 3.2: (a) The example scenario; (b) The efficient navigation system
based on the EDWA algorithm

in the vicinity of the robot O = {o1,o2, ...,oN}. The state of the obstacle oi is
sio = [xio, y

i
o, θ

i
o, v

i
o]
T . The radius of the robot and obstacle are ro and rr, respec-

tively. Robot is requested to navigate safely from initial point to given goal
point.
a. Simulation setup and results
Four typical scenarios have been created. In each scenario, three experiments
corresponding to three pairs of reactive motion planning algorithms (DWA-
DWA; EDWA-DWA; EDWA-EDWA)to compare the proposed EDWA algo-
rithm with the conventional DWA algorithm are conducted. In order to com-
pare the proposed EDWA algorithm and the conventional DWA algorithm, we
made use of both qualitative and quantitative evaluations. Regarding to the
qualitative evaluation, the trajectory of the mobile robot and the obstacles
are visualized in the same figure, as shown in Fig. 3.3. Whereas, in term of
quantitative evaluation, we utilize three matrices, as shown in Fig. 3.4 and Ta-
ble 3.2. The velocity and average velocity are used to indicate the proactive
robot trajectory, while the minimum distance from the robot to the surround-
ing obstacles illustrates the safe navigation of the mobile robot. Note that the
minimum distance is normalized as follows: δmin(t) = e(− dmin(t)2

3
) where, dmin(t)

is the closest distances between the boundary of the robot and the boundary
of all obstacles at time t. Therefore, the closer the robot to an obstacle is, the
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