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Chapter 1

INTRODUCTION

1.1. Motivation

Mobility is an essential navigation issue for autonomous mobile robots.

To allow the mobile robots to navigate safely in a real-world environment,

the mobile robots must deal with four typical functional blocks of the

navigation system [1], as shown in Fig. 1.1, including: (i) perception –

the mobile robots must interpret its sensors to extract meaningful infor-

mation; (ii) localization – the mobile robots must determine their posi-

tion and orientation in the environment. In other words, it answers the

question “Where am I?”; (iii) motion planning – includes path planning

techniques and obstacle avoidance methods. The mobile robots utilize it

to decide how to act to achieve its goals; and (iv) motor control – the

mobile robots must modulate their motor outputs to achieve the desired

trajectory, i.e. PID control.

Perception Localization 
Motor 

control 

Real – world environment 

Motion 

planning 

Figure 1.1: A general control scheme for autonomous mobile robots.

It has been known that, the success in robot navigation requires the
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success of the four aforementioned fundamental processes, and to im-

prove the performance of the robot’s navigation system, the performance

of all processes need to be improved.

In recent years, several domestic researches in the field of robotics

have been published in recent years, such as the publications of Viet-

nam Academy of Science and Technology, Institute of Information Tech-

nology, Hanoi University of Science and Technology, Vietnam National

University, Le Quy Don Technical University and Ho Chi Minh City Uni-

versity of Technology. The domestic works mainly focus on trajectory

tracking systems [2], [3], [4] and [5]. Specifically, the authors propose

control laws which enable the mobile robots to follow predefined trajec-

tories. In this research, the authors also stated that, using these control

laws the systems can overcome uncertainties caused by dynamic param-

eter variations and external disturbances. In other research direction,

some studies [6] and [7] propose algorithms based on extended Kalman

filter (EKF) to improve the localization system for mobile robots in un-

known environments. And a few works [8], [9] develop adaptive control

algorithms for tracking moving targets by using image features of the

target which get from a camera system. Finally, a little researches intro-

duce a trajectory planning method in a static environment with known

start point and target point [10]. As a result, the mobile robot navi-

gation system, especially localization and motion planning systems has

not been focused and adequately researched.

Therefore, in this research we only focuses on two interesting systems

including localization and motion planning systems, which are the scope

2



of the thesis.

Localization is the problem of estimating a robot’s pose relative to

its environment from sensor observations. It has been referred as the

most fundamental problem to provide the mobile robot with autonomous

competences. The challenges of localization are from the inaccuracy and

inadequacies of sensors and effects of noise. Firstly, the errors of the mea-

surement model, or sensor noise, due to the structural characteristics,

resolution and error tolerance of different types of sensors or dynamic

environments, such as light conditions, obstacles. Clearly, the solution

here is to take multiple readings into account or multi-sensor fusion to

increase the overall information from inputs. Secondly, the errors also

can be caused by systematic errors (deterministic) such as the size of

uneven wheels, the distance between two unbalance wheels, and they

can be eliminated by proper calibration of the system. However, there

are still a number of non-systematic (random) errors that remain, such

as slipping on the surface, changes in the contact points of the wheel are

uneven [1], leading to uncertainties in position estimation over time. In

addition, when the mobile robot navigates in the harsh environmental

conditions, the information can be interrupted in a short or long interval

of time. Therefore, the mobile robot might have insufficient information

for estimating the pose during its navigation.

The localization system has received the greatest research attention

in the past decade, and as a result, significant advances have been made

on this front [11]. In recent years, several conventional localization sys-

tems have been proposed to improve the performance of the robot pose

3



estimation such as [12], [13], [14], [15], [16], [17] [18], [19], [20]. Although

they have achieved significant results in increasing the quality of this

localization system, the researchers mainly focus on the case that the

localization system receives sufficient information from the observation

system. To the best of our knowledge, there are limited researches on

localization systems when the sensing signal is interrupted or completely

lost. Hence it is necessary to continue researching on these issues.

In other aspect, the motion planning system is crucial issue in navi-

gation system of autonomous mobile robots, especially when they navi-

gate in dynamic environments. Because, the dynamic environments are

changeable, uncertain, and clustered environments with the presence of

obstacles, humans, vehicles, and even other autonomous devices. There-

fore, to ensure the safe navigation of the mobile robot in such environ-

ments, various navigation systems have been proposed.

The navigation frameworks can be divided into two categories based

on the information used as the input of the motion planning system: (i)

position-based approaches and (ii) velocity-based techniques.

In position-based group, only the position of the obstacles is used as

the input of the navigation systems, such as [21], [22], [23], [24], [25] [26]

and [27]. Some mobile robot navigation systems [22], [23] and [25] are

developed using the social force model [28]. In other approach, the re-

searchers utilize the dynamic window approach model proposed by Fox

et al. [29] to develop the mobile robot navigation systems [21] and [24].

These navigation systems take into account the dynamics of the mobile

robot and utilize the closest distance from the robot to the surround-

4



ing obstacles for obstacle avoidance. More recently, a few navigation

systems [26] and [27] are developed using the timed-elastic-band (TEB)

technique for avoiding obstacles. To maintain the separation from the

obstacles, the TEB-based navigation systems take into consideration the

distance from the proposed robot’s trajectory to the surrounding obsta-

cles. Despite the fact that the aforementioned navigation systems have

been able to generate the safe navigation for the mobile robots in real-

world environments, they do not proactively deal with potential collision

with the surrounding obstacles. Because, these methods assume moving

obstacles to be stationary. As a results, these navigation systems might

be sufficient for the obstacle avoidance in static and semi-dynamic envi-

ronments, but foresighted evasive maneuvers are not possible.

Regarding to the velocity-based techniques, the navigation systems such

as [30], [31], [32] and [33], have taken into account the potential collision

of the mobile robot with the surrounding obstacles based on the concept

of the velocity obstacles presented by Fiorini et al. [34]. Specifically

these navigation systems take into account the position and motion of

all agents and selects the collision-free velocity command from the two-

dimensional velocity space for each agent. Although these navigation

systems have been installed in the mobile robot platforms and success-

fully verified in the real-world environments, they might not be able to

handle all collision situations in the dynamic environments [31] and [33].

In addition, these systems only utilize the current position and veloc-

ity of the robot and the obstacles to create velocity commands, without

considering the dynamics of the mobile robot. Therefore, it is difficult

5



to directly use this velocity command to control a mobile robot in the

real-world environment.

In another approach, the navigation frameworks also can be divided

into two categories based on the robot dynamics incorporated into the

navigation systems: (i) none robot dynamics-based approaches and (ii)

robot dynamics-based techniques.

Regarding to the none robot dynamics-based approaches, some obsta-

cle avoidance techniques and motion control algorithms, such as the ar-

tificial potential field [35], vector field histogram [36], elastic band [37],

velocity obstacles [34], [31], and social fore model [28], [23] techniques

have been proposed for the autonomous mobile robots. These approaches

have been achieved certainly in navigating mobile robots in dynamic en-

vironments. However, the systems do not directly take into account the

dynamics of the mobile robots. Thus, it might be difficult to directly

utilize the output control command to driving the mobile robots in the

real-world environments, especially for non-holonomic mobile robots.

In order to address that issue, several robot dynamics-based approaches

have been proposed in the recent years, such as the dynamic window ap-

proach [29], randomized kinodynamic planning [38], [39] and timed elas-

tic band (TEB) [40] methods. Although, these approaches have been

successfully applied in real-world environments, they might not suitable

with the dynamic environments, because the mobile robots equipped

with these techniques are unable to transit across obstacles in dynamic

environments.

To deal with that problem, recently Rosmann et al. [41, 42] proposed

6



extensions of the TEB technique by using parallel trajectory planning

in spatially distinctive topologies. Using this technique, mobile robots

can switch to the current globally optimal trajectory among the can-

didate trajectories of distinctive topologies, which are maintained and

optimized in parallel. However, these approaches only take into account

the position of the surrounding obstacles and do not incorporate the po-

tential collision of the mobile robots with the obstacles. Therefore, such

developed navigation systems lack robustness in diverse situations in the

dynamic environments.

In order to solve the aforementioned issues, it is necessary to proposed

an efficient navigation system for autonomous mobile robots in dynamic

environments. This navigation can drive the robots in both sufficient

and insufficient sensing information, and takes into account both the

robot dynamics and potential collision of the robots and the surrounding

obstacles.

1.2. Objectives

The main objective of this thesis is to develop an efficient navigation

system that enables a mobile robot to navigate autonomously, safely and

proactively in a dynamic environment. In our study, the dynamic en-

vironment has characteristics, as follows: uncertain sensing, static and

dynamic obstacles, changing environment and flat floor. In order to

obtain the objective, we can break down into two sub-objectives: (i)

improving the accuracy of the localization system and (ii) enhancing the

performance of the motion planning system. In the former, localization

7



algorithms for the mobile robot in the dynamic environment with suf-

ficient as well as insufficient information are proposed. In the later, we

propose new local planning algorithms for the motion planning system

of the mobile robot in the dynamic environment.

1.3. Methodology

In order to achieve the aforementioned objective, the dissertation

makes use of an approach that combines theoretical analysis with exper-

iments, and utilizes techniques in the fields of random signals, statistics,

optimization to improve the performance of the mobile robot navigation

system. In order to verify and evaluate the effectiveness of the proposed

models we implement and install them in our mobile robot platform. The

experiments are conducted in both simulation and real-world environ-

ments. The experimental results of the proposed system are compared

with the conventional systems.

The dissertation utilizes software and tools for programming and test-

ing the proposed algorithms including MATLAB and run on Intel core i7

desktop computer for simulation and quickly testing our ideas; the oper-

ating system is Ubuntu Linux; the programming language is C/C++; the

Robot Operating System (ROS) [43] is the software core of the robots; of

several methods for the localization system and new methods for motion

planning system. The dissertation also makes use of the Stage robot sim-

ulator [44], OpenCV Library [45], ROS Toolbox in MATLAB1 and the

Point Cloud Library (PCL) [46] for conducting experiments in real-world
1https://www.mathworks.com/help/ros/index.html

8



environments.

1.4. Contributions

The main contributions of the dissertation are outlined as follows:

• Two sensor fusion-based localization algorithms are proposed. Firstly,

the EKF -based localization algorithm is used to enable the robot

to estimate its position with higher accuracy than conventional lo-

calization systems. Secondly, using the Particle filter (PF)-based

localization algorithm, the robot may be able to determine its po-

sition when moving in the environments with sufficient information

as well as the interrupted signal situation.

• Three new local planning algorithms in the motion planning sys-

tem for autonomous mobile robots in dynamic environments are

proposed, including enhanced dynamic window approach (EDWA),

proactive time elastic band (PTEB) and extended time elastic band

(ETEB) algorithms. The mobile robots equipped with the proposed

algorithms are capable of proactively avoiding dynamic obstacles and

potential collisions, and navigating safely towards the given goal.

• The integrated navigation system based on the previous proposed

algorithms including the EKF-based localization algorithm with the

ETEB algorithm is utilized in real - world environments. The exper-

imental results illustrate that the proposed system is efficient and

feasibility in dynamic environments.

The results of the dissertation have been published on 5 papers, in
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which 4 papers (2 International conference papers and 2 Domestic jour-

nal papers) were published, and 1 paper (1 ISI journal paper) is passed

round 3.

1.5. Dissertation outline

The dissertation is composed of five chapters except for references,

each of them dealing with difference aspect of the mobile robot naviga-

tion systems. The remainder of the dissertation is organized as follows.

Chapter 2 is introductions and reviews background information in the

navigation frame of mobile robots. The chapter is subdivided into three

parts. Part 1 introduce two type of mobile robot platforms which will be

utilized experiments in real-world environments. Moreover, we describes

a typical type of kinematic models that will be used in our simulations

and experiments. Part 2 presents existing algorithms which are then used

to improve the accuracy of the localization system for mobile robots. The

final part presents conventional local planning algorithms in the motion

planning system of mobile robots.

Chapter 3 presents two algorithms to enhance the performance of the

localization system. The chapter consists of two parts. Part 1 addresses

the issue of the multiple sensor fusion-based localization system using

the EKF algorithm in the sufficient information case. Part 2 introduces

the proposed localization algorithm based on the PF algorithm which

can be use effectively in the interrupted information of the situation.

Chapter 4 introduces three new local planning algorithms of the mo-

tion planning system for the mobile robot. These proposed models en-
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able the mobile robot to navigate safely and proactively in dynamic en-

vironments. We conduct experiments in both simulations and real-world

environments to validate the effective of the proposed algorithms.

Conclusions and future works are drawn in the chapter 5. The main

contributions of the graduation thesis have been reached.
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Chapter 2

BACKGROUND

This chapter provides important insights for the next chapters in the

thesis. Firstly, we introduce two types of mobile robot platforms and

kinematic model of a differential-drive robot in Section 2.1 which are

used in both simulation and real-world experiments to validate the ef-

fectiveness of the proposed algorithms. Secondly, the extended Kalman

filter (EKF) algorithm and the Particle filter (PF) algorithm used in the

proposed localization systems by L.A. Nguyen et al.[47], [48], are briefly

described in Section 2.2. Then, three typical local planning (obstacle

avoidance) algorithms adopted by L.A. Nguyen et al. [49], [50] and

[51], including Dynamic Window Approach (DWA), Hybrid Reciprocal

Velocity Obstacle (HRVO) and Time Elastic Band (TEB) algorithms,

are presented in Section 2.3. Finally, Section 2.4 presents a conclusion

summarizing what we wish to develop to achieve more efficient models .

2.1. Mobile robot models

In order to verify the performance, efficiency and feasibility of pro-

posed algorithms, that are going to be presented in the thesis, two

robot platforms in The-More-Than-One Robot Laboratory, University

of Prince Edward Island, Canada1 which used in our experiments are
1http://morelab.org
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firstly presented. Secondly, the typical kinematic model of differential-

drive robots will be used in simulations in the next chapters is also

introduced.

2.1.1. Mobile robot platforms

(a)

RPLIDAR 

A3 laser 

range 

finder 

Kinect 

sensor 

NVIDIA 

Jetson TX2 

Developer 

Kit 

IMU and 

two wheel 

encoders 

(b)

Figure 2.1: Two mobile robot platforms under the study.

Two robot platforms that will be used in our experiments in chapter

4 including an Eddie mobile robot platform as shown in Fig. 2.1(a) and

QBot-2e mobile robot platform in Fig. 2.1(b).

a. The Eddie mobile robot platform

The Eddie mobile robot platform is a two-wheel differential drive

mobile platform and equipped with a Hokuyo UTM-30LX-EW laser
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rangefinder and a NVIDIA Jetson AGX Xavier Developer Kit. The

laser rangefinder positioned at the height of 0.4[m], provides the dis-

tance measurements up to 30.0[m] in the angular field of view 270o, and

is used for detecting obstacles (humans) in the vicinity of the mobile

robot to provide information for the motion planning system.

The platform is equipped with two-wheel encoders with resolution 2.5o

and an internal measurement unit (IMU) for a localization system.

The desktop computer and the Xavier board are connected via a wifi

router using ROS Toolbox in MATLAB2.

b. The QBot-2e mobile robot platform

The QBot-2e mobile robot platform3 is also a two-wheel differential

drive mobile robot platform with two additional caster wheels, as shown

in Fig. 2.1(b). This platform is equipped with two-wheel encoders and

an internal measurement unit (IMU) for a localization system. The

encoders provide 2578 counts per revolution. In other words, the resolu-

tion of the encoders is 0.14o. The IMU is a device that includes compass,

gyroscopes and accelerometers to estimate the position, orientation, ve-

locity and acceleration of a mobile robot. In this thesis, we only used

the orientation component of IMU for localization systems.

The QBot-2e mobile robot platform is added a RPLIDAR A3 laser

rangefinder and a NVIDIA Jetson TX2 Developer Kit, as shown in

Fig. 2.1(b). The laser rangefinder positioned at the height of 0.45[m],

provides distance measurements up to 25[m] in the angular field of view
2https://www.mathworks.com/help/ros/index.html
3https://www.quanser.com/products/qbot-2e
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360o, and the resolution 0.33o. The laser rangefinder is used for the

localization system and detecting objects in the robot’s vicinity, and

providing information for the robot motion planning system. Whereas,

the NVIDIA board is a embedded computer, which is used to install

the entire navigation system and other software packages of the mobile

robot.

2.1.2. Kinematic model of differential-drive robot

θ(t) 

L 

P0(x,y) 

XR 
YR 

XG 

YG 

v(t) 

x 

y 

ω(t) 

Figure 2.2: The global reference frame and the robot reference frame.

This subsection recapitulates the kinematic model of a differential-

drive robot. In order to specify the position of the robot on the plane,

a relation between the global frame of the plane XGOYG and the local

reference frame of the robot XROYR are established, shown in Fig. 2.2,

also called as the current robot configuration. The position of the robot
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(x, y) in the global reference frame is the position of the center point

P0 on the robot’s chassis. The angular between the global and the local

reference frame is given by θ. The pose of the robot can be describe as

a vector with three elements [x, y, θ]T .

For the differential drive robot, shown in Fig. 2.2, the position can be

estimated starting from a known position by summing the incremental

travel distances. Thus, for a discrete system with a fixed sampling in-

terval ∆t, the incremental travel distances of the robot 4x and 4y on

the global reference frame are

4 x = 4s cos(θ +
4θ
2

); 4y = 4s sin(θ +
4θ
2

) (2.1)

Assume that 4sr and 4sl are distances traveled by the right and left

wheels of the robot in interval time ∆t, respectively. As a result, the

linear incremental displacement 4s and the orientation 4θ of the robot

are defined as follows:

4 s =
4sl +4sr

2
; 4θ =

4sr −4sl
L

(2.2)

where, L denotes the distance between two robot’s wheels.

Thus, we get the updated state of the mobile robot at the time k

governed [1] as follows:
xk

yk

θk

 =


xk−1

yk−1

θk−1

+


4sk−1 cos(θk−1 + 4θk−1

2
)

4sk−1 sin(θk−1 + 4θk−1

2
)

4θk−1

 (2.3)

Equation (2.3) is also known as the odometry motion model of the

mobile robot [11].
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Let uk−1 = [vk−1, ωk−1]
T denotes the control command at time k-1.

Suppose that we keep the control command uk−1 = [vk−1, ωk−1]
T con-

stant for some time ∆t, with the linear velocity command vk−1 and

the angular velocity command ωk−1. Moreover, 4sk−1 = vk−1∆t, and

4θk−1 = ωk−1∆t. Thus, after the duration ∆t the velocity motion model

of the robot is as follows:
xk

yk

θk

 =


xk−1

yk−1

θk−1

+


vk−1∆t cos(θk−1 + ωk−1∆t

2
)

vk−1∆t sin(θk−1 + ωk−1∆t

2
)

ωk−1∆t

 (2.4)

The motion model (2.3) and (2.4) will be used in the following Chapters.

2.2. Bayesian filters for localization systems

Before discussing conventional probabilistic localization methods in

detail, the general probability robot localization problem is presented.

Because the data coming from the robot sensors are affected by measure-

ment errors, thus we can only compute the probability that the robot

is in a given configuration. The key idea in probabilistic robotics is to

represent uncertainty using probability theory: instead of giving a single

best estimate of the current robot configuration, probabilistic robotics

represents the robot configuration as a probability distribution over all

possible robot poses. This probability is called belief.

Consider a mobile robot moving in a realistic environment, it can

keep track of its position over time using odometry. Due to odometry

uncertainty, after some movement, the robot will become very uncertain

about its position. To keep the uncertainty about the position not grow-
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ing, the robot must localize the relationship of itself to its environment.

Thus, the robot might use its exteroceptive sensors (e.g., laser, vision

sensors) to make observations of the environment. After that combin-

ing the information got from such exteroceptive observations with the

information provided by the robot’s odometry can enable the robot to

localize more precisely. The process of updating all information can

be divided into two steps [1], called prediction update and perception

(or correction)update. More specifically, during the prediction update

step, the robot estimating its configuration uses its proprioceptive sen-

sor such as encoders to estimate its motion. However, errors introduced

by encoders, lead to the robot’s belief about the position is uncertain.

Therefore, motion is somewhat non-deterministic. On the other hand,

the perception update step, the robot uses the information from its exte-

roceptive sensors to correct the position estimated during the prediction

phase. As result, the belief state of the robot is refined. In the following

subsections, two different methods of probabilistic localization are de-

scribed, including the Extended Kalman Filter localization and Particle

filter localization.

2.2.1. Extended Kalman filter algorithm

Kalman filter [52] is widely used in many different applications, es-

pecially in the field of mobile robots. However, the linear Kalman fil-

ter addresses the general problem of trying to estimate the state of a

discrete-time controlled process, that is governed by a linear stochastic

difference equation. But what happens if the process to be estimated
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and/or the measurement relationship to the process are non-linear? In

this case, the extended Kalman filter is made use of.

Using the first order of the Taylor series expansion, the estimation can

be linearized around the current estimation using the partial derivatives

of the process and measurement functions to compute estimates even in

the face of non-linear relationships [52]. Let us assume that a process

has a state vector xk ∈ <n and the state of the process is governed by

the non-linear stochastic difference equation:

xk = f(xk−1,uk,wk) (2.5)

with a measurement z ∈ <m, that is

zk = h(xk,vk) (2.6)

where, xk, zk are the state and measurement vectors in the time step

k, respectively; f is a non-linear function, that relates the state at the

previous time step k−1 to the state at the current time step k. It is also

included a driving function uk and a zero-mean process noise wk; h is

the non-linear function that relates the state xk to the measurement zk.

Each parameters in the vector is an observable value from each sensors

at the time step k; wk, vk are the random variables and represent the

process and measurement noises, respectively. They are assumed to be

independent to each other with normal probability distributions (2.7).

wk ∼ N(0,Qk); vk ∼ N(0,Rk); E(wk,vk) = 0 (2.7)

In practice of course one does not know the individual values of the

noise at each time step. However, one can approximate the state and
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measurement vector without them as follows:

x̂−k = f(x̂k−1,uk) (2.8)

and

ẑk = h(x̂k) (2.9)

The basic operation of the EKF filter is the same as the linear discrete

Kalman filter. Hence, the equations for the EKF filter also fall into two

phases: (i) time update equations, and (ii) measurement update equa-

tions. The time update equations are responsible for projecting forward

the current state and error covariance estimates in time, to obtain the

a priori estimates for the next time step. The measurement update

equations are responsible for the feedback for incorporating a new mea-

surement into the a priori estimate to obtain an improved a posteriori

estimation.

EKF filter time update equations:

x̂−k = f(x̂k−1,uk) (2.10)

P−k = FkPk−1F
T
k + WkQk−1W

T
k (2.11)

EKF filter measurement update equations:

Kk = P−k HT
k (HkP

−
k HT

k + VkRkV
T
k )−1 (2.12)

x̂k = x̂−k + Kk(zk − h(x̂−k )) (2.13)

Pk = (I −KkHk) + P−k (2.14)

where, x̂−k ∈ <n is a priori state estimation at step k given knowledge of

the process prior to step k−1; x̂k ∈ <n is a posteriori state estimation at
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step k given measurement zk; P−k is an a priori estimation error covari-

ance matrix; Pk is an a posteriori estimation error covariance matrix;

Qk is the process noise covariance (the covariance of the noise associated

to the motion model); Rk is the measurement noise covariance at step k

(Note subscript allowing it to change with each measurement); Kk is the

Kalman gain; Fk and Hk are the Jacobian matrix of partial derivatives

of the function f and h with respect to x, respectively, and computed in

(2.15).

Fk =
∂f(xk−1,uk)

∂xk−1

; Hk =
∂h(xk)

∂xk
(2.15)

Wk is the Jacobian matrix of partial derivatives of the function f with

respect to w; and Vk is the Jacobian matrix of partial derivatives of the

function h with respect to v.

Wk =
∂f(xk−1,uk)

∂w
; Vk =

∂h(xk,uk)

∂v
(2.16)

2.2.2. The particle filter algorithm

PDF (Particle Density Filter), the particle filter is developed based on

the framework of Bayesian theory [53] [54]. Particle filter(also as known

as Monte - Carlo) is a widely used localization method in the field of

mobile robots [55]. Consider the evolution of the state sequence of a

target given by

xk = fk(xk−1,wk−1) (2.17)

Where fk : <nx × <nv → <nx is a possibly nonlinear function of the state

xk−1; wk−1 is a process noise sequence, nx, nv are dimensions of the state

and process noise vectors, respectively. N is the set of natural numbers.

21



The objective of tracking is to recursively estimate xk from measure-

ments

zk = hk(xk,vk) (2.18)

Where hk : <nx × <nn → <nz is a possibly nonlinear function; vk is a

measurement noise sequence; nz, nn are dimensions of the measurement

noise vectors, respectively. In particular, filtered estimates are sought of

based on the set of all available measurements z1:k = {zi, i = 0, ...., k}

up to time k. To recursively calculate some degree of belief in the

state at time k, following a Bayesian perspective, taking different val-

ues, given the data up to time k. Therefore, it is required to construct

the pdf p(xk|z1:k−1). In order to present the detail of the algorithm, let

{xi0:k, w
i
k}Nsi=1 denote a random measure that characterizes the posterior

probability density distribution p{xi0:k‖zi1:k}. Where {xi0:k, i = 1, ...., N}

is a set of particles with their associated weights {wi
k, i = 1, ...., N}, and

x0:k = {xj, j = 0, ...., k} is the set of all states up to time k. N is the num-

ber of particles used in the approximation. Then, the posterior density

at k can be approximated as

p(xk|z1:k−1) =
p(zk|xk, zk−1)p(xk|zk−1)

p(zk|z1:k−1)
≈

N∑
k=1

wi
kδ(x0:k − xi0:k) (2.19)

Where p(zk|z1:k−1) the normalizing constant depends on the likelihood

function p(zk|xk) defined by the measurement model. The normalized

weights are chosen using the principle of importance sampling [53]. If

samples xik were drawn from an importance density q(xk|zk), then the
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weights in (2.21) can be shown as

w̃i
k ∝

p(xk|zk)
q(xk|zk)

(2.20)

wi
k =

w̃i
k

N∑
k=1

(w̃i
k−1)

(2.21)

The choice of the proposal distribution is one of the most critical de-

sign issues for successful particle filter. Two of those critical reasons are

as follows: samples are drawn from the proposal distribution, and the

proposal distribution is used to evaluate important weights. In prac-

tical terms, this means that after a certain number of recursive steps,

all but one particle will have negligible. Degeneracy can be reduced by

using good importance sampling function and resamepling. Resampling

is a scheme to eliminate particles small weights and to concentrate and

replicate on particles with large weights. Multiply/Suppress samples xik

with high/low importance weights wi
k , respectively. To obtain N new

random samples xik approximately distributed according to p(xi|zk) and

set wi
k = 1/N . Thus, the Particle Filter algorithm can be divided into

three main steps:

1. Sample the particles using the proposal distribution.

2. Compute the importance weights: weight = target distribution/proposal

distribution.

3. Resampling: draw samples with probability and repeat N times.

The Particle Filter algorithm also presents as Algorithm 1.
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Algorithm 1: Basic Particle Filter algorithm

input : Particle filter input (Xk−1,uk, zk)
output: Xk

1 begin
2 Initialize parameter set Xk = Xk = ∅
3 for i=1 to N do
4 Generate a particle

5 x
[i]
k ∼ p(xik|uik,xk−1)

6 Calculate an importance weight

7 w
[i]
k =

p
(
x
[j]
k

)
q
(
x
[i]
k

)
8 Xk = Xk +

(
x
[j]
k , w

[j]
k

)
9 end for

10 for i=1 to N do

11 Draw x
[i]
k with importance weights w

[i]
k

12 Add x
[i]
k to Xk

13 end for

2.3. Typical obstacle avoidance algorithms

Obstacle avoidance algorithms can be called local planning algorithms.

If full information is available about the obstacle set and a robot is

present, global path planning methods may be used to find the optimal

path. But only local information is available, sensor-based methods are

used. A subset of sensor-based methods is reactive methods, which may

be expressed as a mapping between the sensor state and control signal,

with no memory present. Local obstacle avoidance focuses on changing

the robot’s trajectory as informed by its sensors during robot motion.

The resulting robot motion is both a function of the robot’s current

or recent sensor readings and its goal position and relative location to

the goal position. Local or reactive approaches, on the other hand,

use only a small fraction of the environment model, to generate robot

24



control. However, this comes at the obvious disadvantage that they

cannot produce optimal solutions.

The key advantage of local techniques over global ones lies in their

low computational complexity, which is particularly important when the

world model is updated frequently based on sensor information. The

obstacle avoidance algorithms presented here depend to varying degrees

on the existence of a global map and on the robot’s precise knowledge of

its location relative to the map. Despite their differences, all of the algo-

rithms can be termed obstacle avoidance algorithms because the robot’s

local sensor readings play an important role in the robot’s future tra-

jectory. A great variety of approaches have demonstrated competent

obstacle avoidance, such as Bug algorithm [56], bubble band technique

[37], [57], curvature velocity method (CVM) [58], dynamic window ap-

proach [29], [59], [60]. In this section, some typical obstacle avoidance

algorithms that have been used successfully in mobile robotics are pre-

sented.

2.3.1. The dynamic window approach algorithm

Dynamic window approach (DWA) model proposed by Fox et al. [29]

is a classical method for obstacle avoidance, which is successfully applied

for autonomous mobile robots in real-world environments [21], [24]. The

DWA algorithm can be carried out in two stages: (i) search space, and

(ii) optimization. In the first stage, the search space of the possible veloc-

ities (υ, ω) is reduced using the circular trajectories and the dynamics of

the mobile robot. In the second stage, the optimal velocities are chosen
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Figure 2.3: The velocity space of the dynamic window approach model. Vs, Va, Vd
are the possible velocities, admissible velocities, and dynamic window,
respectively.

from the remaining velocities by maximizing the objective function.

2.3.1.1. Search space

The velocity space Vs is all possible sets of tuples (υ, ω). Assume that

given the current robot speed, the algorithm selects a dynamic window

of all tuples (υ, ω) [29], as shown in Fig. 2.3 that can be reached within

the next sample period, taking into account the acceleration capabilities

of the robot and the cycle time.

The search space Vr from the possible velocities can be performed in

three steps. In the first step, the search space is reduced into two dimen-

sions in the velocity search space in which each curvature is determined

uniquely by the velocity pair (υ, ω), which is translational and rotational

velocities, respectively. In the second step, to avoid obstacles an admis-

sible velocity set Va is determined to ensure that only safe trajectories

are considered. In other words, Va is the set of velocities (υ, ω) presented
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by light gray area which allow the robot to stop without colliding with

the obstacle. Finally, to consider the limited acceleration of the mobile

robot by the motors, the search space is reduced to the dynamic window,

which contains only the velocities that the robot can be reached within

the next time interval. The dynamic window Vd is centered around the

actual velocity and the extensions of its depend on the accelerations of

the robot. In other words, Vd is an area which velocities can be reached

in the next time interval from a current velocity. As a result, the search

space Vr is an area, which is defined as the intersection of the Vs, Va and

Vd as follows:

Vr = Vs ∩ Va ∩ Vd (2.22)

with

Vs = {0 maxv − [maxω] [maxω]} (2.23)

Va = {(v, ω)|v ≤
√

2.dist(v, ω).v̇b ∧ ω ≤
√

2.dist(v, ω).ω̇b} (2.24)

Vd = {(v, ω)|v ∈ [va − v̇.t, va + v̇.t] ∧ ω ∈ [ωa − ω̇.t, ωa + ω̇.t]} (2.25)

Where, maxv and maxω are a maximum velocity and acceleration of

the robot. dist(υ, ω) is the distance to the closest obstacle on robot’s

trajectory; and v̇b and ẇb are corresponding accelerations for breakage.

(va, wa) is the actual velocity; and v̇ and ẇ are accelerations in during

the time interval t.

Figure 2.3 shows an example of the the resulting search space when

the mobile robot is moving in a corridor. In this case Vr is represented

by the white area.
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2.3.1.2. Optimization using objective function

As presented in the previous subsection, the output of the search

space is the set of velocities Vr. Obviously, there are a lot of velocity

pairs among this area. Therefore, DWA technique predicts the results

of each velocity pair candidates concerning target heading angle, the

minimum distance to obstacles and linear velocity values and chooses

the optimum speed pair by maximizing the objective function (2.26)

using the weighted sum method.

G(υ, ω) = αhead(υ, ω) + βdist(υ, ω) + γvel(υ, ω) (2.26)

where, α, β, γ are the weights of the target heading, obstacle clearance

and velocity, and predefined values.

• Target heading: The target heading function measures the progress

toward the goal and is computed as follows:

head(υ, ω) = 180o − |θgoal − θr| (2.27)

where, θgoal is the orientation of the vector pointing from the pre-

dicted position of the robot to the goal, and θr is the predicted

orientation of the robot at the predicted position. To determine the

predicted position assuming that the robot moves with the selected

velocity during the next time interval using the robot kinematic

model. Clearly, it has a maximal value when the robot moves di-

rectly to the target.

• Obstacle clearance: The function obstacle clearance dist(υ, ω)

represents the distance from the mobile robot to the closest obstacle
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that intersects with its trajectory. If there is no obstacle on the

trajectory, its value is set to a large constant.

• Velocity: The velocity function vel(υ, ω) ensures that the robot

operates at a maximum admissible linear speed. Therefore, it forces

the robot to move faster on the trajectory. This function provides the

admissible maximum speed effect to the objective function except it

is near to the goal. Maximizing the objective function by choosing

suitable weighted parameters results in the mobile robot navigates

smoothly and safely, and guarantees the robot to reach the target

as fast as possible.

The DWA technique has been proven to be well suited for robots operat-

ing at high speed and is successfully applied to several robots [1]. Thus

this method takes robot dynamics into consideration. In other words,

the pair of vel(υ, ω) are created based on the current velocity and the

dynamic constraints of the robot. More precisely, it considers the ac-

tual speed of the robot, its acceleration, and the robot physical limits.

Therefore, it eliminates unreachable velocities coming form the limited

accelerations of the robot. Moreover, all speed pairs in which are not

able to stop before colliding with obstacles are also eliminated. Briefly,

DWA has advantages such as: faster, safer and more goal - oriented

signals from the velocity space of the robot. However, this method has

some drawbacks: (i) the local minima problem occurs since it only takes

into account the admissible velocity in the dynamic window while the

connectivity of the free space is not considered; (ii) it does not proac-
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tively deal with potential collisions when the robot moves close to the

obstacles, because of considering only forward motions.

2.3.2. Hybrid reciprocal velocity obstacle model

The hybrid reciprocal velocity obstacles (HRVO) technique introduced

by Snape et al. [31] is an extension of the reciprocal velocity obstacles

method [30]. The HRVO method is a velocity obstacles-based approach

[34] taking the motion of other agents into account for collision avoidance

in multi-agent systems. The HRVO model has successfully been applied

to multi-robot collision avoidance [61]. Thus, the HRVO technique can

be also understood as a control policy where each agent selects a collision-

free velocity from the two-dimensional velocity space in the xy−plane. A

construction of the HRVO model of a robot and an obstacle is illustrated

in Fig. 2.4.

Robot

Obstacle

(a) (b) (c) (d)

Figure 2.4: Procedure of the hybrid reciprocal velocity obstacles of a robot and an
obstacle.

Figure. 2.4 contains (a) A configuration of a disc-shaped robot and

a obstacle in the xy − plane with radii rr and ro, positions pr and po,

and velocities vr and vo, respectively; (b) The velocity obstacle (VO)

[34] for the robot induced by the obstacle; (c) The reciprocal velocity
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obstacle (RVO) [30] for the robot induced by the obstacle; (d) The hybrid

reciprocal velocity obstacles (HRVO) [31] for the robot induced by the

obstacle. Suppose that a set of dynamic and static obstacles O appear in

the robot’s vicinity. The combined HRV O for the mobile robot given in

the existence of several obstacles is the union of all the HRV Os induced

by all the obstacles:

HRV Or =
⋃
o∈O

HRV Or|o (2.28)

According to [31], to avoid collisions with obstacles, the velocity vhrvor

of the mobile robot should be selected out side outside the HRV Or and

close to the preferred velocity vector of the robot vprefr . In other words,

vhrvor is calculated as follows:

vhrvor = arg min
v/∈HRV Or

‖v− vprefr ‖2 (2.29)

where, vprefr is computed as follows:

vprefr = vprefr

pr − pg

‖pr − pg‖2

(2.30)

where, pr is the current position of the robot, pg is the goal position,

and vprefr is the preferred speed of the mobile robot.

2.3.3. Timed elastic band technique

The elastic band [37] is a well-known motion planning technique,

which deforms a path to the goal by applying an internal contraction force

resulting in the shortest path and external repulsive forces radiating from

the obstacles to receive a collision-free path. Nevertheless, this approach

does not take into account time information. In other words, the robot’s
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kinodynamic constraints are not considered explicitly, and hence a ded-

icated path following controller is required. In order to solve that issue,

Rosmann et al. [40] presented an online trajectory planning algorithm

for online collision avoidance, called timed elastic band (TEB) approach,

which locally optimizes the robot’s trajectory by minimizing the tra-

jectory execution time, separation from obstacles and compliance with

kinodynamic constraints such as satisfying limitations of velocities and

accelerations.

In this subsection, the TEB algorithm described in [40] is briefly pre-

sented. Assuming that a discretized trajectory B is defined in terms of

a finite-dimensional parameter vector including of an ordered sequence

of mobile robot states sk = [xkr , y
k
r , θ

k
r ]
T , with k = 1, 2, ..., N and time

stamps ∆Tk with k = 1, 2, ..., N-1. Thus the set of parameters B subject

to optimization is defined as follows:

B = [s1,∆T1, s2,∆T2, ..., sN−1,∆TN−1, sN ]T (2.31)

where, ∆Tk represents the time interval that the mobile robot have to

requires to transit between two consecutive poses sk and sk+1. An sample

trajectory with three poses is depicted in Fig. 2.5 [41].

The main purpose of TEB method in the open-loop optimization is to

find controls in order to move the robot from an initial pose ss to a final

pose sf with a minimal time interval while guaranteeing kinodynamic

constraints and separating from obstacles with a safe distance. The op-

timized TEB B∗ is obtained by solving the following nonlinear program
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Figure 2.5: TEB trajectory representation with n=3 poses

(NLP):

min
B

N−1∑
k=1

∆T 2
k (2.32)

subject to:

0 ≤ ∆Tk ≤ ∆Tmax,

hk(sk+1, sk) = 0, (Nonholonomic kinematics)

ok(sk) ≥ 0, (Clearance from surrounding obstacles)

νk(sk+1, sk,∆Tk) ≥ 0, (Limitation of robot’s velocities)

αk(sk+1, sk, sk−1,∆Tk,∆Tk−1) ≥ 0 (Limitation of robot’s accelerations)

The total transition time is approximated by T ≈
∑N−1

k=1 ∆Tk, ∆Tmax

is an upper limit of ∆Tk in order for the robot moving smoothly in the

real time. Minimizing the sum of squared
∑N−1

k=1 ∆T 2
k enforces to achieve

uniform time intervals ∆Tk = T/N . The aforementioned equality and

inequality equations represent the constraint of the environment with the

robot, such as nonholonomic kinematics, clearance from obstacles and

bounds on velocities and accelerations. All of the constraints are incor-
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porated into the objective function (2.33) as additional penalty terms.

V (B) =
N−1∑
k=1

[ ∆T 2
k + δh‖hk‖2

2 + δv‖min{0, νk}‖2
2+

δo‖min{0,ok}‖2
2 + δα‖min{0, αk}‖2

2 ] = wTf(B) (2.33)

where, the notation B \ {s1, sN} implies that neither the start pose s1

nor the goal pose sN are subject to optimization. It is noted that, during

optimization the trajectory is clipped at the current robot pose sk and the

desired goal pose sN . Quadratic penalties function are applied according

to [62] with user defined weights δ. For the remainder of (2.33), the

cost function V (B) is expressed in terms of the dot product, in which

w captures individual weights and f(B) contains individual cost terms.

With objective function V (B) the overall optimization problem is defined

by:

B∗ = arg min
B\{s1,sN}

V (B) (2.34)

The TEB approach utilized the Levenberg-Marquardt (LM) algorithm

[62] to solve (2.34) and obtained the optimal trajectory B∗ of the mobile

robot. Finally, the desired control command of robot ukr = [υkr , ωkr ]

can be directly calculated from the optimal trajectory B∗, and (2.35)

and (2.36). The mean translational and rotational velocities are approx-

imated using finite differences according to the Euclidean respectively

angular distance between two consecutive configurations sk and sk+1 and

the time interval ∆Ti for transition between both poses.

υkr = ∆T−1
k ‖[xk+1 − xk, yk+1 − yk]T‖γ(sk, sk+1) (2.35)

ωkr = ∆T−1
k (βk+1 − βk) (2.36)
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where, γ(sk, sk+1) denotes a function that extracts the sign of the

translation velocity, whether the robot moves forwards or backwards.

Considering a differential drive mobile robot, the relationship between

the two-wheel velocities and the translational and rotational velocities

υr and ωr of the robot center point are computed according to:

υrr = υr +
ωrL

2
(2.37)

υlr = υr −
ωrL

2
(2.38)

in which the parameter L denotes the distance between two wheel.

The classical TEB technique has been applied in real-world environ-

ment and has achieved considerable success with some advantages such

as online trajectory optimization, reaching goal in minimal time, taking

into account kinodynamic constraints, applying for non - holonomic kine-

matics and having alternative trajectories in distinctive topologies. How-

ever, it still has a drawback of only optimizing a single trajectory leading

to stuck to a locally optimal trajectory somewhere. In dynamic environ-

ments, the presence of obstacles introduces multiple local minima, hence

finding local minima coincides with the extraction of distinctive topolo-

gies. To tackle this problem, recently the TEB approach was extended

to parallel trajectory planning in spatially distinctive topologies [41] and

[42], which enable the robot to switch to the current globally optimal

trajectory among the candidate trajectories of distinctive topologies.

The extension TEB technique [42] is presented in Fig. 2.6(b) and

Algorithm 2, which consists of three major steps: (i) exploration (Lines

2-6) of the Algorithm 2), (ii) optimization (Lines 7-11 of the Algorithm
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s1 

Figure 2.6: The example of exploration graph (a). The block diagram of parallel
trajectory planning of time elastic bands (b).

Algorithm 2: Timed elastic band algorithm

input : robot state sr, start pose ps, goal pose pg, set of obstacles O
output: Control command ur

1 begin
2 G ← createGraph(sr, ps, pg, O);

3 D ← depthFirstSearch(G);
4 H ← computeH-Signature(D, G);
5 R ← removeRedundantPath(D, H, G);
6 T ← initializeTrajectories(R, G);
7 for each trajectory Bp ∈ T do
8 V ← objectiveFunction(); B using (2.33)
9 B∗p ← Optimizer(Bp,O,V); B Solve (2.34)

10 B∗ ← storeLocalOptimalTrajectory(B∗p);

11 end for
12 Vc ← newObjectiveFunction(); B using (2.40)

13 B̂
∗
← Optimizer(B∗,O,Vc); B Solve (2.39)

14 ur ← According to (2.35), (2.36) and B̂
∗

15 Return ur = [υr, ωr]
T ;

2) and (iii) selection (Lines 12-13 of the Algorithm 2). The input of the

Algorithm 2 is the robot state sr, start pose ps, goal pose pg and set of

obstacles O, and the output is the control command ur = [υr, ωr]
T of the

mobile robot.

In the exploration step, a graph G is generated to connect from ps to
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pg by forward directed edges. The graph is then filter using depths-first

search algorithm to keep only the acyclic graph. Finally, the H-Signature

[63] technique is utilized to filters redundant paths that have the same

H-Signature; as a result, a set of M primitive candidate paths that belong

to alternative distinctive topologies are obtained.

In the second step, locally optimal trajectories for all M alternative

topologies are planned in parallel by using the TEB optimization with

respect to the objective function 2.33, which generates M locally optimal

trajectories respectively B∗p, with p = 1, 2, ..., M.

In the final step, the best TEB B̂
∗

or the least-cost trajectory is se-

lected from the set of alternatives B∗p obtained by solving the following

equation, which reveals the global minimizer.

B̂
∗

= arg min
B∗
p∈{B∗

1,B
∗
1,...,B

∗
M}
Vc(B

∗
p) (2.39)

where,the objective function Vc(B
∗
p) is presented as follows:

Vc(B
∗
p) = wT

c fc(B
∗
p) (2.40)

The extension TEB technique has been successfully applied in dy-

namic environments [41] and [42]. Nevertheless, the TEB planner only

incorporates the position of the obstacles and does not take into account

potential collision of the robot with the obstacles, which results in an

unintelligent behavior in the dynamic environments.

2.4. Conclusions of the chapter

This chapter have presented the conventional models and techniques,

which are then utilized in the next chapters in the thesis. Firstly the
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kinematic model of the differential drive robot, and two mobile robot

platforms are introduced. Secondly, the extended Kalman filter and the

Particle filter algorithms are presented. Finally, the Dynamic Window

Approach (DWA), Hybrid Reciprocal Velocity Obstacle (HRVO) and

Time Elastic Band (TEB) algorithms are presented, these algorithm are

used to develop the proactive motion planning system in Chapter 4.

In the next Chapter, we are going to present two proposed localization

algorithms based on the multiple sensor fusion methods, including EKF

algorithm and the PF algorithm.
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Chapter 3

SENSOR DATA FUSION-BASED
LOCALIZATION ALGORITHMS

Localization is the problem of estimating robot’s pose relative to its

working space from sensor observations. It has been referred as the most

fundamental problem to provide mobile robots with autonomous capa-

bilities. Because, to achieve autonomous navigation, the mobile robot

must maintain an accurate knowledge of its position and orientation.

The localization system suffers from two main problems, including in-

accuracy or/and incompleteness of sensors (or sensor noise), and with

Gaussian/Non-Gaussian distribution of noises, when a robot moves in

a real-world environment. In order to deal with these problems ef-

fectively, two multiple sensor fusion-based localization algorithms are

proposed to improve the performance of the localization system with

two different cases, respectively. The first case is sufficient information

and Gaussian distribution noises using extended Kalman filter(EKF)-

based localization. The second case is insufficient information and Non-

Gaussian/Gaussian distribution noises using Particle filter (PF)-based

localization. The main idea of two algorithms is to fuse the data from

different sensors composing of wheel encoders, IMU and GPS sensors to

get more accurate estimations of robot’s pose.

This chapter is organized as follows. To deal with the first case, the
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extended Kalman filter-based localization algorithm is presented in Sec-

tion 3.1. In Section 3.2, the proposed localization algorithm based on

Particle filter, which is utilized to solve the second case, is introduced.

Finally, conclusion is draw in Section 3.3.

3.1. Extended Kalman filter-based localization algorithm

While a robot moving in a real-world environment, it is equipped

with a sensor system to know its position and orientation. Therefore,

to localize successfully the robot has to determine both motion model

and measurement model exactly [1]. The errors can be caused by sys-

tematic errors, such as the size of uneven wheels, the distance between

two unbalance wheels, and non-systematic errors, such as slipping on

the surface, changes in the contact points of the wheel are uneven. In

addition, the error caused by the measurement model is due to the struc-

tural characteristics, resolution and error tolerance of different types of

sensors or dynamic environment, such as light or obstacles that robots

move there. In particular, some of the errors might be deterministic.

Thus, they can be eliminated by proper calibration of the system, such

as errors occurring in mechanical design. However, there are still a num-

ber of non-deterministic errors that remains, leading to uncertainties in

robot pose estimation over time. Each error bases on a distribution rule,

either Gaussian or non-Gaussian. Therefore, in order to improve the

accuracy of the localization system in the dynamic environment, it is

necessary to first determine the cause of the disturbance, the type of

noise distribution and how to eliminate such noise [11].
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Because the noise randomly occurs during the robot’s navigation, thus

one of the common solutions used to compensate the noise caused by mo-

tion model and the measurement model is the sensor fusion with different

precision. In addition, each sensor measures only once or two parameters

of the environment with limited accuracy. Moreover, using more sensors

with higher accuracy will increase a quality of measurement. This is why

the sensor fusion algorithms are thriving.

Several mobile robot localization systems have been proposed in recent

years to improve the performance of the robot pose estimation [13], [14],

[15], [16], [17] and [18]. An enhanced low-cost 3-D localization system

is presented in [13]. In this paper, the authors made use of the Kalman

filter algorithm to integrate the data from wheel encoders, MEMS-based

inertial sensors, and GPS. In [14], the researchers presented a localiza-

tion system of a mobile robot, which is equipped with 3–axis inertial

measurement unit, an active beacon system, and wheel encoders. To do

that, they utilized a low-pass filter and a Kalman filter algorithm to re-

duce noise of input sensors data and obtain more precise robot position

and robot movement in real-time. In [15], the authors proposed a local-

ization system of a mobile robot along an uneven path, where it cannot

solely rely on encoders, GPS or accelerometer individually. In this sys-

tem, the Kalman filter-based sensor fusion algorithm was implemented

in order to get the best position estimation. A self-localization tech-

nique for autonomous mobile robot based on particle filtering in active

beacon system is presented in [16]. Using ultrasonic sensor as a particle

filter is applied to eliminate process and measurement noise. In [17], the
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authors presented a sensor fusion framework, that improves the local-

ization system of mobile robots with limited computational resources.

To do that, they employs an event based Kalman filter to combine the

measurements of a global sensor and an inertial measurement unit on an

event based schedule, using fewer resources but with similar performance

when compared to the conventional methods. In [18], an adaptive neu-

ron fuzzy inference system was proposed for fusing the GPS and IMU

measurements to enhance performance estimation in low cost naviga-

tion system when the robot moves in a dynamic environment or slippery

ground surfaces and uneven road conditions. Moving on the motivation

of using EKF to improve the accuracy of the localization system of the

autonomous mobile robot, which is equipped with wheel encoders, GPS

and IMU sensors, is proposed.

The remainder of this section is organized as follows. Section 3.1.1

presents a construction of EKF - based localization algorithm with the

measurement vector design in three different approaches. Section 3.1.2

shows the simulation results and discussions.

3.1.1. Construction of EKF-based localization algorithm

A wide variety of sensors is used in mobile robots. Each sensor has

different characteristics and functions. We can devide sensors into two

groups: (i) proprioceptive group and (ii) exteroceptive group. Pro-

prioceptive sensors measure values internal to the robot, for example,

wheel/motor sensors and IMUs (gyroscope and accelerometers). Mean-

while, exteroceptive sensors are used to extract typical environment fea-
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tures as well as acquire information on objects in the robot’s vicinity, or

even to measure directly a robot’s global position. Thus, the robot may

know the robot’s position and the state of its surroundings. There are

several common exteroceptive sensors, such as active ultrasonic beacons,

GPSs or vision sensors, and so on.

In the proposed localization system, we utilize wheel encoders, IMU

(9-axis family) and GPS to determine the position and orientation of the

mobile robot in the dynamic environment.

The robot uses wheel encoders to estimate its pose or odometry motion

model. As it starts to move from a precisely known location, it can keep

track of its motion using odometry motion model. Due to odometry

uncertainty, after long time the robot will become very uncertain about

its position. In other words, the uncertainty of the robot configuration

increases due to the integration of the odometric error over time.

Meanwhile, IMU is a device that uses accelerometers, gyroscopes and

compasses to estimate a relative position, velocity, and acceleration of

a moving robot. The accerlerometers are used to estimate the instan-

taneous acceleration. The acceleration is then integrated to obtain the

velocity and then integrated again to obtain the position. While the

gyroscope and compass data are fused and integrated to estimate the

robot orientation. As presented in Section 2.1.1, in this study we only

use the orientation component of the IMU sensor data to correct the ori-

entation estimated from the wheel encoders. However, after long period

of operation, all IMUs drift.

To eliminate this drift of IMU and accumulated error of encoders,
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GPS is used to correct the estimated pose every time the GPS signal

is received. GPS provides the absolute position and heading of the mo-

bile robot. It’s depended on various environments as well as different

applications that we chose an appropriate GPS system. If the mobile

robot moves in indoor environments, the high resolution GPS should be

applied such as differential GPS (DGPS) which makes use of a second

static receiver, can achieve 1 cm or sub -1 cm resolution [1]. While the

lower resolution GPS will be chosen, when the robot drives in outdoor

environments.

Moreover, each sensor has its own advantages and disadvantages.

Thus, the extended Kalman filter algorithm to fuse the data from afore-

mentioned sensors was utilized to improve the accuracy of the localiza-

tion system. To accomplish that, a block diagram of the mobile robot

localization system was proposed as shown in Fig. 3.1.

The EKF uses two steps including prediction and correction process

to estimate the states of the robot. In the prediction step, the robot’s

state predictions are made based on a nonlinear kinematic motion model

(in this case motion model is odometry motion model). In the correction

step, the predicted states are corrected based on measurement observa-

tions from multiple sensor (GPS/IMU). A detailed description of the

sources for each of the previously mentioned measurements along with

associated measurement models [64] is presented in Fig. 3.2.

The EKF filter is a well-known method that linearizes the state of a

system about an estimation of the current mean and covariance. This

can be done only if the linearization errors are small in the update time
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Figure 3.1: The block diagram of the proposed autonomous mobile robot localization
systems based on the multiple sensor fusion methods.

interval [65]. In this work, assuming that the sensor frequencies are high

enough, leading to the time interval is short enough. Therefore, the linear

estimation is a valid hypothesis. Furthermore, without loss of generality,

suppose that the process noise is non–additive and measurement noise

is the additive. Thus the measurement model modified from (2.6) is

presented in (3.1).

zk = h(xk) + vk (3.1)

where, xk = [xk, yk, θk]
T is the state vector defined in (2.4); zk is the

measurement vector; vk ∼ N(0,Rk) is the measurement noise with the

covariance matrix Rk; uk = [vk, ωk]
T and wk ∼ N(0,Qk) in (2.5) are

the input control vector of the robot and the process noise with the

covariance matrix Qk, respectively; vk is the linear velocity and ωk is the
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Figure 3.3: The extended Kalman filter-based mobile robot localization system.

angular velocity of the robot; and Qk is defined in (3.2), as presented in

[1].

Qk =

(α1|vk|+ α2|ωk|)2 0

0 (α3|vk|+ α4|ωk|)2

 (3.2)

In addition, because the measurement noise is the additive noise,

therefore (2.12) is rewritten as follows:

Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1 (3.3)

As a result, the entire extended Kalman filter-based localization sys-
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tems for autonomous mobile robots is shown in Fig. 3.3.

In reality, the robot motion is subject to noise. The actual velocities

differ from the control command (or measured ones, if the robot possesses

a sensor for measuring velocity). This difference will be modeled by a

zero-centered random variable with finite variance. More precisely, let

us assume the actual velocities are given by: v′k

ω′k

 =

 vk

ωk

+

 εα1|vk|+α2|ω|

εα3|vk|+α4|ω|

 (3.4)

Here εb is a zero – mean error variable with variance b. Thus, the true

velocity equals the commanded velocity plus some small, additive error

(noise). In our model, the variance of the error is proportional to the

commanded velocity. The parameters α1 to α4 are robot specific error

parameters. They model the accuracy of the robot. The less accurate a

robot, the larger these parameters. The common choice for the error εb

is a normal distribution. The normal distribution with zero mean and

variance b is given by the density function:

εb (a) =
1√
2π.b

e−
1
2
a2

b (3.5)

Actually, any meaningful posterior distribution is of course not degen-

erate, and poses can be within a three dimensional space of variations

in x, y, and θ. To generalize our motion model accordingly, assuming

that the robot performs a rotation γ ′ when it arrives at its final pose.

Thus instead of computing θk = θk−1 + ωk−1∆t (as seen (2.4)), the final

orientation is modeled by:

θk = θk−1 + ω′k−1∆t+ γ ′∆t (3.6)
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with γ ′ = εα5|v|+α6|ω|

where, α5 and α6 are additional robot – specific parameters that de-

termine the variance of the additional rotational noise. The actual

pose xk = [xk, yk, θk]
T

after executing the motion command uk−1 =

[vk−1, ωk−1]
T

at xk−1 = [xk−1, yk−1, θk−1]
T

is thus the real resulting mo-

tion model as follows:
xk

yk

θk

 =


xk−1

yk−1

θk−1

+


v′k−1∆tcos

[
θk−1 + 1

2
ω′k−1∆t

]
v′k−1∆tsin

[
θk−1 + 1

2
ω′k−1∆t

]
ω′k−1∆t+ γ ′∆t

 (3.7)

.

The real motion model of the robot is presented in (3.7) and w is

replaced by u in (2.16). Thus, the Jacobian matrix W defined in (2.16)

is rewritten as follows:

Wk =
∂f(xk−1,uk)

∂uk

=


Ts cos βk−1 −0.5v′k−1T

2
s sin βk−1

Ts sin βk−1 0.5v′k−1T
2
s cos βk−1

0 Ts

 (3.8)

where, βk−1 = θk−1 + 0.5Tsω
′
k. Fk is the Jacobian matrix of partial

derivatives of the function f with respect to state x and is defined in

(3.9):

Fk =
∂f(xk−1,uk)

∂xk−1

=


1 0 −v′k−1Ts sin βk−1

0 1 v′k−1Ts cos βk−1

0 0 1

 (3.9)

The size of matrices F and Q depend on the structure of the mobile

robot. Whereas, the size of matrices z, H and R depend on a number

of measurements or sensors. In addition, Jacobian matrix Hk is defined
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by the sensor types, that are utilized for measurement. In this section,

making use of encoder, GPS, IMU sensors. GPS sensor provides the

position of the mobile robot (x, y). IMU sensor measures the robot’s

heading θ. Thus, the measurement model and Jacobian matrix Hk were

derived for each sensor in the next subsections.

Moreover, to eliminate the cumulative error when using only the wheel

encoders or the dead - reckoning method, and improve the performance

of the localization system, in this section, three approaches are presented,

as shown in Fig 3.4. Figure 3.4 shows three approaches: (I) Combining

EKF 

Encoder (x; y; θ) 

GPS (x; y) 

GPS (x; y) 

Encoder (x; y; θ) 

IMU (θ) 

(I) (II) 

(III) 

 

Encoder (x; y; θ) 

  
IMU (θ) 

Figure 3.4: The proposed approaches

Encoder and GPS; (II) Combining Encoder and IMU; (III) Combining

Encoder, GPS and IMU.

49



a. Global Position Systems (GPS)

GPS provides the absolute position of the robot in the environment.

We have a measurement vector, as follows:

zk gps =

 xgps
ygps

 =

 xk
yk

 (3.10)

Therefore, the Jacobian matrix H is determined as follows:

Hgps =
∂h(xk)

∂xk
=

1 0 0

0 1 0

 (3.11)

b. Inertial measurement unit (IMU)

We have the measurement vector which is the orientation component

of IMU, as follows:

zk imu = [θimu] = [θk] (3.12)

Then, we obtained matrix H as follow:

Himu =
∂h(xk)

∂xk
=

[
0 0 1

]
(3.13)

c. Combining GPS and IMU in the measurement model

Then the measurement vector is

zk gps imu =


xk

yk

θk

 =


xgps

ygps

θimu

 (3.14)

Therefore, the Jacobian matrix Hk is defined as follows:

Hgps imu =
∂h(xk)

∂xk
=


1 0 0

0 1 0

0 0 1

 (3.15)
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3.1.2. Results and discussions

a. Simulation setup

To verify the usefulness of our localization system, the proposed sys-

tem have been implemented and tested in a Matlab based simulation.

The kinematic model of the differential drive mobile robot introduced in

Section 2.1.2 is made use of. In order to accomplish that, two scenarios

are created, which their sizes are 75 x 60[m2] and 55 x 40[m2], as shown

in Fig. 3.5(a) and Fig. 3.6(a), respectively.

In the first scenario, the trajectory of the mobile robot is the sinu-

soidal trajectory. The initial pose of robot is (0, 0, 0), the goal pose is

(76, 32, 28), and the traveling time is 52[s]. Whereas, the trajectory of

the robot is the circular trajectory with anti-clockwise direction in the

second scenario. The initial pose of the robot is (0, 0, 0), the diameter

of the circle is 40[m], and the traveling time is 63[s]. The maximum

linear velocity and angular velocity of the mobile robot are 2[m/s] and

0.4[rad/s], respectively, in both scenarios. The sampling time of the EKF

filter is 10 [ms].

From the equations of the process shown in Fig. 3.3, it is recognizable

that the efficiency of the EKF filter mainly depends on the estimation of

white Gaussian noises wk and vk. Moreover, the noises are featured by

covariance matrices Qk and Rk respectively. Therefore, determining the

values for the parameters of Qk (3.2) and Rk adjudicate the quality of

the EKF filter. The covariance matrix Qk is predetermined as constant
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by our experiences, as follows:

Q =

0.01 0

0 0.0685

 (3.16)

The measurement noise vk with the covariance matrix Rk is predefined

in (3.17). In which, if the measurement data is the coordinates (x, y),

the covariance matrix is R(x,y), while the measurement data are both the

coordinates and the angle (x, y, θ), the covariance matrix is R(x,y,θ). In

addition, if the measurement signal is only the angle θ, the covariance

matrix is Rθ = 0.0685

R(x,y) =

1 0

0 1

 ; R(x,y,θ) =


1 0 0

0 1 0

0 0 0.0685

 (3.17)

To compare the simulation results between approaches, a statistical

data analysis of all the simulations is carried out. To accomplish that, the

Mean Error (ME) and Mean Square Error (MSE), which are computed

in (3.18), are utilized In this section.

ME =
1

n

n∑
k=1

NEk; MSE =
1

n

n∑
k=1

(NEk −ME)2 (3.18)

where, n is the number of samples, NE is calculated in (3.19).

NEk =
√

(xekf − xtrue)2 + (yekf − ytrue)2 (3.19)

In this study, 520000 samples in the sinusoidal scenario and 630000 in

the circular scenario have been collected .
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b. Simulation results

The simulation results of the two conducted simulations are shown in

Figs. 3.5, 3.6, 3.7, Table 3.1, and Table 3.2. Figure 3.5 and 3.6 show the

trajectories of the mobile robot, including: The blue dash lines are the

expected trajectories (ground truth); The black dash lines are the tra-

jectories derived directly from the encoder data; The magenta dots are

the GPS data; and The green dash lines are the estimated trajectories

of the mobile robot using our proposed localization system. Whereas,

Table 3.1, Table 3.2, and Figure 3.7 illustrate the statistical data analy-

sis of two conducted simulations. As can be seen in Figs. 3.5 and 3.6,

(a) Encoder and GPS
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(b) Encoder and IMU (c) Encoder, GPS and IMU

Figure 3.5: The sinusoidal trajectories of the mobile robot in three approaches.

(a) Encoder and GPS (b) Encoder and IMU (c) Encoder, GPS and IMU

Figure 3.6: The circular trajectories of the mobile robot in three approaches.

the black dash lines are very far from the ground truth trajectories of
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the mobile robot, because the errors are accumulated over time dur-

ing the robot’s navigation. This is the weakness of the encoder-based

odometry method, which derives directly from encoders. In contrast,

the green lines are approximated to the real robot’s trajectories in three

approaches and both sinusoidal and circular trajectories. This illustrates

that, the proposed extended Kalman filter-based localization system is

able to provide the higher accuracy than the encoder-based odometry

method. In addition, Table 3.1, Table 3.2 and Figure 3.7 depict that

using approach III the values of the mean error and mean square error

are smallest, and those values in the encoder method are biggest, in both

sinusoidal and circular trajectories. This indicates that, the proposed lo-

calization system with approach III outperforms conventional system in

terms of accuracy of estimating the pose of the mobile robot in dynamic

environments.

Table 3.1: Mean error for the three approaches
Sensors Sinusoidal Circular

trajectory trajectory
Encoder 37.4074 35.1793

Encoder + GPS 0.2303 0.2477
Encoder + IMU 0.1630 0.2032

Encoder + GPS + IMU 0.1455 0.1533

Table 3.2: Mean square error for the three approaches
Sensors Sinusoidal Circular

trajectory trajectory
Encoder 6.1162 5.9312

Encoder + GPS 0.0289 0.0217
Encoder + IMU 0.0189 0.0243

Encoder + GPS + IMU 0.0081 0.0115

In summary, the simulation results show that the goal of the proposed

method is using the sensor fusion method with the higher precision sen-
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Figure 3.7: The mean error and mean square error of the robot’s position of three
approaches in two simulations.

sor, the lower the error. In detail the noise of GPS is greater than the

noise of IMU in the simulation, due to the result of the second approach

is more accurate than the first approach and the third approach have

the most accurate in three approaches. Final, the proposed localiza-

tion system is capable of providing higher accuracy mobile robot’s pose

than the conventional localization systems, which uses the encoder-based

odometry method.

3.2. Particle filter-based localization algorithm

As presented in Section 3.1, there are many works on the localization

system to improve the performance of the localization systems and mo-

bile robot navigation systems. These conventional systems have achieved

certain results. For instance, several systems have used KF/EKF algo-

rithms to fuse the data from sensors [12], [13], [15]. Other researchers

used particle filter (PF) to improve the accuracy of the localization sys-

tem [19], [20]. A self-localization technique for a mobile robot using a

PF algorithm and the active beacon system is proposed in [19]. The
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main idea of the method is to estimate the position and heading value of

the mobile robot using the ultrasonic sensor. The particle filter is used

to eliminate process and measurement noise. In [20], the authors pro-

pose a novel hybrid particle/finite impulse response filtering algorithm

for improving the reliability of particle filter-based localization schemes

in cluttered and noisy environments. The hybrid system detects the par-

ticle filter failures and recovers the failed particle filter by resetting the

particle filter using the output of an auxiliary finite impulse response

filter. In another recent study [66] researchers used the odometric model

of the golf cart to compute the vehicle position and orientation. In their

paper, the authors utilize a neural network model in order to learn the

odometric model from sensor data.

Although the aforementioned alorithms are capable of improving the

performance of the localization systems. They have mainly proposed in

the case the localization system receives all information from the ob-

servation system. To the best of our knowledge, there have not been

satisfactory researches on localization systems in the interrupted infor-

mation or when the signal is completely lost. Therefore, in this section,

an effective localization system based on the particle filter and fusion

sensor technique is proposed to estimate and predict the pose of the

mobile robot equipped with an encoder, GPS and IMU sensors.

The remainder of the section is organized as follows. Subsection 3.2.1

presents the proposed particle filter-based mobile robot localization sys-

tem. Subsection 3.2.2 shows the simulation results and discussion.
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3.2.1. Construction of PF-based localization algorithm

The mobile robot is being tracked in the dynamic environment. The

pose of the robot is measured by some external system, such a GPS,

or/and IMU. Along the path, it will drive through a roofed area or

where no measurement can be made or the partially lost signal. We also

know the motion commands u = [v, w]
T

send to the mobile robot, but

the robot will not execute the exact commanded motion due to model

in accuracy. Therefore, in this subsection, the particle filter is utilized

to reduce the effects of noise in the measurement data and get a more

accurate estimation of the pose of the robot. The particle filter is ideally

suited for estimating the state of such kind of systems, as it can deal

with the inherent non – linearity. Two models are used in the particle

filter, these are the motion model and the measurement model presented

in (3.7), (3.14), respectively.

The main objective of particle filtering is to “track” a variable of

interest as it evolves over time, typically with a non – Gaussian and

potentially multi – modal probability density function. The basis of the

method is to construct a sample – based representation of the entire

probability density function. A series of actions are taken, each one

modifying the state of the variable of interest according to some model.

Moreover, at certain times, an observation arrives that constrains the

state of the variable of interest at that time. Multiple particles of the

variable of interest are used, each one associated with a weight that sig-

nifies the quality of that specific particles. An estimate of the variable
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of interest is obtained by the weighted sum of all the particles.

The algorithm is recursive in nature and operates in two phases: predic-

tion and update. After each action, each particle is modified according

to the existing model (prediction stage), the addition of random noise in

order to the existing model to simulate the effect of noise on the variable

of interest. Then, each particle’s weight is re-evaluated based on the

latest sensory information available (update stage). At times the par-

ticles with small weights are eliminated, a process called resampling.

More formally, the variable of interest at time k is represented as a par-

ticle set Sk of N samples, each particle is S
[j]
k =

[
x

[j]
k , w

[j]
k

]
: j = 1 . . . N

(in our case the pose of moving robot xk = [xk, yk, θk]
T
), where the

index j denotes the particle and not the robot, each particle consisting

of a copy of the variable of interest and a weight (w
[j]
k ) that defines the

contribution of this particle to the overall estimate of the variable. If

we know the particle density filter (pdf) of the robot at the previous

instant (time k-1) then the effect of the action is modeled to obtain a

prior of the pdf at time k (prediction).

Prediction: The step uses the previous state to predict the current

state based on the system model (3.7). In order to predict the probability

distribution of the pose of the moving robot after a motion needs to

have a model of the effect of noise on the resulting pose. Many different

approaches have been used (see [67] for an overview), most of which use

an additive Gausian noise model for the motion. If the robot′s previous

pose is xk−1 = [xk−1, yk−1, θk−1]
T
, the resulting pose xk = [xk, yk, θk]

T
is

defined following (3.7). The noise model is applied separately to each of
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Algorithm 3: Proposed PF algorithm

input : Particle filter input (Sk−1,uk−1, zk)

output: Sk, w
[j]
k

1 begin
2 Initialize parameter set Sk = Sk = ∅
3 for j=1 to N do
4 Generate a particle
5 //Motion model

6 xjk =

 xjk
yjk
θjk

 ==

 xjk−1
yjk−1
θjk−1

+

 v′k−1∆tcos
[
θk−1 + 1

2
ω′k−1∆t

]
v′k−1∆tsin

[
θk−1 + 1

2
ω′k−1∆t

]
ω′k−1∆t+ γ′∆t


7 //Measurement model

8 zk =

 xk
yk
θk

 =

 xgps
ygps
θimu


9 //Calculate an important weight

10 Ej
k = xjk − zjk

11 if(ẑjk = [x̂k, ŷk]
T )

12 EN [j] = Sqrt(
[
Ej
k (1)

]2
+
[
Ej
k (2)

]2
)

13 elseif(ẑjk =
[
θ̂k

]
)

14 EN [j] = Sqrt(
[
Ej
k (3)

]2
)

15 elseif(ẑjk =
[
x̂k, ŷk, θ̂k

]T
)

16 EN [j] = Sqrt(
[
Ej
k (1)

]2
+
[
Ej
k (2)

]2
+
[
Ej
k (3)

]2
)

17 Endif

18 w
[j]
k = |2πRk|−

1
2 exp

{
−1

2

(
EN [j]

)0.4}
19 S̄k = S̄k +

[
x
[j]
k , w

[j]
k

]
20 Normalize: w

[j]
k =

w
[j]
k∑N

j=1 w
j
k

21 Resampling using algorithm 4
22 end for

the types of motion (rotations and translation) because they are assumed

independently. With the motion command u′k = [v′, ω′]
T

where v′ =

v + sd1 ∗ randN ; ω′ = w + sd2 ∗ randN ; γ ′ = sd3 ∗ randN (sd1, sd2,

sd3 are standard deviation errors). They represent the uncertainty in

the linear velocity, the angular velocity, and the orientation respectively.
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Replacing v′, ω′, γ ′ into (3.7) obtains the model with noise.

Update: The phase uses information obtained from to update the

particle weights to accurately describe the pdf of the robot. In an-

other word, using a current sensor measurement (3.14) to correct the

predicted state. At line 20 (in Algorithm 3) calculates the importance

of weight w
[j]
k for each particle x

[j]
k . The importance of weight is used

to correct the mismatch between the proposal distribution and the de-

sired target distribution [53]. According to the measurement model,

weights are assigned by likelihood response (in Algorithm 3). The mea-

surement likelihood function computes the likelihood for each predicted

particle based on the error norm (EN) between predicted measurement

and actual measurement (line 18). In this particular situation, predicted

particle considered as the predicted is an Nx3 vector and measurement

is a 1x n vector (n is the number of measured elements, in this section

has three different cases of measurement).

Resampling (for more detail in algorithm 4): One of the problems

that appear with the use of PF is the depletion of the population after

a few iterations. Most of the particles have drifted far enough for their

weight to become too small to contribute to the pdf of the moving robot.

In this section, the Multinomial method has been chosen.

The proposed PF-based localization algorithm is summarized in Al-

gorithm 3. It inputs the particle set Sk−1 at time k-1, motion control

uk−1, measurements zk. It outputs the particle set Sk. Here, N denotes

the total number of particles used in this algorithm.
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Algorithm 4: Presents resampling methods based on the cumulative sum of
the normalized weights

input : Particle filter input (Sk, wk)
output: Sk

1 begin

2 [x̂
[i]
k ] = Resembel[{x[j]

k , w
[j]
k }, N ]

3 Multinomial choice
4 N = length(w);
5 Q = CumulativeSum(w);
6 Q(N)=1;
7 i=0;
8 While(i≤N)
9 Sampl = rand(1,1);

10 j=1;

11 While(Q
[j]
k < Sampl)

12 j=j+1;
13 endwhile
14 Index(i) =j;
15 i= i+1;

16 x̂
[i]
k = x

[j]
k

17 add x̂
[i]
k to Sk

18 endwhile

19 Return Sk

3.2.2. Results and discussions

3.2.2.1. Simulation setup

To verify the usefulness of the proposed localization system, the pro-

posed algorithm have been implemented and tested in a MATLAB based

simulation. In order to accomplish that, four scenarios are created ,

which their size are 12 × 8[m]2, as shown in Fig. 3.8. The robot kine-

matic model and measurement model are presented in (3.7), (3.14), re-

spectively. The trajectory of the mobile robot is the curve trajectory.

The initial pose of the robot is [0, 0, 0]
T
. The robot will navigate fol-

lowing the trajectory with the traveling time of 20[s]. The maximum

linear velocity and angular velocity of mobile robot are 80[cm/s] and
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0.008[rad/s], respectively. Empirically setting the number of particles

is 500 particles. The state of all particles is randomly initialized using

a normal distribution. Each particle contains 3 state variables [x, y,

θ]. Assume that, the measurement of all three pose components have

the same error distribution. Here the sensor reading is just simulated by

adding Gaussian noise to the ground truth data (with the noise standard

deviation sd = 0.2) and defused noise into the system model with noise

standard deviations: sd1 = 4; sd2 = 1.2; sd3 = 0.35. The trajectory

of the mobile robot is divided into three parts to show the performance

of the particle filter-based localization system of the mobile robot, as

shown in Fig. 3.8.

In the first part, the mobile robot navigates in a good environment

condition, where the observation system works well. In other words, the

localization system receives all the sensor data.

In the second part, the mobile robot navigates into the roofed area.

In this area, all of the signals are lost or a part of them is received by the

localization system. If the entire signals are lost, the particle filter-based

localization only uses the prediction model to predict the pose of the

robot. While in the later, the localization system can use the available

signal to correct the prediction step.

In the third part, the mobile robot goes out of the roofed area. With

new measurements, the estimated pose gradually converges back to the

actual pose.

In order to compare the simulation results between approaches in

terms of quantity, statistical data analysis of all the simulations is car-

62



ried out. To accomplish that, the mean error (ME), which is computed

in (3.20), is utilized In this section.

ME =
1

n

n∑
k=1

NEk (3.20)

where n=500 is the number of samples, NE is calculated in

NEk =
√

(xPF − xtrue)2
+ (yPF − ytrue)2

(3.21)

3.2.2.2. Simulation results

The simulation results are shown in Fig. 3.8, and Table 3.3. The Fig-

ure 3.8 shows four scenarios such as (a) robot receives [x, y, θ] in the

entire trajectory, (b) robot gets [x, y] in the roofed area, (c) the [θ] infor-

mation is available in the roofed area, (d) all the sensor signals are lost

in the roofed area. The figure also illustrates the trajectories of the mo-

bile robot, including the black line is the desired trajectory; the magenta

dots are the GPS data, and the blue crosses are the estimated trajectory

of the mobile robot using the proposed algorithm. Whereas, Table 3.3

illustrates the mean square errors of four approaches when the localiza-

tion system uses or does not use the particle filter algorithm. Figure

3.8(a) shows the simulation results when the localization system of the

mobile robot can receive all signals [x, y, θ] from the observation system.

As can be seen in Fig. 3.8(a), the estimated trajectory is approximated

to the actual trajectory of the robot. As a result, the value of mean error

0.1098 is the smallest, as seen in Table 3.3.

In Fig. 3.8(b), the mobile robot navigates through the roofed area and

the signal θ is lost. In other words, the localization system can only use
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(a) Observed signal (x,y,θ) (b) Observed signal (x, y)

(c) Observed signal (θ) (d) Observed signal (∅)

Figure 3.8: The simulation results using PF localization

the observed [x, y] signal in the correction phase. In this case, the mean

error value is 0.1451. It indicates that the performance of the localization

system is decreased, as also shown in Fig. 3.8(b).

In Fig. 3.8(c), the mobile robot navigates through the roofed area and

the signals [x, y] are lost. In another word, the localization system can

only use the observed θ signal in the correction phase. In this case, the

mean error value is 0.2406. It indicates that the performance of the

localization system is decreased, as also shown in Fig. 3.8(c).

In the final case, all of the signals [x, y, θ] from the sensor system are

lost (observed [∅]). In other words, in the roofed area, the localization
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only uses the prediction phase to estimate the pose of the mobile robot.

As a result, mean error value 0.3957 is greatest and the estimated robot

trajectory is far from the actual trajectory, as shown in the last row in

Table 3.3 and Fig. 3.8(d).

The comparison of estimated trajectories among the three approaches

illustrates that using the particle filter algorithm the localization can

track the robot’s position and trajectory after going out of the roofed

area. In other words, after lost signal in interval time the mobile robot

still likely follows the trajectory. However, the performance of the mea-

sured parameters is gradually reduced according to the measured pa-

rameters. In addition to the results shown in Fig. 3.8, the comparison

Table 3.3: The mean error of the proposed localization system and existing localiza-
tion system.

Observed Signal Encoder-based odometry algorithm Proposed localization algorithm
[x, y, θ] 0.2510 0.1098
[x, y] 0.2479 0.1451
[θ] 0.9648 0.2406
[∅] 0.9722 0.3957

of mean error of the proposed particle filter-based localization algorithm

and the conventional algorithm are made. The comparison results are

shown in Table 3.3. The first column shows the mean error values of

the conventional algorithm, while the second column shows the mean

error values of our proposed system. The results in Table I illustrates

that the mobile robot equipped with our proposed localization system

outperforms the conventional localization system in term of mean errors.

In summary, the simulation results indicate that the proposed parti-

cle filter-based localization algorithm is able to apply and improve the
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performance of the autonomous mobile robot when it navigates in inter-

rupted sensor data information.

3.3. Remarks and discussions

In this chapter, two efficient localization algorithms have been pro-

posed for autonomous mobile robots in dynamic environments including

EKF-based localization algorithm and PF-based localization algorithm.

The main idea of the proposed algorithms are to fuse the data sources

from the sensor system including wheel encoders, IMU, GPS sensors, to

enhance the accuracy of the robot’s pose estimation when it navigates

in two different cases.

The first case, when sensor signals are sufficient and noise distribu-

tions are Gaussian distribution, the EKF - based localization algorithm

has been made of used. Two simulation results corresponding with two

sinusoidal and circular trajectories of the autonomous mobile robots have

conducted. The simulation results indicate that, the proposed localiza-

tion algorithm is capable of providing higher accuracy mobile robot’s

pose than conventional localization systems.

The second case, when information get from sensor systems is insuf-

ficient or the sensor data signals are interrupted, and noises have Non-

Gaussian/Gaussian distribution, PF - based localization algorithm has

been proposed. To illustrate the effectiveness of the proposed system,

we implement it and conduct simulation in a simulation environment.

The simulation results show that, although the mobile robot navigates

into areas where a part or entire of the signals can be lost, the robot’s
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positions are still close to ground truth data. In other words, the simula-

tion results illustrate that the performance of the proposed localization

system is significantly improved in terms of accuracy.

The output of the proposed localization systems are the robot’s pose

including robot’s position and orientation, which are then used as the

input of the motion planning system, as shown in Fig. 1.1. In the next

chapter, three proposed motion planning systems are going to present

for the autonomous mobile robots in the dynamic environments.

Note that the researches of this chapter have been published in [47]

and [48].
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Chapter 4

DEVELOPING EFFICIENT MOTION
PLANNING SYSTEMS

The ability to autonomously and safely navigate in real-world dynamic

environments is crucial for autonomous mobile robots. To achieve that

ability, the most important issue is that the mobile robots must avoid

both static and dynamic obstacles during its navigation and navigate

towards a given target. Therefore, it is very necessary to develop nav-

igation systems which are able to drive the mobile robots in real-world

environments with dynamic obstacles. In the previous chapter, we pro-

posed the two localization algorithms which were used to improve ac-

curacy of output signals of the localization system. In other words, the

input signals of the motion planning system including robot’s position

and orientation are enhanced significantly, as shown in Fig. 4.1.

Perception Localization Motor control 

 

 

 

Real – world environment 

Local planner 

Global planner 

Motion planning 

Figure 4.1: The navigation framework for autonomous mobile robot.
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In this chapter, we propose motion planning systems of the mobile

robots which are capable of driving the mobile robots to proactively and

safely avoid dynamic obstacles in the real-world environments.

The motion planning systems include of two sub-systems, as shown

in Fig. 4.1: (i) global planner (or path planning); (ii) local planner (or

obstacle avoidance). The Global planner is used to construct safe and

collision free paths of the robot from an initial point to the given goal

point with a given map. In contrast, thelocal planner means recalculat-

ing the constructed paths to avoid possible collision, especially moving

obstacles. Therefore, in order for the mobile robots to move safely in

the dynamic environments, we focus on developing the local planning al-

gorithms (or obstacle avoidance algorithms) in the motion planning sys-

tems. The proposed motion planning systems should take into account

the kinodynamic constraints of the robot, and the potential collisions of

the robots with surrounding obstacles. Particularly, the robots should

predict obstacle’s future states including position and orientation as well

as future trajectory of the obstacles in their vicinity.

To address the aforementioned issues, in this chapter, three new local

planners of the motion planing system for the autonomous mobile robots

in the dynamic environment are proposed, including the enhanced dy-

namic window approach (EDWA), proactive timed elastic band (PTEB),

and extended timed elastic band (ETEB) algorithm. In addition, an ef-

ficient navigation system, which integrates the proposed EKF-based

localization algorithm and a proposed ETEB algorithm for online tra-

jectory planning, is also introduced. The effectiveness and feasibility of
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the proposed algorithms are validated through a series of experiments in

both simulated and real-world environments.

This chapter is organized as follows. The proposed hybrid (EDWA)

algorithm based on DWA technique and HRVO model to enhance the

performance navigation system of the robot in the dynamic environment

is presented in Section 4.1. To deal with the limitation of the EDWA

algorithm, the description of the proposed PTEB algorithm, combining

HRVO technique and TEB algorithm, is given in Section 4.2. In Section

4.3, we introduce the proposed ETEB algorithm: using motion predic-

tion algorithm incorporating into TEB model. In order to demonstrate

the feasibility of the proposed algorithms in our thesis, a completed

navigation system for the autonomous mobile robot in real -world en-

vironment is shown in Section 4.4. Finally, we reach a conclusion in

Section 4.5.

4.1. Proposed enhanced dynamic window approach algorithm

The dynamic environments are dynamic, uncertain, and clustered en-

vironments with the presence of humans, vehicles, and even other au-

tonomous devices. Therefore, various navigation systems have been pro-

posed to ensure the safe navigation of the mobile robot in such environ-

ments. The navigation frameworks can be divided into two categories

based on the information used as the input of the motion planning sys-

tem: (i) position-based approaches and (ii) velocity-based techniques.

In the first group, only the position of the obstacles is used as the input

of the system. Whereas in the second group, both position and motion
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of the obstacles are utilized to develop the navigation system. Detail

discussion of two groups is going to the following.

Several position-based navigation systems have been proposed for the

autonomous mobile robots in recent years [21], [22], [23], [24], [25] [26]

and [27]. Some mobile robot navigation systems [22], [23] and [25] are

developed using the social force model [28]. The social force-based nav-

igation systems utilize the attractive force to the goal and the repulsive

forces from the obstacles to develop the motion control model. In addi-

tion, the repulsive forces is computed using the distance form the robot

to the obstacles.

In an alternative approach, the researchers utilize the dynamic window

approach algorithm proposed by Fox et al. [29] to develop the mobile

robot navigation systems [21] and [24]. These navigation systems take

into account the motion dynamic of the mobile robot and utilize the

closest distance from the robot to the surrounding obstacles for obstacle

avoidance.

More recently, a few navigation systems [26] and [27] are developed

using the TEB technique for avoiding obstacles. To maintain the sepa-

ration from the obstacles, the TEB-based navigation systems take into

consideration the distance from the proposed robot’s trajectory to the

surrounding obstacles.

Despite the fact that the aforementioned navigation systems have been

able to generate the safe navigation for the mobile robots in real-world

environments, they do not proactively deal with potential collision with

the surrounding obstacles. Because, these methods are typically a reac-
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tive control technique, and the navigation systems only take into account

the position of the obstacles. In other words, moving obstacles are as-

sumed to be stationary. As a results, these navigation systems might be

sufficient for the obstacle avoidance in static and semi-dynamic environ-

ments, but foresighted evasive maneuvers are not possible.

In order take into account the potential collision of the mobile robot

with the surrounding obstacles, a number of autonomous robot naviga-

tion systems [30], [31], [32] and [33] based on the concept of the velocity

obstacles presented by Fiorini et al. [34], have been proposed. The ve-

locity obstacles-based navigation system takes into account the position

and motion of all agents and selects the collision-free velocity command

from the two-dimensional velocity space in the xy−plane for each agent.

Although these methods have been successfully verified in the real-world

environments, they might not be able to handle all collision situations

in The dynamic environments [31] and [33]. In addition, the velocity

obstacles-based navigation system only utilizes the current position and

velocity of the robot and the obstacles to generate the velocity com-

mand for the mobile robot. Moreover, the system does not take into

account the motion dynamic of the mobile robot. Thus, it is difficult to

directly utilize this velocity command to control the mobile robot in the

real-world environments.

In order to overcome the aforementioned drawbacks, in this section,

an EDWA technique for autonomous mobile robot navigation systems in

dynamic environments is proposed . The main idea of the proposed tech-

nique is to combine the advantages of the DWA technique and the HRVO
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model. Particularly, incorporating the orientation of the velocity vector

generated by the HRVO model into the DWA model. By incorporating

this information into the DWA technique, the mobile robot equipped

with the proposed EDWA algorithm can proactively avoid obstacles and

safely navigate to the given goal.

In the section, we introduce an typical example scenario to perfor-

mance the proposed framework in Subsection 4.1.1. Then, the proposed

EDWA algorithm is presented in Subsection 4.1.2. In Subsection 4.1.3,

the proposed navigation frame work that uses EDWA model is shown.

Subsection 4.1.4 and Subsection 4.1.4 show the simulation and experi-

mental results, respectively. Finally, the last Subsection 4.1.5 contains

remarks.

4.1.1. Problem description

In this study, a dynamic environment with the presence of an au-

tonomous mobile robot and O obstacles o1 and o2 in the robot’s vicinity

is considered, as shown in Fig 4.2. The robot is requested to navigate to

a goal while safely avoid the obstacles during its navigation. The curved

dashed line is the intended trajectory of the mobile robot.

Assuming that the robot state is sr = [xr, yr, θr, vr, ωr]
T , where pr =

[xr, yr]
T is the position, θr is the orientation, vr is the linear velocity,

and ωr is the angular velocity. The dynamic motion of the mobile

robot is (vmin, vmax, ωmin, ωmax, v̇max, ω̇max), where, vmin, ωmin are the mini-

mum linear and angular velocities, respectively, vmax, ωmax are maximum

linear and angular velocities, and v̇max, ω̇max are maximum linear and
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Figure 4.2: The example scenario of the dynamic environments including a mobile
robot and two dynamic obstacles.

angular accelerations, respectively. The goal position of the robot is

pg = [xg, yg]
T . There are N obstacles appearing in the vicinity of the

robot O = {o1,o2, ...,oN}, where oi is the ith obstacle. The state of the

obstacle oi is represented as sio = [xio, y
i
o, θ

i
o, v

i
o]
T , where pi

o = [xio, y
i
o]
T

is the position, θio is the orientation, and vio is the linear velocity. The

radius of the robot and obstacle are ro and rr, respectively.

Note that all of the terms in this section will also be used in the rest

of the thesis.
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4.1.2. Construction of the EDWA algorithm

The dynamic window approach (DWA) model is successfully applied

to several mobile robot navigation systems in real-world environments

[21], [1] and [24]. Because, they take into account the dynamic motion

of the mobile robot, including actual speed, acceleration and physical

limits. Moreover, they consider the surrounding obstacles in their vicin-

ity. Therefore, it can eliminate unreachable velocities coming from the

limited accelerations of the robot. In addition, all velocity pairs, which

are not able to stop the mobile robot before colliding with the obstacles,

are also eliminated. However, this method is typically a reactive control,

so it does not proactively deal with potential collisions when the robot

moves close to the obstacles, especially the moving obstacles. Thus, it

might be insufficient to apply these algorithms to the mobile robot in

dynamic environments.

Whereas, the HRVO model [31] is a velocity-based approach synthe-

sizing the motion of neighbourhood agents for collision avoidance. It has

a big advantage of proactive collision avoidance by taking into account

the motion of the obstacles. Thus, the robot is able to avoid the po-

tential collision with the surrounding obstacles. As a results, this model

is successfully applied to several navigation systems of the mobile robot

[33] and [32]. However, the HRVO model only takes into account the

current velocity of the robot and the obstacles to generate the robot

velocity command vhrvor for the next time step. Therefore, it is difficult

to directly use this velocity to control the mobile robot in real-world
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environments.

To exploit the advantages of both DWA and HRVO algorithms, an

EDWA algorithm for autonomous mobile robot in dynamic social envi-

ronments is proposed . In other words, the developed EDWA algorithm

take into account both the motion dynamic of the mobile robot and its

potential collision with the surrounding obstacles. To accomplish this,

in the objective function (2.26), the target heading function head(υ, ω)

is modified. Particularly, in (2.27) instead of using the predicted ori-

entation of the mobile robot θr, the orientation of the velocity vector

generated by the HRVO model is utilized. More specifically, the orienta-

tion θhrvor of the velocity vector vhrvor = [υx, υy]
T generated by the HRVO

model in (2.29) is used to compute the new target heading function as

follows:

headhrvo(υ, ω) = 180o − |θgoal − θhrvor | (4.1)

θhrvor = atan2(υy, υx) (4.2)

Finally, the objective function of the DWA model in (2.26) is replaced

by the new objective function as follows:

G′(υ, ω) = αheadhrvo(υ, ω) + βdist(υ, ω) + γvel(υ, ω) (4.3)

The proposed EDWA algorithm is presented in detail in Algorithm 5.

Its inputs are the robot state sr, the goal position pg, the obstacle state

so, and its outputs is the control command ur = [υr, ωr]
T . The pro-

posed EDWA algorithm consists of three steps including: (i) calculate

the search space of the velocities Vr (Lines 4–7 of the Algorithm 5), (ii)

compute the orientation of the velocity vector generated by the HRVO
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model (Lines 8–9 of the Algorithm 5), and (iii) select the efficient veloc-

ity control command (Lines 10–19 of the Algorithm 5). The motion dy-

namic of the mobile robot (vmax, ωmax, v̇max, ω̇max) is utilized to compute

the search space Vr. Using the proposed EDWA algorithm, the robot

navigation system is capable of generating an efficient velocity command

ur=[υr, ωr]
T , which proactively handle potential collisions with dynamic

obstacles in its surrounding environment and approach a given goal.

Algorithm 5: Proposed enhance dynamic window approach algorithm

input : robot state sr, goal position pg, obstacle state so
output: Control command u = [υr, ωr]

T

1 begin
2 Initialize parameter set α, β, γ
3 Set motion dynamic vmax, ωmax, v̇max, ω̇max
4 Compute Vs = possible velocities
5 Compute Va = admissible velocities
6 Compute Vd = reachable velocities
7 Compute Vr = Vs ∩ Va ∩ Vd
8 Run HRVO to generate vhrvor = [υy, υx]

T

9 Compute θhrvor = atan2(υy, υx)
10 for each pair of velocity (υi, ωi)∈ Vr do
11 Predict robot position (xi, yi) using (2.4)

12 θgoali = atan2(yg − yi, xg − xi)
13 headhrvoi = 180o − |θgoali − θhrvor |
14 Compute obstacle clearance function disti using the closest distance to

obstacles
15 Compute velocity function veli = |vi|
16 Compute the scorei using (4.3)
17 Store scorei in the score vector S
18 end for

19 Select u = [υr, ωr]
T using maximum score from S

In this study, we utilize a two-wheel differential drive mobile robot

platform, with the state of the robot at the time k is skr = [xk, yk, θk]
T .

Therefore, the state of the robot at the time (k+1) is governed by (2.4)

(Line 11). Then, to generate directly control signals for the motor control
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model (vrr , v
l
r) which are the linear velocity commands of the right and

left wheels of the robot, respectively, are computed using the velocity

control command ur as follows:

vrr = υr +
Lωr

2
dt (4.4)

vlr = υr −
Lωr

2
dt (4.5)

4.1.3. The EDWA algorithm-based navigation framework

Perception Localization Motor control 

Multi-objects 

detection and 

tracking 

HRVO model 

 

 

 

Real – world environment 

Proposed EDWA model 

Conventional  

DWA model 

Global 

planner 

Figure 4.3: The efficient navigation system based on the EDWA algorithm

To navigate safely in dynamic social environments, autonomous mo-

bile robots should incorporate not only the position of the surround-

ing obstacles but also their potential collision into navigation systems.

An extended navigation scheme based on the conventional navigation

scheme introduced in [1] is proposed to accomplish this, as shown in

Fig. 4.3. The proposed system consists of two major parts: (i) the con-

ventional navigation scheme, and (ii) the extended part.

The conventional navigation scheme is typically based on the composi-

tion of four functional blocks: perception, localization, motion planning,
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and motor control. In the extended part, the multi-objects detection

and tracking block is used to detect and track objects in the vicinity of

the robot. Then the HRVO algorithm utilizes the object state including

position, orientation and velocity, to model the potential collision of the

robot with the surrounding objects. This information and the object

state are then used as the inputs of the EDWA algorithm. The proposed

EDWA algorithm functions as a local planner for any the motion plan-

ning system, and guarantees the safe navigation for the mobile robot in

The dynamic environments.

4.1.4. Algorithm validation by simulations and experiments

To verify the usefulness of the proposed EDWA algorithm, we imple-

mented and tested in a MATLAB-based simulation environment as well

as conducted experiments on the Eddie mobile robot platform in the

real-world environment.

a. Simulation setup

Table 4.1: Parameters set in experiments
Parameters Value Parameters Value Parameters Value

α 3 rr, ro 0.3[m] vmax 1[m/s]
β, γ 0.1 tsim 3[s] ωmax 0.35[rad/s]

αvision 270o rvision 8[m] ∆t 0.25[s]

Four typical scenarios have been created , including: (i) scenario 1

– a mobile robot avoids an obstacle moving toward shown as Fig .4.4

(a), (b), and (c); (ii) scenario 2 – a mobile robot avoids two obstacles

moving toward shown as Fig .4.4 (d), (e), and (f); (iii) scenario 3 – a

mobile robot avoids two obstacles in a crossing situation as shown in
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Fig. 4.5 (a), (b), and (c); and (4) scenario 4 – a mobile robot avoids

three dynamic obstacles in a complex situation, as shown in Fig. 4.5 (d),

(e), and (f).

In each scenario, three experiments corresponding to three pairs of

reactive motion planning algorithms to compare the proposed EDWA

algorithm with the conventional DWA algorithm are conducted, includ-

ing DWA-DWA the mobile robot and the obstacles are both installed

DWA algorithm; EDWA-DWA – the mobile robot is installed the EDWA

algorithm and the obstacles are installed DWA algorithm; and EDWA-

EDWA – the mobile robot and the obstacles are both installed EDWA al-

gorithm. Then comparing the experimental results between these meth-

ods to illustrate the performance of the proposed EDWA algorithm. It

is noted that, the obstacle equipped with the DWA algorithm incorpo-

rates only the state of other obstacles into the motion planning system.

Whereas the obstacle takes the state of both robot and other obstacles

into account when it is installed the EDWA algorithm.

The mobile robot is requested to navigate from the starting position

(0,−10) to the goal position (0, 9) while avoiding the obstacles in the

surrounding environment, in each scenario. The initial velocity of the

robot is set to 0.0[m/s]. The range and field of view of the perception

system of the robot and the obstacles are set to rvision = 8.0[m] and

αvision = 270o, respectively. The time to forward the simulated trajec-

tory of the DWA and EDWA algorithms is set to tsim = 3[s]. In all

experiments, the values of the parameters of the DWA and proposed

EDWA algorithms are empirical set and presented in Table 4.1.
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In order to compare the proposed EDWA algorithm and the conven-

tional DWA algorithm we make use of both qualitative and quantitative

evaluations. Regarding to the qualitative evaluation, the trajectory of

the mobile robot and the obstacles are visualized in the same figure.

Whereas, in term of quantitative evaluation, we utilize three matrices,

including the velocity and average velocity of the mobile robot, and the

minimum distance from the robot to the surrounding obstacles. The

velocity and average velocity are used to indicate the proactive robot

trajectory, while the minimum distance illustrates the safe navigation of

the mobile robot. In addition, the minimum distance is normalized as

follows:

δmin(t) = e(−dmin(t)
2

3 ) (4.6)

where dmin(t) are the closest distances between the boundary of the robot

and the boundary of all obstacles at time t. Therefore, the closer the

robot to an obstacle is, the closer the value of δmin(t) to 1 is.

b. Simulation results

The results in the simulation environments are shown in Fig. 4.4,

Fig. 4.5, Fig. 4.6, Fig. 4.7, and Table 4.2. A video clip of our simulation

results can be found at this link1.

• Scenario 1: Aiming of this scenario is to verify the response of the

mobile robot when it avoids an obstacle moving toward the robot

in three pairs DWA-DWA, EDWA-DWA and EDWA-EDWA. The

trajectories of the robot and the obstacle are shown in Fig. 4.4(a),
1https://youtu.be/oypDiSQTYPQ
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Figure 4.4: The trajectory of the mobile robot and obstacles in Scenario 1 and 2.

4.4(b) and 4.4(c), respectively. As can be seen in these figures, the

mobile robot can safely avoid the obstacle and approach the given

goal in all three experiments. However, the robot avoids the obstacle

at the short distance, and the trajectory of the robot is very close

to the trajectory of the obstacle in the pair DWA-DWA, as shown

in Fig. 4.4(a). That is because the robot equipped with the con-

ventional DWA algorithm only take the position of the obstacle into

account.

In contrast, the robot equipped with the proposed EDWA algorithm

82



proactively avoids obstacle when the obstacle in the robot field of view

(rvision = 8m), as shown in Fig. 4.4(b). That is because the robot incor-

porates the potential collision of the robot with the obstacles into the

motion planning system.

In addition, the robot and the obstacle can smoothly avoid each other

if both of them are installed the proposed EDWA algorithm, as shown

in Fig. 4.4(c). This is very properly in dynamic social environments,

where the humans, vehicles, autonomous devices and the mobile robot

are both shared the responsibility of avoiding each other.

• Scenario 2: In this scenario, the avoiding action of the mobile

robot is examined when it avoids two obstacles moving toward to

the robot. The trajectory of the robot and the obstacles are shown

in Fig. 4.4(d), 4.4(e) and 4.4(f). The mobile robot equipped with the

DWA algorithm passes the space between two obstacles, as shown

in Fig. 4.4(d), while the robot equipped with the proposed EDWA

algorithm can proactively avoid two moving obstacles, shown as

Fig. 4.4(e). Similar to Scenario 1, when the robot and the obstacles

are both installed the proposed EDWA algorithm the robot smoothly

and proactively avoid two obstacles and safely moving toward the

given goal.

Table 4.2: The average passing velocity of the robot
Robot and Obstacles Sceario 1 [m/s] Sceario 2 [m/s] Sceario 3 [m/s] Sceario 4 [m/s]

DWA-DWA 0.8895 0.8693 0.8910 0.7937
EDWA-DWA 0.9531 0.9441 0.9439 0.9361

EDWA-EDWA 0.9711 0.9630 0.9527 0.9461

• Scenario 3: Aiming of this scenario is to examine the behavior
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Figure 4.5: The trajectory of the mobile robot and obstacles in Scenario 3 and 4.

of the mobile robot when it avoids two obstacles moving toward to

each other. The trajectory of the robot and the obstacles are shown

in Fig. 4.5(a), 4.5(b) and 4.5(c). Similar to Scenario 1 and 2 the

mobile robot equipped with the conventional DWA algorithm can

avoid two obstacles at the intersection area, and safely navigate to

the given goal. However, the distance between the robot and the

obstacles at the intersection is very close. Whereas in Fig. 4.5(b)

and 4.5(c) the robot can proactively avoid the moving obstacles in

its vicinity, because it takes the potential collision into account by

using the proposed EDWA algorithm.

• Scenario 4: In this scenario, to further clarify the effectiveness
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of the proposed EDWA algorithm in a dynamic scenario, in which

the obstacles P1 and P3 are moving toward to each other, while

obstacle P2 is moving toward to the robot. The trajectory of the

robot and the obstacles are shown in Fig 4.5(d), 4.5(e) and Fig 4.5(f).

Similar to the aforementioned scenarios, the robot equipped with the

conventional DWA move very close the obstacles. While the robot

has ability to proactively avoid obstacles and safely navigate to the

given goal when it is installed the proposed EDWA algorithm.
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Figure 4.6: The minimum passing distance along the robot’s trajectory.

We further investigate the effectiveness of our proposed EDWA algorithm

through quantitative analysis. As can be seen in Fig. 4.6, in all four

experiment scenarios, the value of the normalized minimum distance is

close to 1, it indicates that the mobile robot equipped with the DWA

algorithm move close to the obstacle. In contrast, the EDWA enable
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Figure 4.7: The robot’s velocity along the trajectory of mobile robot.

the mobile robot to proactively avoid obstacle, because the value of

the normalized minimum distance is small and even approaching 0. In

addition, Fig. 4.7 and Table 4.2 illustrate that, the mobile robot equipped

with our proposed EDWA is capable of smoothly avoiding the obstacles

in the vicinity of the mobile robot.

In summary, the simulation results shown in Fig. 4.4, Fig. 4.5, Fig. 4.6,

Fig. 4.7, and Table 4.2 illustrate that, our proposed EDWA algorithm

is capable of driving the mobile robot to deal with potential collisions

with various situations in the surrounding environment of the robot in

dynamic environments. Moreover, to validate the effectiveness and fea-

sibility of the proposed algorithm, we continue to conduct experiments

on a mobile robot platform in a real-world environment.
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Figure 4.8: (a) The Eddie mobile robot platform equipped with a laser rangefinder
and a NVIDIA Xavier Developer Kit; (b) The data flow diagram of the
proposed framework.

c. Experimental setup and results

The proposed EDWA algorithm has been installed on the mobile robot

platform Fig. 4.8(a). Four experiments in a laboratory-like environment

are then conducted to examine whether the robot equipped with the pro-

posed EDWA algorithm could safely and proactively avoid obstacles. In

this study, using humans as moving obstacles in all experiments is made.

The mobile robot platform is used in this research demonstrated in detail

in Section 2.1.1 and Table. 4.3, and the data flow diagram of the pro-

posed framework is illustrated in Fig. 4.8(b). Moreover, all experiments
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Table 4.3: Parameters of the Eddie mobile robot platform
Parameters of the laser rangefinder Value

Distance measurement ≤ 30 m
Angular field of view 270o

Resolution 0.25o

Parameters of Encoder
Counts per revolution 144 pulses

Resolution 2.5o

are executed with the parameter values presented in Table 4.1.

Four experiments are conducted to examine whether the mobile robot

was able to safely avoid a moving person, two moving people, two cross-

ing people and three dynamic people, as shown in Fig. 4.9(a), 4.9(b),

4.9(c), and 4.9(d), respectively. In each experiment, the mobile robot is

positioned at (0,0) and is requested to navigate to a given goal positioned

at (0,8), while avoids the humans in the surrounding environment of the

robot. .

The experimental results of the four experiments are shown in the sec-

ond row in Fig. 4.9 and the first row shows the snapshot of the scenarios.

A video with our experimental results can be found at the hyperlink2.

Figure 4.9(e), 4.9(f), 4.9(g), and 4.9(h) shows the trajectories of the

mobile robot and the humans in its vicinity. As can be seen in these

figures, the robot can successfully and proactively avoid the humans and

safely navigate to the given goal in all four experiments. Because, the

mobile robot equipped with the proposed EDWA algorithm can detect

and track the humans in the surrounding environment, and then incor-

porates the human position and motion into its motion planning system.

Overall, the experimental results shown in Fig. 4.9 illustrates that, the
2https://youtu.be/wAfgDIxm0Ak
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Figure 4.9: The experimental results of four experiments.

proposed EDWA algorithm is feasibility and effectiveness in real-world

environments. It enables the mobile robot to proactively avoid dynamic

humans in the vicinity of the robot, and safely navigate to the given goal.

As a results, the proposed algorithm is able to apply to the real-world

environments.

89



4.1.5. Remarks

In this section, an EDWA algorithm has been presented for autonomous

mobile robot navigation systems. By incorporating the velocity vector

generated by the HRVO model into the objective function of the conven-

tional DWA technique, the proposed EDWA algorithm could be capable

of driving the mobile robots to proactively avoid dynamic obstacles in

the robot’s vicinity. The simulation results illustrate that the proposed

EDWA algorithm outperform the conventional DWA.

However, the proposed EDWA algorithm still suffer from limitations.

That is the robot equipped the EDWA algorithm sometimes gets stuck in

a locally optimal trajectory. Therefore, the robot is impossible to reach

the given goal. Moreover, it is so difficult the robot to transit across

obstacles if they are close to the robot. In order to overcome these

weaknesses, in the next section, an effective local planing algorithm is

suggested.

4.2. Proposed proactive timed elastic band algorithm

In the previous section, the navigation frameworks could be divided

into two categories based on the information used as the input of the

motion planning system. However, in another approach the naviga-

tion frameworks also can be divided into two categories based on the

robot dynamics: (i) none robot dynamics-based approaches and (ii)

robot dynamics-based techniques. In the former, the methods do not

directly take into account the dynamic constraints of the mobile robots.

While in the later, the robot dynamics such as the kynodynamic con-
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straints, velocity and acceleration limitations, are directly incorporated

into the motion planning system.

Regarding to the none robot dynamics-based techniques, a number of

obstacle avoidance and motion control algorithms such as the artificial

potential field(APF) [35], vector field histogram (VFH) [36], elastic band

(EB) [37], velocity obstacles(VO) [34], [31], and social fore model [28],

[23] techniques have been proposed for the autonomous mobile robots.

These approaches have been evaluated that the robots are capable of

safely avoiding the obstacles in the robot’s vicinity, and navigating to-

wards to the given goal. Nevertheless, the systems do not directly take

into account the dynamic constrains of the mobile robots. Hence, it

might be difficult to directly utilize the output control command to con-

trol the mobile robots in the real-world environments, especially for non-

holonomic mobile robots.

In order to address that issue, several robot dynamics-based approaches

have been proposed in the recent years, such as the dynamic window ap-

proach (DWA) [29], randomized kinodynamic planning [38], [39] and

an original timed elastic band (TEB) [40] methods. Although, these

approaches have been successfully applied in real-world environments,

they might not suitable with the dynamic environments. Because the

robots equipped with these techniques get often stuck in a local op-

timal trajectory, as they are unable to transit across obstacles in the

dynamic environments. To deal with that problem, recently Rosmann

et al. [41, 42] proposed extensions of the TEB technique by using parallel

trajectory planning in spatially distinctive topologies. Using this tech-
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nique, the mobile robots can switch to the current globally optimal tra-

jectory among the candidate trajectories of distinctive topologies, which

are maintained and optimized in parallel. However, these approaches

only take into account the current position of the obstacle and do not

anticipate obstacle’s future trajectory as well as do not incorporate the

potential collision with the surrounding obstacle. Therefore, such de-

veloped navigation systems lack robustness in diverse situations in the

dynamic environments.

In order to overcome the aforementioned shortcomings, in this sec-

tion, a proactive timed elastic band (PTEB) technique for autonomous

mobile robot navigation systems in dynamic social environments is pro-

posed. Because, the TEB technique takes into account the velocity and

acceleration limitations, kinodynamic (kinematic and dynamic) and non-

holonomic constraints of the mobile robots, and the safety distance of

the obstacles and their geometric. In addition, the technique operates in

real-time and thereby directly generates commands for the underlying

robot motion controller [68]. While the hybrid reciprocal velocity ob-

stacle [31] (HRVO) model utilizes the obstacle’s states including current

position, orientation and velocity, to compute the robot’s future trajec-

tory in order to avoid collisions. Therefore, the robot enables to predict

the potential collision with the surrounding obstacles.

The main idea of the proposed technique is to combine the advan-

tages of the TEB technique and the HRVO model. In more detail, this

algorithm incorporates the orientation of the velocity vector generated

by the HRVO model into the objective function of the TEB algorithm.
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Figure 4.10: The example scenario of the dynamic social environments including a
mobile robot and three dynamic obstacles. The robot is requested to
navigate to the given goal while avoiding two crossing obstacles o1 and
o2, and a moving forward obstacle o3. The curved dashed line is the
intended optimal trajectory of the mobile robot.

By incorporating the potential collision between the robots and the ob-

stacles into the TEB technique, the mobile robots equipped with the

proposed PTEB algorithm can proactively avoid obstacles and safely

navigate towards the given goal.

The remainder of the section is structured as follows. A typical sce-

nario of the problem is presented in Subsection 4.2.1. Subsection 4.2.2

suggests PTEB algorithm to solve it. Subsection 4.2.3 describes the

navigation system of the robot that using the PTEB algorithm. The

experimental results in two simulation environments are described and

discussed in Subsection 4.2.4 and Subsection 4.2.4. Finally, conclusion

is drawn in Subsection 4.2.5.

4.2.1. Problem description

The scenario in Fig 4.10 is utilized to describe and prove the efficiency

of the proposed planning algorithm. In this scenario, the mobile robot

is requested to navigate from the starting pose s1 = [x1
r, y

1
r , θ

1
r ]
T to the

goal pose sN = [xNr , y
N
r , θ

N
r ]T , while avoiding three obstacles. The figure
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shows an example of a crossing scenario, that the TEB technique might

generate an optimal trajectory in front of the obstacles, which may not

be feasible. Therefore, to deal with the problem, it’s necessary to propose

the improved algorithm.

4.2.2. Construction of the PTEB algorithm

The main idea is to exploit the advantages of both conventional TEB

technique presented in Section 2.3.3 and HRVO model described in Sec-

tion 2.3.2, a proactive timed elastic band (PTEB) algorithm is suggested.

In other words, the developed PTEB algorithm takes into account both

the dynamic constraints of the mobile robot and its potential collision

with the surrounding obstacles. To accomplish this, in the objective

function in (2.40), one more factor using the orientation of the velocity

vector generated by the HRVO model is added. More specifically, the

orientation θhrvor of the velocity vector vhrvor = [υx, υy]
T generated by the

HRVO model in (2.29) is used to compute the difference between it and

the angles θtebp of the M locally optimal trajectories, with p = 1, 2, ...,

M.

θhrvor = atan2(υy, υx) (4.7)

θtebp = atan2(ytebp − yr, xtebp − xr) (4.8)

∆θtebp = |θhrvor − θtebp | (4.9)

where, (xr, yr) is the current position of the mobile robot, (xtebp , y
teb
p ) is

the coordinates of the node ζp, which is added beside the obstacles. It

is noted that, the value of ∆θtebp ranges from 0 to π, and the numbers

of ∆θtebp are equal to the numbers of individuals TEB. Finally, the new
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objective function of the PTEB is obtained as follows:

V̂c(B
∗
p) = Vc(B

∗
p) + δhrvo∆θ

teb
p (4.10)

where, δhrvo is a predefined value. Using the new objective function

(4.10), the result of solving (2.39), give the optimal trajectory, as pre-

sented in Fig. 4.10. Figure 4.10 shows an example of the proactive TEB

algorithm. In this case, the curved dashed line is the intended opti-

mal trajectory of the mobile robot. In other words, the mobile robot

equipped with the proactive TEB algorithm is capable of avoiding po-

tential collision with the three obstacles. Because it takes into account

the orientation of the velocity vector generated by the HRVO model. It

is noted that, the difference between the θhrvor and the θteb1 is smallest.

Parallelizable 

TEB 

Optimization  

TEB Selection 
O  

The best 

TEB 

trajectory B1
*, …., BM

*  

𝑩 ∗ 

HRVO Model 

Conventional TEB model 

ps, pg 

vr
hrvo 

Figure 4.11: The flowchart of the proposed proactive TEB algorithm.

Figure. 4.11 shows the flowchart, and Algorithm 6 presents in detail

the proposed PTEB algorithm. Algorithm 6 is develop based on the

conventional TEB algorithm presented in Algorithm 2 in Section 2.3.3.

The input of the proposed algorithm is robot state sr, start pose ps,

goal pose pg and a set of obstacles O. The output is the optimal robot

trajectory B̂
∗
, which can be used to directly extract the velocity control

command u = [υr, ωr]
T of the mobile robot.
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Firstly, we generate M locally optimal trajectories B∗p, with p = 1, 2,

..., M based on the conventional TEB model (Lines 2-11 of the Algo-

rithm 6). Secondly, we compute ∆θteb (Lines 12-15 of the Algorithm 6)

by combining the orientation of θhrvor and the angles θtebp of the candidate

optimal trajectories in the previous step. Thirdly, a new component

∆θteb is added into the conventional objective function. As a result, we

obtain a new objective function V̂c(B
∗
p) (Lines 16-17 of the Algorithm

6). Finally, the optimal trajectory B̂
∗

and the optimal control com-

mand of the mobile robot are generated in Lines 18 - 20 of Algorithm 6,

respectively.

Algorithm 6: Proposed PTEB algorithm

input : robot state sr, start pose ps, goal pose pg, set of obstacles O
output: Control command ur

1 begin
2 G ← createGraph(sr, ps, pg, O);

3 D ← depthFirstSearch(G);
4 H ← computeH-Signature(D, G);
5 R ← removeRedundantPath(D, H, G);
6 T ← initializeTrajectories(R, G);
7 for each trajectory Bp ∈ T do
8 V ← objectiveFunction(); B using (2.33)
9 B∗p ← Optimizer(Bp,O,V); B Solve (2.34)

10 B∗ ← storeLocalOptimalTrajectory(B∗p);

11 end for

12 vhrvor = [υy, υx]
T ← Run HRVO(sr, O)

13 θhrvor = atan2(υy, υx)

14 θtebp = atan2(ytebp − yr, xtebp − yr)
15 ∆θteb = min(|θhrvor − θtebp |) with p= 1, 2, ..., M.

16 Vc ← newObjectiveFunction(); B using (2.40)

17 V̂c(B
∗
p) = Vc(B

∗
p) + δhrvo∆θ

teb using (4.10)

18 B̂
∗
← Call Optimizer(B∗,O, V̂c) B Solve (2.39)

19 ur ← According to (2.35), (2.36) and B̂
∗

20 Return ur = [υr, ωr]
T
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4.2.3. The PTEB algorithm-based navigation framework

Similar to Section 4.1.3, in order to conduct experiments in simulation

and real-world environments, the proposed PTEB algorithm is also inte-

grated into the conventional navigation scheme, as presented in Fig. 4.12.

In the extended part, the multi-objects detection and tracking block is

used to detect and track objects in the vicinity of the robot. Then the

HRVO model utilizes the object state including position, orientation and

velocity, to model the potential collision of the robot with the surround-

ing objects. This information and the object state are then used as the

inputs of the proposed PTEB algorithm. Once the optimal trajectory

is generated by the proposed PTEB algorithm, the motion control com-

mand ur=[υr, ωr]
T is extracted and used to drive the mobile robot to

proactively avoid the obstacles in the robot’s vicinity and approach a

given goal. In this study, a two-wheel differential drive mobile robot

platform as well as the robot’s motion model similar to presented in the

previous section 4.1.4 are utilized .

Perception Localization Motor control 

Multi-objects 

detection and 

tracking 

HRVO model 

Real – world environment 

Proposed PTEB model 

Conventional  

TEB model 

Global 

planner 

Figure 4.12: The navigation framework based on the PTEB algorithm.
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(a) T1 [s] (b) T1 [s]

(c) T2 [s] (d) T2 [s]

(e) T3 [s] (f) T3 [s]

(g) T4 [s] (h) T4 [s]

Figure 4.13: Four snapshots at four timestamps of the two experiments in the simu-
lation environment.

4.2.4. Simulation results

a. Simulation experiment in RViz Environment

In this study, firstly examining the proposed PTEB algorithm in a

simple simulation environment, and visualizing the results in RViz en-
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Table 4.4: Parameters set in experiments
Parameters Value Parameters Value

vrmax 1 [m/s] rr, ro 0.3[m]
ωrmax 2.5[m/s2] δhrvo 0.5
δv 2.0 δh 1000
δo 50 δα 1.0

vironment3 with parameters set up in Table 4.4. The mobile robot is

requested to navigate from left to right, while avoiding dynamic people.

The simulation results are shown in Fig. 4.13. In this figure, the left

column shows the results of the conventional TEB algorithm, whereas

the right column presents the results of the proposed PTEB algorithm.

The green curves illustrate the distinctive candidate trajectories, while

the green curve with red arrows depicts the optimal selected trajectory

of the mobile robot.

At the time stamps T1 and T4, the simulation results of the conven-

tional TEB algorithm and the proposed PTEB algorithm are similar.

Because, at the time stamp T1 the two crossing humans are approach-

ing the straight line between the starting position and the goal position

but they are far from straight line, as shown in Figs. 4.13(a) and 4.13(b),

or at the time stamp T4 the two crossing humans are close to the straight

line but they are moving away the straight line, as shown in Figs. 4.13(g)

and 4.13(h).

At the time stamps T2 and T3, the globally obtimal trajectory is

generated in font of two crossing people, as shown in Figs. 4.13(c) and

4.13(e), in these cases, the mobile robot can safely avoid people but

its behavior might not be smooth. In contrast, the globally optimal
3http://wiki.ros.org/rviz
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trajectory is generated behind the left crossing person, it illustrates that,

the robot is able to proactively avoid people, as shown in Figs. 4.13(d)

and 4.13(f). Because, the proposed PTEB algorithm takes into account

the potential collision of the robot with the surrounding humans.

Secondly, in order to narrow the gap between simulation and real-

world experiments, in the next section we have created a hallway-like

scenario with walls, objects, humans and goals based on the Stage robot

simulator [44].

b. Simulation experiment in Stage environment

Figure 4.14: A hallway-like scenario with walls, objects, humans, and goals.

The simulation is implemented in Stage environment and parameters

of the system as well as of the objective function (4.10) are set up in

Table 4.4, as depicted in Fig. 4.14. The figure shows the mobile robots

(magenta dots), 10 stationary people (cyan dots), 6 moving people (dark

blue dots), and two moving object (brown triangle and square), and 8

goals (green dots) are distributed in the scenario. The robot is assigned

a task to navigate to approach goals while avoiding humans and objects.

The moving humans and objects are controled using social force model

proposed by Helbing et al. [28] and the available software platform4.

We have installed the proposed PTEB algorithm on the mobile robot
4http://pedsim.silmaril.org
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to validate its effectiveness. We conducted two experiments in the simu-

lated Stage environment to examine whether our mobile robot equipped

with the proposed PTEB algorithm could safely and proactively avoid

dynamic obstacles while navigating safely in the environments. In first

experiment, the mobile robot is requested to navigate from each start-

ing position (magenta dot) to a corresponding goal (green dot), while

avoiding the static and moving objects in the hallway. In the second ex-

periment, a mobile robot is requested to navigate to approach each goal

in the scenario while avoiding dynamic objects during its navigation.

In addition, to quantitatively validate the proposed PTEB algorithm,

we adopted the collision index (CI) proposed by Truong et al. [24].

Specifically, the CI value is applied to measure the physical safety of

the robot and each individual obstacle, and calculated using Eq. 4.11

[24].

CI = max
i=1:N

exp
(
−
((xr − xio√

2σxo

)2
+
(yr − yio√

2σyo

)2
))

(4.11)

Where, (xio, y
i
o) is the position of obstacle oi, (xr, yr) denotes the position

of robot, σxo and σyo are standard deviations of the basic the obstacle

space, which are set equal to 0.45 in [24], and N is number of the obstacles

in the vicinity of the robot. The range of the CI value is from 0.0 to 1.0,

where the higher the value of CI, the closer the relative distance between

the robot and the obstacle. The robot crashed into the surrounding

object if the CI value is greater than the threshold 0.54, presented in

[24].

The experimental results in the Stage environment are illustrated in
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Figure 4.15: The simulation results of the two experiments. The first row shows the
collision index of the conventional TEB algorithm. Whereas, the second
row illustrates the collision index of the PTEB technique.

Fig. 4.15. As can be seen in Fig. 4.15(b), the CI value is maintained as

lower than 0.54 along the robot trajectory. It indicates that, the mobile

robot equipped with the proposed PTEB algorithm is able to proactively

avoid static and dynamic object in the vicinity of the robot, and safely

navigate to the given goal. In contrast, the mobile robot installed the

conventional TEB technique move closely to the obstacles. The robot

even crashed into the obstacles several time during the robot navigation,

as shown in Fig. 4.15(a).

In summary, the experimental results clearly demonstrated that the

mobile robot equipped with the proposed PTEB algorithm significantly
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reduces collision than that with the conventional TEB algorithm.

4.2.5. Remarks and discussion

A proactive timed elastic band algorithm (PTEB) have been presented

in this section. The main idea of the proposed PTEB algorithm is to

combine the advantages of the TEB algorithm and the HRVO model

by incorporating the velocity vector generated by the HRVO model into

the objective function of the TEB algorithm. As a result, the proactive

optimal trajectory was achieved from the output of the proposed PTEB

algorithm which is used to control the mobile robots. The effectiveness of

the proposed algorithm were validated through a series of experiments in

simulation environments. The simulation results reported in this section

demonstrated that, the proposed proactive motion planning model with

proposed PTEB algorithm is capable of driving the mobile robots to

proactively avoid static and dynamic obstacles, and providing smooth

and safe navigation for the robots.

Although the proposed PTEB algorithm has been achieved consider

successes, it lacks of robustness in various environments, because it only

incorporates the velocity obstacles-based potential collision. Therefore,

in order to deal with this issue, in the next section, an extended timed

elastic band (ETEB) algorithm, which takes into account the future

states of the surrounding obstacles, will be proposed for autonomous

mobile robots.
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4.3. Proposed extended timed elastic band algorithm

Similar as described in former sections (Section 4.1 and Section 4.2),

here we can split into existing navigation frameworks into two groups

based on the techniques used to develop the systems: (i) reaction-based

methods and (ii) trajectory-based approaches. In the first group, the

reactive local planners, e.g., the artificial potential field [35], vector field

histogram [36], the dynamic window approach [29], velocity obstacles

[34], [31], and social fore model [28], [23], are used to develop the systems.

Although these approaches have been evaluated such that the robots are

capable of safely avoiding the obstacles in the robot’s vicinity, they are

often short-sighted in time. To solve that problem, trajectory-based

methods, such as elastic band [37], randomized kinodynamic planning

[38], [39], timed elastic band (TEB) [40], Rosmann et al. [41], [42], com-

pute plans on longer timescale to produce smoother robot’s trajectory.

However, these approaches only take into account the position of the ob-

stacle and do not incorporate the potential collisions between the robots

and the surrounding obstacles

Furthermore, the conventional navigation frameworks also can be clas-

sified into two categories according to the information used as input of

the motion planning systems in an other approach: (i) current states-

based approaches and (ii) future states-based techniques. In the former,

the methods only take into account the current states position of the

surrounding obstacles. While in the later, the current and future states

of the obstacles are incorporated into the motion planning systems. Sev-
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eral navigation systems have been developed for the mobile robots us-

ing the current states of the surrounding obstacle, such as the dynamic

window approach [29], randomized kinodynamic planning [38], [39] and

timed elastic band (TEB) [40] methods. Although, these approaches

have been successfully applied in real-world environments, they might

not suitable with the dynamic environments, because these approaches

only take into account the current position of the obstacle and do not

incorporate the future states of the surrounding obstacles. Therefore,

such developed navigation systems lack robustness in diverse situations

in the dynamic environments. To address that issue, a few mobile robot

navigation systems take into account the future states of the obstalces

[31], [23], [69] and [70]. However, these systems do not directly take into

account the motion dynamics of the mobile robots such as the kynody-

namic constraints, velocity and acceleration limitations. Hence, it might

be difficult to directly utilize the output control command to control the

mobile robots in the real-world environments.

In order to overcome the aforementioned shortcomings, in this section,

we propose an extended timed elastic band (ETEB) technique for mobile

robot navigation systems using motion prediction algorithm. Because,

the TEB technique takes into account the velocity and acceleration limi-

tations, kinodynamic and nonholonomic constraints of the mobile robot,

and the safety distance of the obstacles and their geometric. And the

motion prediction model utilizes the obstacle’s states including position,

orientation and velocity, to predict future position of the surrounding

obstacles. By incorporating this potential collision between the robots
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and the obstacles into the TEB technique the mobile robots equipped

with our proposed ETEB algorithm can proactively avoid obstacles and

safely navigate to the given goal.

In this section, we present a typical scenario of this problem in Subsec-

tion 4.3.1. Then, the proposed ETEB algorithm for solving the problem

is given in Subsection 4.3.2. The experimental results are demonstrated

in Subsection 4.3.3. Finally, conclusion is drawn in Subsection 4.3.4.

4.3.1. Problem description

* 
Goal 

(𝑥𝑟, 𝑦𝑟 , 𝜃𝑟 ) 

(𝑥𝑜1, 𝑦𝑜1, 𝜃𝑜1) 

(𝑥𝑜2, 𝑦𝑜2, 𝜃𝑜2) 

𝑜2 

𝑣0
1 

𝑣0
2 

Robot 

𝑜1 

𝑣𝑟 

YG 

XG 

(𝑥𝑔, 𝑦𝑔) 

Figure 4.16: The example scenario including a mobile robot and two dynamic obsta-
cles. The curved dashed line is the intended optimal trajectory of the
mobile robot.

To demonstrate the efficiency of the proposed algorithm, we consider a

dynamic social environment with the presence of an autonomous mobile

robot and O obstacles in the robot’s vicinity, as shown in Fig 4.16. The

robot is requested to navigate to a goal while safely avoid the obstacles

during its navigation. In this scenario, two obstacles from both sides

facing each other and move across the robot.
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Figure 4.17: The proposed extended TEB algorithm

4.3.2. Construction of the ETEB algorithm

The mobile robot equipped the PTEB algorithm is able to transit

across obstacles, and safely proactively navigate in dynamic environ-

ments. However, it only takes into account current states and potential

collision of the surrounding obstacles. Therefore, it lacks of robustness

in dynamic environments and might not be feasible in various real-world

situations.

In order to address that issue, in this section, an extended timed elas-

tic band (ETEB) algorithm is proposed, as presented in Fig 4.17 and

Algorithm 7. To accomplish that, the future states of the surrounding

obstacles is firstly predicted by using the extended Kalman filter algo-

rithm [52] and the data association technique [71]. The output of the

motion prediction model is the future states of the obstacles ŝo, as shown

in Fig 4.17. Then the proposed algorithm incorporates both the current

states sio and the future states ŝio of the obstacles oi into the conventional

TEB algorithm, as shown in Fig. 4.17. In other words, in stead of using

only current states of the surrounding obstacles as TEB algorithm or the

current states and potential collision as PTEB algorithm, the proposed
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ETEB algorithm takes both the current and future states into account.

Assuming that the number of obstacles in the robot’s vicinity at time

k is R (Oi, i=1, 2, . . . , R). The future state of the obstacles predicted

by the robot is ŝo (Ôi, i=1, 2, . . . , R). Therefore, the total number of

obstacles used as input of the the conventional TEB algorithm becomes

2R. As a result, the objective function in (2.33) is added a new part, as

presented in (4.12).

V̂(Bp) = V(Bp) + δo‖min{0, Ô}‖2
2 (4.12)

Algorithm 7: Proposed ETEB algorithm

input : robot state sr, start pose ps, goal pose pg, set of obstacles O
output: Control command ur

1 begin
2 G ← createGraph(sr, ps, pg, O);

3 D ← depthFirstSearch(G);
4 H ← computeH-Signature(D, G);
5 R ← removeRedundantPath(D, H, G);
6 T ← initializeTrajectories(R, G);

7 Ôk ← Motion prediction of obstacles;
8 for each trajectory Bp ∈ T do
9 V ← objectiveFunction(); B using (2.33)

10 V̂(Bp) = V(Bp) + δo‖min{0, Ôk}‖22 using (4.12);

11 B∗p ← Optimizer(Bp,O, V̂); B Solve (2.34)

12 B∗ ← storeLocalOptimalTrajectory(B∗p);

13 end for;
14 Vc ← newObjectiveFunction(); B using (2.40);

15 B̂
∗
← Call Optimizer(B∗,O, Vc) B Solve (2.39;)

16 ur ← According to (2.35), (2.36) and B̂
∗

17 Return ur = [υr, ωr]
T

The proposed ETEB algorithm is presented detail in Algorithm 7. The

input of Algorithm 7 consists of the robot state sr, start pose ps, goal

pose pg and a set of obstacles O including (xo, yo, vo); and the output of

Algorithm 7 is the control command of the mobile robot u∗. In the first
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step, we generate M locally optimal trajectories B∗p) with p=1, 2,..., M

by using the TEB optimization in parallel with respect to the objective

function(2.33) (Lines 2-6 of the Algorithm 7). In the second step, the

future sates of the surrounding obstacles, which is adopted from the

motion prediction model, are incorporated into the conventional TEB

model (Line 7 of the Algorithm 7). In the third step, the future states

of obstacles are added into the conventional objective function (Lines

10 of Algorithm 7 ). As a result, we obtain a new objective function,

as presented in (4.12). In the fourth step, the optimal robot trajectory

B̂
∗

is selected from the set of alternatives B∗p by solving (2.39) (Line

14-15 of the Algorithm 7). Finally, the control command ur = [υr, ωr]
T

of the mobile robot is extracted directly from the selected trajectory B̂
∗

(Line 16) . This control command is then utilized (Line 17)to control

the mobile robot to safely avoid the obstacles in the robot vicinity.

4.3.3. Simulation results

The proposed ETEB algorithm is firstly examined in RViz environ-

ment5 and Stage simulator6 to verify the effectiveness. Parameters set

in simulation are shown in the Table 4.4.

a. Simulation experiment in RViz Environment

The mobile robot is requested to navigate from left to right, while

avoiding two crossing people (can be seen Fig. 4.16). The simulation

results are shown in Fig. 4.18. The first column shows the results of the

conventional TEB algorithm, whereas the second column presents the
5http://wiki.ros.org/rviz
6http://pedsim.silmaril.org
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results of the proposed ETEB algorithm; the green curves illustrate the

distinctive candidate trajectories, while the green curve with red arrows

depicts the optimal selected trajectory of the mobile robot.

(a) T1 [s] (b) T1 [s]

(c) T2 [s] (d) T2 [s]

(e) T3 [s] (f) T3 [s]

(g) T4 [s] (h) T4 [s]

Figure 4.18: Four snapshots at four timestamps of the two experiments in the simu-
lation environment.

At the time stamps T1 and T4, the simulation results of the conven-

tional TEB algorithm and the proposed ETEB algorithm are similar.
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Because, at the time stamp T1 the humans are approaching the straight

line between the starting position and the goal position but they are far

from straight line, as shown in Figs. 4.18(a) and 4.18(b), or at the time

stamp T4 the humans are close to the straight line but they are moving

away the straight line, as shown in Figs. 4.18(g) and 4.18(h).

At the time stamps T2 and T3, the optimal trajectory is generated

in font of two people, as shown in Figs. 4.18(c) and 4.18(e). In these

cases, the mobile robot can safely avoid people but its behavior might

not smoothly. In contrast, the optimal trajectory is generated behind

the left person, it illustrates that, the robot is able to proactively avoid

people, as shown in Figs. 4.18(d) and 4.18(f). Because, the proposed

ETEB algorithm takes into account the potential collision of the robot

with the surrounding humans.

b. Simulation experiment in Stage Environment

We also validate the effectiveness of the proposed ETEB algorithm

in Stage simulator. To accomplish that, we incorporate the proposed

ETEB algorithm into the conventional navigation scheme, and develop

the ETEB algorithm-based mobile robot navigation system, as presented

in Fig. 4.19. Similar to Section 4.2.4, the results of ETEB algorithm are

compared with the PTEB algorithm using the collision index proposed

by Truong et al. [24]. We then installed the developed navigation system

on the mobile robot platform built in Stage enviroment, and conducted

experiments in the scenario shown in Fig. 4.14. The parameters set in

experiments is presented detail in section 4.2.4. The experimental results
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Figure 4.19: The navigation framework based on the ETEB algorithm
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Figure 4.20: The simulation results of the two experiments. The first row shows
the collision index of the conventional PTEB algorithm. Whereas, the
second row illustrates the collision index of the ETEB technique.

in the Stage environment are illustrated in Fig. 4.20. As can be seen in

Fig. 4.20(b), the CI value is always maintained as lower than 0.54 along
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the robot trajectory. It indicates that the mobile robot equipped with

the proposed ETEB algorithm is able to proactively avoid static and

dynamic objects in the vicinity of the robot, and more safely navigate to

the given goal. Meanwhile, the mobile robot equipped PTEB algorithm

moves more closely to the obstacles. The robot even crashed into the

obstacles several times when the CI value is larger than the threshold

0.54, as shown in Fig. 4.20(a).

4.3.4. Remarks

We have presented an extended timed elastic band algorithm (ETEB)

for navigation system of the autonomous mobile robots in dynamic en-

vironments. The main idea of the proposed technique is to incorporate

both the current and future sates of the surrounding obstacles into the

conventional TEB algorithm. The simulation results prove that the pro-

posed ETEB algorithm is more effective than PTEB algorithm in terms

of proactively avoiding potential collisions in dynamic environment.

4.4. Proposed integrated navigation system

In order to demonstrate the feasibility and usefulness of the proposed

algorithms in the thesis, this section presents a completed navigation sys-

tem for the autonomous mobile robot in a dynamic environment. It has

been known that, a completed navigation system is combined from four

fundamental models including perception, localization, motion planning,

and motor control model. Therefore, this work gathers the proposed ef-

ficient algorithms presented in the previous parts of the thesis into a

navigation system. The main contribution of this section is to demon-
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strate the integration of using EKF-based localization algorithm with an

extended timed elastic band (ETEB) algorithm for a differential-wheel

model in the real-world environment. In which, EKF-based localization

system was presented in Section 3.1. And the ETEB technique-based

local planner is proposed in Section 4.3. This work has been tested and

validated on the QBot-2e mobile robot platform in indoor environment.

All experimental results show that the robot can achieve the goal without

any collision, and avoid dynamic obstacles safely and proactively.

The section is organized as follows. Subsection 4.4.1 presents the

completed navigation framework in which it will be used the proposed

localization algorithm (in Section 3.1) and the proposed motion planning

model (in Section 4.3). The experimental results in real-world environ-

ments are described in Subsection 4.4.2. The conclusions of the section

are provided in Subsection 4.4.3.

4.4.1. Completed navigation framework

Mobility is the most essential navigation issue of mobile robots. To

allow the mobile robots to navigate safely in a real-world environment,

the mobile robots must deal with typical functional blocks of the navi-

gation system, including perception, localization, motion planning, and

motor control, as explained by Siegwart et al. [1]. To accomplish this, in

this research project, an extended navigation scheme based on the con-

ventional navigation scheme introduced by Siegwart et al. is proposed,

as shown in Fig. 4.21. Figure 4.21 illustrates the proposed navigation

scheme for autonomous mobile robots in dynamic environments. The
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Figure 4.21: The block diagram of the mobile robot navigation system utilize the
EKF-based localization algorithm and the ETEB-based obstacle avoid-
ance algorithm.

navigation system consists of four functional blocks: perception, local-

ization, motion planning, and motor control. In first block, the obstacles

in the robot’s vicinity are detected and tracked. The extended Kalman

filter-based localization system is used to estimate the position of the

mobile robot in the environment. In the next block, the A* algorithm-

based global path planning algorithm is utilized to find the path from

the starting position to the given goal. Then the proposed ETEB-based

local planner, which is presented in previous Section 4.3, is used to gen-

erate the optimal trajectory of the robot from the current position of

the robot to the local target. Once the control command of the robot is

obtained, it is used as input of the motor control block, which navigate

the mobile robot to proactively avoid obstacles and approach the given

goal. In the following subsections, the proposed navigation system is

presented in details.
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a. Perception system

To estimate the states of the interesting objects including humans in

the robot’s vicinity, the human detection and tracking algorithm devel-

oped in [72] were utilized to estimate the human position and velocity.

The basic idea of this approach is to fuse the human information detected

by laser data as presented in [73] and Kinect sensor data as explained in

[74] using a particle filter. A detailed description of the technique can be

found in [72]. As a result, the human states are sio = [xio, y
i
o, θ

i
o, v

i
o]
T . This

information is then used as the inputs of the motion planning system, as

shown in Fig. 4.21. Figure 4.22 shows an example of the human detec-

tion and tracking system, in which the green dot is the human position

in the navigation plane of the mobile robot.

.

Figure 4.22: The example of the human detection and tracking algorithm.

The human position is then filtered and predict using the Kalman filter

algorithm [52] and the data association technique [71]. Thus the output

of the human prediction system is O = [o1, o2, ..., oN ], where oi = (xoi , y
o
i ).
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b. Localization system based on EKF filter

In order to navigate autonomously in a dynamic environment, a mobile

robot must maintain an accurate knowledge of its position and orienta-

tion related to such environment. In this study, the localization system

presented in [75] is utilized. Because the mobile robot drives in the

indoor environment where have no GPS signal, the author only utilize

EKF algorithm to fuse the data from wheel encoders and the IMU sensor

( approach II in [75] ), to enhance the localization system. It will be bet-

ter performance localization system, in case GPS system are supported

by the infrastructure. Figure 4.23 shows an example of the comparison

Figure 4.23: The comparison result of localization systems.

between the proposed localization system and the conventional system.

In which, the red curve illustrates the estimated robot’s position us-

ing the proposed localization system, while the magenta curve depicts

the robot’s position using only odometry information. As a result, the

proposed localization system outperforms the conventional algorithm in

term of accuracy.

117



c. Proposed motion planning system

The aim of this system is not only to find one solution that drives

the robot from the starting point to the goal point, but also to find the

optimal solution with the minimum distance and smoothest maneuvers

and without collision obstacles. Normally, the motion planning system is

divided into two parts including: (i) the global planner and (ii) the local

planner. In which, the global planner is utilize as a prior information of

the environment to create the best possible path. Meanwhile, the local

planner recalculates the initial plan to avoid possible dynamic obstacles.

In the first part, the A* path planning algorithm [76] is used for finding

the global path from the initial position to the final position of the mobile

robot. It is the one of the most popular choices for path planning,

because it’s fairly simple and flexible. This algorithm considers the map

as a two-dimensional grid with each tile being a node or a vertex. And it

is based on graph search methods and works by visiting vertices (nodes)

in a graph starting with the current position of the robot all the way

to the goal. The key to the algorithm is identifying the appropriate

successor node at each step. Given the information regarding the goal

node, the current node, and the obstacle nodes, an educated guess can

be made to find the best next node and add it to the list. A* algorithm

uses a heuristic algorithm to guide the search while ensuring that it will

compute a path with minimum cost. It calculates the distance (also

called the cost) between the current location in the workspace, or the

current node, and the target location. It then evaluates all the adjacent
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Figure 4.24: The example result of the A*-based path planing algorithm (the green
curve).

nodes that are open (i.e., not an obstacle nor already visited) for the

expected distance or the heuristic estimated cost from them to the target,

also called the heuristic cost h(n). It also determines the cost to move

from the current node to the next node, called the path cost g(n). Thus,

the total cost to get to the target node f(n) = h(n)+g(n) is computed for

each successor node and the node with the smallest cost is chosen as the

next point. Figure 4.24 depicts an example of the path planing system

using A* algorithm. The green curve is the found path from the initial

position to the final position of the mobile robot. Figure 4.24 depicts

an example of the path planing system using A* algorithm. The green

curve is the found path from the initial position to the final position of

the mobile robot.

In the second part, ETEB -based local planner, which is presented

in Section. 4.3, is utilized to drive the autonomous mobile robot to the
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given goal. The ETEB algorithm incorporates robot dynamics, and cur-

rent and future positions of the surrounding obstacles to generates the

safe and proactive trajectory for the mobile robot. As a result, the

robot equipped with the proposed ETEB algorithm is able to safely and

proactively navigate in dynamic environments.

b. Motor control

Once the optimal trajectory is generated by the proposed ETEB algo-

rithm, the motion control command ur=[υr, ωr]
T is extracted and used

to drive the mobile robot to safely and proactively avoid the obstacles

in the robot’s vicinity and approach a given goal. In this study, a two-

wheel differential drive mobile robot platform presented in Section 2.1.2

is made use of. Therefore the state of the mobile robot is governed by

the equation presented in (2.4).

4.4.2. Experimental setup and results

To validate its feasibility and effectiveness have been implemented

and installed the entire navigation system on the mobile robot platform.

We then conduct experiments in a corridor-like environment to examine

whether the robot equipped with the proposed ETEB algorithm could

safely and proactively avoid obstacles. In this study, the humans is made

use of as moving obstacles in all experiments.

Experimental Setup

We used a QBot-2e mobile robot platform7 equipped with a RPLIDAR

A3 laser rangefinder as shown in Fig. 4.25 which is used for detecting
7https://www.quanser.com/products/qbot-2e
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humans in the vicinity of the mobile robot. The parameters of the mobile

robot platform is presented in detail in Section 2.1.1 and Table 4.5.

Table 4.5: Parameters of the QBot 2e mobile robot platform
Parameters of laser rangefinder Value

Distance measurement ≤ 25 m
Angular field of view 360o

Resolution 0.33o

Parameter of Encoder
Counts per revolution 2578 pulses

Resolution 0.14o

Sensor system 

Human detection 

& tracking 

Motion 

prediction 

algorithm 

Proposed ETEB model 

Control mobile robot platform 

Motion planning system 

 𝒔𝑜
𝑖  = [𝑥𝑜

𝑖 , 𝑦𝑜
𝑖 , 𝜃𝑜

𝑖 , 𝑣𝑜
𝑖 ] 𝑇 

𝒖𝑟 = [ 𝑣𝑟, ω𝑟 ]
𝑇  

(𝑣𝑟
𝑟 , 𝑣𝑟
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 𝒔𝑟 = [𝑥𝑟, 𝑦𝑟 , 𝜃𝑟 ] 
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En & IMU data 

Figure 4.25: The QBot-2e mobile robot platforms and the data flow diagram of the
proposed framework.

The software of the proposed framework is implemented using the

C/C++ programming language. The entire navivation framework are

developed based on the Robot Operating System (ROS) [43] and run on

Jetson TX2 board. The conventional TEB package8 was inherited and
8http://wiki.ros.org/teb local planner
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modified for developing the proposed extended TEB algorithm. The

human detection and tracking algorithm presented in Section 4.4.1 is

utilized to estimate the human states sip including the position and mo-

tion of the humans in the robot’s vicinity.

Experimental Results

We conducted an experiment in a corridor to examine whether the

mobile robot could avoid humans, obstacles while navigating safely in

the real-world environment. The robot is requested to navigate from

the initial position to the final goal, while avoiding the obstacles during

its navigation. Notice that obstacles are always moving in the corridor.

The snapshots of the experimental results are shown in Fig. 4.26. A

video with our experimental results can be found at the hyperlink9. The

(a) 46[s] (b) 48[s] (c) 50[s]

Figure 4.26: Three snapshots at three timestamps of the experiment in the sparse
environment.

experimental results reveal that, the proposed ETEB algorithm is feasi-

bility and effectiveness in real-world environments. It enables the mobile

robot to safely avoid dynamic humans in the vicinity of the robot. In

other words, the proposed extended timed elastic band algorithm is able

to apply to the real-world environments.
9https://www.youtube.com/watch?v=LmIf26qeTg8
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4.4.3. Remarks

In this section, we have incorporated the proposed EKF-based local-

ization algorithm and the proposed ETEB motion planning model into

an integrated mobile robot navigation system. The effectiveness and

feasibility of the proposed framework were proved through a series of

experiments in real-world environments. The experimental results illus-

trated that, the entire navigation system including perception, localiza-

tion, motion planning also motor control systems is capable of driving the

mobile robots to safely and proactively avoid dynamic obstacles in the

surrounding environment, providing the safe navigation for the robots.

4.5. Conclusions and discussion

In this chapter, three effective local planning algorithms in the motion

planning system for autonomous mobile robots in dynamic environments

have proposed, including the EDWA algorithm, the PTEB algorithm and

the ETEB algorithm.

Firstly, the EDWA algorithm combines traditional DWA technique

with the HRVO model to generate a proactive obstacle avoidance sys-

tem. As a result, the mobile robots could navigate safely and smoothly

to its goal. Although this proposed algorithm has been verified in real-

world environments, they are sparse dynamic environments. Therefore,

the EDWA algorithm might not suitable with various dynamic environ-

ments, because the robots are not able to transit across obstacles in their

vicinity.

To overcome the aforementioned issue, the proposed PTEB algorithm

123



using parallel trajectory planning in spatially distinctive topologies was

investigated. The simulation results demonstrate significant benefits of

incorporating the TEB technique with HRVO model. The mobile robots

equipped the proposed PTEB algorithm are able to transit across ob-

stacles and proactively avoid static and dynamic obstacle in the robot’s

vicinity. Although the PTEB algorithm outperform the EDWA algo-

rithm in this issue, it is not yet foreseeable future states of obstacles.

To deal with these weaknesses and improve the performance of the

navigation system, the proposed ETEB algorithm, which integrated the

future states of the surrounding obstacles into the conventional TEB

technique, has been proposed.

Finally, an entire navigation system including four typical components

have been presented. We conducted experiments in both simulation and

real-world environments. The results demonstrated the effectiveness and

feasibility of the proposed algorithms.

Note that the research reported in this chapter gave rise to our pub-

lications [49], [50] and [51].
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Chapter 5

CONCLUSIONS AND FUTURE WORKS

In this chapter we draw conclusions derived on each chapter of this

thesis, and we gather them into a joint reflection to illustrate the more

important issues. We then suggest some future research directions that

steam out from this work.

5.1. Conclusions

We have described the motivation, the contribution and the outline

of the thesis in Chapter 1. We then have provided the conventional

techniques which are utilized in our proposed systems in Chapter 2. In

Chapter 3 and 4, we have presented the proposed localization algorithms

as well as local planning algorithms in the motion planning system.

In Chapter 3, the efficient localization algorithms have been proposed

to improve the accuracy of estimating the robot’s pose in the dynamic

environment, including EKF and PF-based localization algorithms. The

EKF-based localization algorithm utilizes the EKF algorithm to fuse

data getting from the sensor system consisting of the wheel encoders,

GPS and IMU sensors. As a result, this simple model has highly efficient

and suitable for the robot driving in the environments with sufficient

information. Whereas, the PF-based localization algorithm is utilized

in environments with incomplete information or interrupted signal of
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the sensor system. The proposed algorithms are tested in the simulation

environment with different scenarios. The simulation results showed that

the mobile robot equipped with the proposed localization algorithms

have higher accuracy of estimating pose than the existing systems.

In Chapter 4, three new efficient local planning algorithms of the mo-

tion planning model have been proposed for autonomous mobile robots in

dynamic environments, including EDWA, PTEP and ETEB algorithms.

The main idea of the proposed EDWA algorithm is to incorporate the

velocity vector generated by the HRVO model into the objective function

of the conventional DWA technique. We validate the effectiveness of the

proposed algorithm through a series of experiments in both simulated

and real-world environments. The experimental results show that, our

proposed EDWA algorithm is capable of driving the mobile robots to

proactively avoid dynamic obstacles in the robot field of view, providing

the safe navigation for the mobile robots.

To enable the autonomous mobile robots transit across obstacles and

proactively navigate in dynamic environments we have been proposed

the PTEB algorithm for online trajectory planning by incorporating

the potential collision generated by the HRVO model into the objec-

tive function of the conventional TEB technique. The output of the

proposed PTEB algorithm is the optimal trajectory, which is utilized to

control the mobile robots. A series of experiments in various simulation

environments is conducted to validate the effectiveness of the proposed

algorithm. The simulation results demonstrate that our proposed PTEB

algorithm is able to drive the mobile robot to proactively avoid dynamic
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obstacles and safely transit across obstacles in the dynamic environment.

In addition, we propose an ETEB algorithm for online trajectory plan-

ning, which takes both future and current states of the surrounding

obstacles into account the TEB model of the motion planning model.

Therefore, it allows the mobile robot to navigate more effectively in terms

of proactively avoiding potential collisions in the dynamic environment.

We validate the effectiveness of the proposed algorithm through a series

of experiments in simulated environments.

Finally, the completed navigation system for the autonomous mobile

robot in a dynamic environment have been presented. In which, we have

presented an integrated navigation system for the autonomous mobile

robot in the dynamic environment by incorporating the techniques pro-

posed in our previous studies, including the EKF localization and ETEB

local planning algorithms, into a completed navigation system. We con-

ducted experiments the completed navigation system on the robot plat-

form in a real-world environment. The experimental results demonstrate

that, the proposed algorithms have feasibility and the proposed naviga-

tion system is capable of driving the mobile robots to proactively avoid

dynamic obstacles, providing the safe navigation for the robots.

5.2. Limitations

Although the results in simulation as well as real-world environments

illustrate the effectiveness of the proposed algorithms, the dissertation

still suffers from some limitations.

The dissertation lacks of examining the proposed PF based-localization

127



algorithm on the mobile robot platform in real-world environments. All

of the proposed navigation systems in this dissertation are only verify

the effectiveness in sparse and semi dynamic environments. The pro-

posed PTEB algorithm is only examined in simulation environments.

The rest two proposed navigation algorithms are installed in our mobile

robot platform and examined in real-world environments. However, we

only conduced experiments in indoor environments.

5.3. Future works

The potential future directions for research based on the results pre-

sented in this thesis are given in the rest of this section.

Firstly, we will install the complete navigation system on the our

mobile robot platform and conduct experiments in various type of en-

vironments including indoor and outdoor, semi-dynamic and dynamic

environments to verify the effectiveness of the proposed algorithms.

Secondly, applying powerful techniques [77] and [78] for predicting the

future position and trajectory of obstacles in the robot’s vicinity and

then incorporating this information into the motion planning system of

the mobile robot.

Thirdly, fast and efficient motion planning systems should be proposed

for mobile robot navigation in crowded dynamic environments.

Finally, to adapt with different dynamic environments, deep neural

networks [79] and deep reinforcement learning techniques [80] should

also be considered to improve the learning efficiency and navigation per-

formance of the mobile robot.
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