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CONCLUSIONS AND FUTURE WORK

Contributions
In addition to a review of literature regarding to the research in this thesis,

the following main contributions can be drawn from the investigations presented
in the thesis:

1. First, to effectively detect new/unknown attacks by machine learning
methods, we propose a novel representation learning method to better
predictively “describe” unknown attacks, facilitating the subsequent ma-
chine learning-based network attack detection.

2. Second, we handle the imbalance problem of network attack datasets. We
propose a novel solution to this problem by using generative adversarial
networks to generate synthesized attack data for network attack data.

3. Third, we resolve “the lack of label information” in the NAD problem.
We develop a TL technique that can transfer the knowledge of label in-
formation from a domain (i.e., data collected from one IoT device) to a
related domain (i.e., data collected from a different IoT device) without
label information.

Limitations
1. Training time of proposed models is time consuming.
2. In CDAAE, we need to assume that the original data distribution follows

a Gaussian distribution.
3. Training MMD-AE is more time consuming than previous TL models due

to transferring processes executed in multiple layers.

Future work
1. In the CDAAE model, we can explore other distributions different from

the Gaussian distribution that may better represent the original data
distribution. Moreover, we expect that by adding some attributes of ma-
licious behaviors to CDAAE.

2. We will distribute the training process of the proposed DTL model to the
multiple IoT nodes by the federated learning technique to speed up this
process.
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INTRODUCTION

1. Motivation:
The unprecedented development of communication networks has significant

contributions for human beings but also places many challenges for information
security problems due to the diversity of emerging cyberattacks. As a result,
early detecting network attacks plays a crucial role in preventing cyberattacks.
A network attack detection (NAD) monitors the network traffic to identify
abnormal activities in the network environments.

Machine learning, especially deep learning, has achieved remarkable success
in network attack detection, there are still some unsolved problems. First, the
network traffic is heterogeneous due to the diversity of network environments.
Second, network attack datasets are usually highly imbalanced. Third, in some
network environments, e.g., IoT, the data distribution in one device may be
very different from that in other devices. Consequently, this thesis focuses on
three main objectives which can enhance NAD based on supervised machine
learning methods.
2. Thesis contributions:

1. The thesis proposes three latent representation learning models based
on AutoEncoders (AEs) to project normal traffic data and attack traffic
data.

2. The thesis proposes three new deep generative models for handling data
imbalance, thereby improving the accuracy of machine learning methods
for NAD systems.

3. A DTL model is proposed to handle the “lack of label information” prob-
lem in training data.

3. Thesis Structure:
The thesis includes four main content chapters. Chapter 1 presents the funda-

mental background of the NAD problem and deep neural techniques. Chapter 2
proposes a new latent representation learning technique that helps network at-
tacks to be detected more easily. Chapter 3 presents new generative deep neural
network models for handling the imbalance of network traffic datasets. Chapter
4 proposes a new DTL model based on a deep neural network.
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Chapter 1

BACKGROUNDS
The Internet becomes an essential function in our living. Simultaneously,

while the Internet does us excellent service, it also raises many security threats.
Security attacks have become a crucial portion that restricts the growth of the
Internet. Recently, NAD methods have received considerable attention recently
to guarantee the security of information systems.

Security data indicate the network traffic data that can be used to detect
security attacks. Network attack detection methods are highly based on security
data. The quality of security data affects the performance of NAD methods. The
network security datasets usually represent network traffic using both packet-
based features and flow-based features. Under the scope of this thesis, we focus
on the methods to identify the network attacks in published datasets instead of
analysing data generated from network attacks.

Deep neural networks provide a robust framework for learning data features.
A deep neural network aims to map an input vector to an output vector where
the output vector is easier for people as well as other machine learning tasks.
This mapping is done by given large models and large labeled training data
samples. In this thesis, the proposed deep neural network models based on two
main baseline models, i.e., AutoEncoder (AE) and Adversarial AutoEncoder
(AAE).

This thesis also proposes a Deep Transfer Learning (DTL) model based on
AE for NAD. DTL is used to transfer knowledge learned from a source domain
to a target domain where the target domain is different with the source domain
but they are related data distributions. In this thesis, the proposed DTL can
even handle the problems of having less data or no label information in the
target domain.
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Table 4.2: Processing time and complexity of DTL models.

Models
Training Time

(hours)
Predicting Time

(second)
No.

Parameters
AE 0.001 1.001 25117

SKL-AE 0.443 1.112 150702
SMD-AE 3.693 1.110 150702
MMD-AE 11.057 1.108 150702

4.3.2 Performance Comparison
Table 4.1 represents the AUC scores of AE and three DTL models based on

AE. The first DTL model is the DTL model that transfers knowledge on only
single layer using Kullback Libler divergence metric (SKL-AE). The second
DTL model is the DTL model that transfers knowledge on only single layer
using MMD metric (SMD-AE). Third, the proposed DTL model, i.e., MMD-
AE. All these models are trained on the dataset with label information in the
columns and the dataset without information in the rows and tested on the
dataset in the rows.

We can observe that our proposed DTL model usually achieves the highest
AUC score in almost all IoT datasets1.This result proves that implementing the
transferring task in multiple layers of MMD-AE helps the model transfers more
effectively the label information from the source to the target domain.

4.3.3 Processing Time and Complexity Analysis

Table 4.2 shows the training and the predicting time of the tested model when
the source domain is IoT-2, and the target domain is IoT-1. It can be seen that
the training process of the DTL methods is more time consuming than that
of AE.Moreover, the training processes present the same number of trainable
parameters for all the DTL models based on AE. However, more important is
that the predicting time of all DTL methods is mostly equal to that of AE.
4.4 Conclusion

In this chapter, we have introduced a novel DTL-based approach for IoT
network attack detection, namely MMD-AE. This proposed approach aims to
address the problem of “lack of labeled information” for the training detection
model in ubiquitous IoT devices.

1The AUCs of the proposed model in each scenario is presented by the bold text style.
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Table 4.1: AUC score comparision of AE, SKL-AE, SMD-AE and MMD-AE.
Source

T
ar
ge
t

Model IoT-1 IoT-2 IoT-3 IoT-4 IoT-5 IoT-6 IoT-7 IoT-8 IoT-9

Io
T

-1

AE 0.705 0.542 0.768 0.838 0.643 0.791 0.632 0.600
SKL-AE 0.700 0.759 0.855 0.943 0.729 0.733 0.689 0.705
SMD-AE 0.722 0.777 0.875 0.943 0.766 0.791 0.701 0.705

MMD-AE 0.888 0.796 0.885 0.943 0.833 0.892 0.775 0.743

Io
T

-2

AE 0.540 0.500 0.647 0.509 0.743 0.981 0.777 0.578
SKL-AE 0.545 0.990 0.708 0.685 0.794 0.827 0.648 0.606
SMD-AE 0.563 0.990 0.815 0.689 0.874 0.871 0.778 0.607

MMD-AE 0.937 0.990 0.898 0.692 0.878 0.900 0.787 0.609

Io
T

-3

AE 0.600 0.659 0.530 0.500 0.501 0.644 0.805 0.899
SKL-AE 0.745 0.922 0.566 0.939 0.534 0.640 0.933 0.916
SMD-AE 0.764 0.849 0.625 0.879 0.561 0.600 0.918 0.938

MMD-AE 0.937 0.956 0.978 0.928 0.610 0.654 0.937 0.946

Io
T

-4

AE 0.709 0.740 0.817 0.809 0.502 0.944 0.806 0.800
SKL-AE 0.760 0.852 0.837 0.806 0.824 0.949 0.836 0.809
SMD-AE 0.777 0.811 0.840 0.803 0.952 0.947 0.809 0.826

MMD-AE 0.937 0.857 0.935 0.844 0.957 0.959 0.875 0.850

Io
T

-5

AE 0.615 0.598 0.824 0.670 0.920 0.803 0.790 0.698
SKL-AE 0.645 0.639 0.948 0.633 0.923 0.695 0.802 0.635
SMD-AE 0.661 0.576 0.954 0.672 0.945 0.822 0.789 0.833

MMD-AE 0.665 0.508 0.954 0.679 0.928 0.847 0.816 0.928

Io
T

-6

AE 0.824 0.823 0.699 0.834 0.936 0.765 0.836 0.737
SKL-AE 0.861 0.897 0.711 0.739 0.980 0.893 0.787 0.881
SMD-AE 0.879 0.898 0.713 0.849 0.982 0.778 0.867 0.898

MMD-AE 0.927 0.899 0.787 0.846 0.992 0.974 0.871 0.898

Io
T

-7

AE 0.504 0.501 0.626 0.791 0.616 0.809 0.598 0.459
SKL-AE 0.508 0.625 0.865 0.831 0.550 0.906 0.358 0.524
SMD-AE 0.519 0.619 0.865 0.817 0.643 0.884 0.613 0.604

MMD-AE 0.548 0.621 0.888 0.897 0.858 0.905 0.615 0.618

Io
T

-8

AE 0.814 0.599 0.831 0.650 0.628 0.890 0.901 0.588
SKL-AE 0.619 0.636 0.892 0.600 0.629 0.923 0.907 0.712
SMD-AE 0.622 0.639 0.902 0.717 0.632 0.919 0.872 0.629

MMD-AE 0.735 0.636 0.964 0.723 0.692 0.977 0.943 0.616

Io
T

-9

AE 0.823 0.601 0.840 0.851 0.691 0.808 0.885 0.579
SKL-AE 0.810 0.602 0.800 0.731 0.662 0.940 0.855 0.562
SMD-AE 0.830 0.609 0.892 0.600 0.901 0.806 0.886 0.626

MMD-AE 0.843 0.911 0.910 0.874 0.904 0.829 0.889 0.643
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Chapter 2

LEARNING LATENT REPRESENTATION FOR

NETWORK ATTACK DETECTION

2.1 Introduction
In this chapter, we propose a novel representation learning method to enhance

the accuracy of deep learning in detecting network attacks, especially unknown
attacks. Specifically, we develop the regularized versions of AutoEncoders (AEs)
to learn a new representation space for the input data. In the new representation
space, normal data and known network attacks will be forced into two tightly
separated regions, called normal region and anomalous region. We hypothesize
that unknown attacks will appear closer to the anomalous region as they may
share some common characteristics with known ones. Hence, they can be easily
detected.
2.2 Proposed Representation Learning Model

2.2.1 Muti-distribution Variational AutoEncoder

Muti-distribution Variational AutoEncoder (MVAE) is a regularized version
of Variational AutoEncoder (VAE), aiming to learn the probability distributions
representing the input data. To that end, this chapter incorporates the label in-
formation into the loss function of VAE to represent data into two Gaussian
distributions with different mean values. Given a data sample xi with its asso-
ciated label yi, µyi is the distribution centroid for the class yi. The loss function
of MVAE on xi can be calculated as follows:

`MVAE(xi, yi, θ, φ) = − 1

K

K∑
k=1

log pθ(x
i|zi,k, yi)

+DKL(qφ(zi|xi, yi)||p(zi|yi)),

(2.1)

where zi,k is reparameterized as zi,k = µyi + σiεk and εk ∼ N(0, 1); K and yi are
the number of samples used to reparameterize xi and the label of the sample
xi, respectively.

The loss function of MVAE consists of two terms. The first term is Recon-
struction Error (RE) or the expected negative log-likelihood of the i-th data
point to reconstruct the original data at its output layer. The second term
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is created by incorporating the label information to the posterior distribution
qφ(zi|xi) and the prior distribution p(zi) of VAE. Therefore, the second term
is the Kullback Leibler (KL) divergence between the approximate distribution
qφ(zi|xi, yi) and the conditional distribution p(zi|yi). The objective of adding the
label information to the second term is to force the samples from each class data
to reside in each Gaussian distribution conditioned on the label yi. Moreover,
p(zi|yi) follows the normal distribution with the mean µyi and the standard
deviation 1.0, p(zi|yi) = N(µyi , 1). The posterior distribution qφ(zi|xi, yi) is the
multi-variate Gaussian with a diagonal covariance structure. In other words,
qφ(zi|xi, yi) = N(µi, (σi)2), where µi and σi are the mean and standard devia-
tion, respectively, are sampled from the sample xi. Thus, the Multi-KL term in
Eq. 2.1 is rewritten as follows:

DKL(qφ(zi|xi, yi)||pθ(zi|yi))

= DKL(N(µi, (σi)2)||N(µyi , 1)).
(2.2)

Let D, µij and σij denote the dimension of zi, the j-th element of µi and σi,
respectively; µyi

j
is the j-th element of µyi . Then, applying the computation of

the KL divergence, the Multi-KL term is rewritten as follows:

DKL

(
qφ(z|xi, yi)‖pθ(z|yi)

)
=

1

2

D∑
j=1

(
(σij)

2 + (µij − µyi
j
)2 − 1− log((σij)

2)

)
. (2.3)

Taking Multi-KL term in Eq. 2.3, the loss function of MVAE in Eq. 2.1 finally
is rewritten as follows:

`MVAE(xi, yi, θ, φ) = − 1

K

K∑
k=1

log pθ(x
i|zi,k, yi) + λ

1

2

D∑
j=1

((σij)
2 + (µij − µyi

j
)2 − 1− log((σij)

2)),

(2.4)
where λ is a parameter to control the trade-off between two terms in Eq. 2.4.

The mean values for the distributions of the normal class and attack class
are chosen to make these distributions located far enough from each other. In
our experiments, the mean values are 4 and 12 for the normal class and attack
class, respectively. These values are calibrated from the experiments for the
good performance of MVAE. In this chapter, the distribution centroid µyi for
the class yi, and the trade-off parameter λ are determined in advance. The
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Fig. 4.2: MMD of transferring task (from IoT-1 to IoT-2) on one, two, and
three encoding layers.

and target data close together. The `MMD loss term is described as follows:

`MMD(xiS , φS , θS , x
i
T , φT , θT ) =

K∑
k=1

MMD(ξkS(xiS), ξkT (xiT )), (4.3)

where K is the number of encoding layers in the AE-based model. ξkS(xiS) and
ξkT (xiT ) are the encoding layers k-th of AE1 and AE2, respectively, MMD(, ) is
the MMD distance between two data distributions.

The final loss function of MMD-AE combines the loss terms in Eq. 4.1,
Eq. 4.2, and Eq. 4.3 as in Eq. 4.4.

` = `SE + `RE + `MMD. (4.4)

Compared with previous TL models, MMD-AE can transfer the knowledge
not only in the bottleneck layer but also in every encoding layer from the source
domain AE1, to the target domain, AE2.
4.3 Results and Discussions

4.3.1 Effectiveness of Transferring Information in MMD-AE
We measured the MMD distance between the latent representation, i.e., the

bottleneck layer, of AE1 and AE2 when the transfer information is implemented
in one, two and three layers of the encoders. The smaller distance, the more
information is transferred from the source domain (AE1) to the target domain
(AE2). The result is presented in Fig. 4.2. This result evidences that our pro-
posed solution MMD-AE is more effective than the previous DTL models that
perform the transferring task only on the bottleneck layer of AE.
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(a) Proposed system structure.
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Fig. 4.1: Deep Transfer Learning Model.

the data samples of input layers and the output layers of the source domain and
the target domain, respectively.

The second term `SE aims to train a classifier at the latent representation of
AE1 using labeled information in the source domain. In other words, this term
attempts to map the value at two neurons at the bottleneck layer of AE1, i.e., zS,
to their label information yS. This is achieved by using the softmax function to
minimize the difference between zS and yS. This loss encourages to distinguish
the latent representation space from separated class labels. Formally, this loss
is defined as follows:

`SE(xiS , y
i
S , φS .θS) = −

C∑
j=1

yi,jS log(zi,jS ), (4.2)

where ziS and yiS are the latent representation and labels of the source data
sample xiS. yi,jS and zi,jS represent the j − th element of the vector yiS and ziS,
respectively.

The third term `MMD is to transfer the knowledge of the source domain to
the target domain. The transferring process is executed by minimizing the MMD
distances between every encoding layers of AE1 and the corresponding encoding
layers of AE2. This term aims to make the representations of the source data
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hyper-parameter µyi can receive two values associated with the normal class
and the attack class.

2.2.2 Multi-distribution AutoEncoder
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Fig. 2.1: The probability distribution of the latent data (z0) of MAE in the
training process.

This subsection describes how to integrate a regularizer to an AE to create
Multi-distribution AutoEncoder (MAE). The regularizer is a multi-distribution
penalty, called Ω(z), on the latent representation z. The penalty Ω(z) encourages
the MAE to construct a new latent feature space in which each class of data is
projected into a small region. Specifically, this chapter incorporates class labels
into Ω(z) to restrict the data samples of each class to lie closely together centered
at a pre-determined value. The new regularizer is presented in Eq. 2.5.

Ω(z) =
∣∣|z− µyi ∣∣ |2, (2.5)

where z is the latent data at the bottleneck layer of MAE, and µyi is a distribu-
tion centroid of class yi in the latent space. The label yi used in Ω(z) maps the
input data into its corresponding region defined by µyi in the latent represen-
tation. The latent feature space is represented by multiple distributions based
on the number of classes. Thus, this chapter names the new regularized AE to
be Multi-distribution AE.

In the MAE loss function, this chapter also uses a parameter λ to control
the trade-off between the RE and Ω(z) terms as discussed in Sub-section 2.2.1.
Thus, the loss function of MAE can be defined as follows:

`MAE(θ, φ,x, z) =
1

n

n∑
i=1

(
xi − x̂i

)2
+ λ

1

n

n∑
i=1

∣∣∣|zi − µyi ∣∣∣ |2, (2.6)
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where xi, zi and x̂i are the i-th element of the input samples, its corresponding
latent data and reconstruction data, respectively. yi and µyi are the label of the
sample xi and the centroid of class yi, respectively. n is the number of training
samples. The first term in Eq. 2.6 is the RE that measures the difference between
the input data and its reconstruction. The second term is the regularizer used
to compress the input data to the separated regions in the latent space.

To visualize the probability distribution of the latent representation of MAE,
i.e., z, we calculate the histogram of one feature of the latent data z0. Fig. 2.1
presents the probability distribution of z0 of normal class and known attacks
during the training process of MAE on the IoT-1 dataset. After some epochs,
the latent data is constrained into two tight regions in the latent representation
of MAE.

2.2.3 Multi-distribution Denoising AutoEncoder

In this subsection, this chapter discusses the details of the multi-distribution
Denoising AutoEncoder (MDAE). In this chapter, this chapter employs DAE
to develop MDAE. For each data sample xi, we can draw its corrupted version
x̃i by a Gaussian noise. MDAE learns to reconstruct the original input xi from
a corrupted data x̃i, and also penalizes the corresponding latent vector zi to be
close to µyi . The loss function of MDAE can be presented in Eq. 2.7.

`MDAE(x, x̃, z, φ, θ) =
1

n

n∑
i=1

(
xi − pθ(qφ(x̃i))

)2
+ λ

1

n

n∑
i=1

∣∣∣|zi − µyi ∣∣∣ |2, (2.7)

where zi is the latent vector of the data sample xi. µyi is the predefined dis-
tribution centroid of the class yi in the latent feature space of MDAE. qφ and
pθ are the encoder and decoder parts as in DAE, respectively. n is the number
of training samples. The hyper-parameter λ controls the trade-off between two
terms in Eq. 2.7.
2.3 Results and Analysis

2.3.1 Ability to Detect Unknown Attacks

We evaluate the proposed models based on the ability to detect unknown
attacks of the four classifiers trained on the latent representation. As mentioned
above, each of the nine IoT datasets has five or ten specific types of botnet
attacks. For each IoT dataset, we randomly select two types of IoT attacks, and
70% of normal traffic for training, and the rest of IoT attacks and normal data

6

Chapter 4

DEEP TRANSFER LEARNING FOR

NETWORK ATTACK DETECTION

4.1 Introduction
The solutions proposed in previous chapters are based on the assumption

that we can collect labeled data of both normal and attack classes. However, in
some problem domains, it is often unable to label data for all samples collected
from multiple devices. In this chapter, we propose a novel deep transfer learning
(DTL) method to handle “lack of label information” in network attack datasets.
4.2 Proposed Deep Transfer Learning Model

Fig. 4.1(a) presents the system structure that uses DTL for IoT attack detec-
tion. First, the data collection module gathers data from all IoT devices. Second,
the collected data is passed to the DTL model for training. After training, the
trained DTL model is used in the detection module that can classify incoming
traffic from all IoT devices.

The proposed DTLmodel named as MaximumMean Discrepancy-AutoEncoder
(MMD-AE) includes two AEs (i.e., AE1 an AE2) that have the same architec-
ture as Fig. 4.1(b). The input of AE1 is the data samples from the source domain
(xiS), while the input of AE2 is the data samples from the target domain (xiT ).
The training process attempts to minimize the MMD-AE loss function. This
loss function includes three terms: the reconstruction error (`RE) term, the
supervised (`SE) term and the Multi-Maximum Mean Discrepancy (`MMD)
term.

We assume that φS, θS, φT , θT are the parameter sets of encoder and decoder
of AE1 and AE2, respectively. The first term, `RE including RES and RET in
Fig. 4.1(b) attempts to reconstruct the input layers at the output layers of both
AEs. In other words, the RES and RET try to reconstruct the input data xS

and xT at their output from the latent representations zS and zT , respectively.
Formally, the `RE term is calculated as follows:

`RE(xiS , φS , θS , x
i
T , φT , θT ) = l(xiS , x̂

i
S) + l(xiT , x̂

i
T ), (4.1)

where l function is the mean squared error (MSE) function, xiS, x̂iS, xiT , x̂iT are

19



Table 3.2: Log-likelihood estimation of generative models.

Model
NSL-
KDD

UNSW-
NB15

CTU13.6-
Menti

CTU13.12-
NSIS.ay

CTU13.13-
Virut

SMOTE-SVM 15.87±0.69 22.84±0.67 64.07±0.96 52.80±1.36 52.15 ± 0.89
CVAE 65.65±0.33 40.59±1.03 95.68±1.47 92.78±0.29 104.83± 0.89
SAAE 68.20± 3.16 44.26±2.58 112.63±2.14 95.20±4.48 112.19±3.22
ACGAN 60.86±4.82 33.76±2.59 89.55±5.39 82.76±7.98 90.96±2.98
CDAAE 80.34±2.56 61.48±3.95 118.32±2.03 96.67±1.56 131.69 ± 1.84

generative models.

3.3.3 Complexity of Proposed Models

Table 3.3: Processing time of training and generating processes in seconds.

Methods NSL-KDD UNSW-NB15
Train
Time

Generate
Time

No.
Parameters

Train
Time

Generate
Time

No.
Parameters

SMOTE-SVM 109.3 0.2 98.9 0.2
BalanceCascade 134.9 1.2 112.5 1.2

CVAE 6345.6 0.3 174050 5154.4 1.4 837535
ACGAN 6402.5 0.4 115320 5024.8 2.2 823868
SAAE 5906.1 0.3 353967 5130.2 0.7 976058

ACGAN-SVM 9342.5 0.4 115320 8234.9 1.8 823868
CDAAE 6043.9 0.4 532946 4975.1 2.6 1132307

CDAAE-KNN 8576.7 0.9 532946 7456.8 3.7 1132307

We measured the computational time for training and generating synthesized
samples. We can see that CDAAE-KNN often requires a longer time to generate
data than the others. However, both training and generating processes are exe-
cuted offline. Moreover, Table 3.3 proves that the proposed models increase the
model size of the original ones due to the higher number of trainable parameters.
3.4 Conclusion

This chapter proposed three models to address the imbalance problem of
network attack datasets. The CDAAE model is used to generate samples for a
specific class label where ACGAN-SVM and CDAAE-KNN are used to synthe-
size samples that are close to the borderline between classifiers. The augmented
datasets are used for other classification tasks.
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are used for evaluating our models. We only use two types of DDoS attacks for
training, and the rest is for testing. This guarantees that there are some types of
IoT attacks used for evaluating models that have not been seen in the training
process.

It can be seen from Table 2.1 that the latent representations resulting from
MVAE, MAE, and MDAE help four classifiers achieve higher classification ac-
curacy in comparison to those using the original data. For example, the AUC
scores of Linear Support Vector Machine (SVM), Perceptron (PCT), Nearest
Centroid (NCT), and Linear Regression (LR) working on the latent represen-
tation of MAE are increased from 0.839, 0.768, 0.743, and 0.862 to 0.999, 0.996,
0.998, and 0.999 with those working on the original data on the IoT-1 dataset,
respectively. The increase in the classification accuracy can also be observed
from MDAE and MVAE. Thus, four classifiers trained on the latent represen-
tations of MAE and MDAE tend to produce more consistent results than the
previous one (MVAE).

We also carried out an experiment to explain why our models can support
conventional classifiers to detect unknown attacks efficiently. Fig. 2.2 (a) and
Fig. 2.2 (b) show that the representation of AE still can distinguish the nor-
mal samples, known attack samples and unknown attack samples. This is the
main reason for the high performance of classifiers on the AE’s representation
presented in Table 2.1. However, while MAE can compress normal and known
attack samples into two very compact areas on both the training and testing
data, AE does not obtain this result. The normal and known attacks in the
training data of AE spread significantly wider than the samples of MAE. More
interestingly, the samples of unknown attacks in the testing data of MAE are
mapped closely to the region of known attacks. Hence, they can be distinguished
from normal samples easier.
2.3.2 Cross-datasets Evaluation

This experiment aims to exam the stability of the latent representation pro-
duced by MVAE, MAE, and MDAE when training on one botnet family and
evaluating the other. These guarantee that the testing attack family has not
been seen in the training phase.

Table 2.2 shows that when the training data and testing data come from
different botnet families, it is difficult for the NCT classifier to detect unknown
botnet attacks. Both the standalone NCT (STA) and NCT with the represen-
tation of AE and DBN, tend to produce a poor performance in both scenarios.
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Fig. 2.2: Latent representation resulting from AE (a,b) and MAE (c,d).

On the other hand, the latent representations of MVAE, MAE, and MDAE are
designed to reserve some regions being close to the anomaly region for unknown
IoT attacks. These results confirm that our learning representation models can
enhance the ability to detect unknown IoT attacks of simple classifiers.

2.3.3 Influence of the Hyper-parameters of Classifiers

This experiment investigates the influence of the hyper-parameters on the
performance of classifiers when they are trained on the original feature space
and the latent representation of five deep learning models including AE, DBN,
MVAE, MAE andMDAE. The first parameter is analyzed as the hyper-parameter
C of SVM and the second parameter is the distance metric used in the NCT
classifier. Fig. 2.3 (a, b) shows that the SVM and NCT classifiers working with
MVAE, MAE, and MDAE tends to yield high and stable AUC scores over the
different values of the C and metric parameters, respectively.

The experiments in this subsection clearly show that our proposed models can
support classifiers to perform consistently on a wide range of hyper-parameter
settings. Thus, linear classifiers can easily distinguish attacks from normal data,
and its performance is less sensitive to hyper-parameters.
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Table 3.1: Results of SVM, DT, and RF of on the network attack datasets.

Alg.
Augmented

datasets
NSL-
KDD

UNSW-
NB15

CTU13.6-
Menti

CTU13.12-
NSIS.ay

CTU13.13-
Virut

SVM

ORIGINAL 0.570 0.129 0.500 0.500 0.831
SMOTE-SVM 0.688 0.218 0.820 0.824 0.887
BalanceCascade 0.620 0.304 0.876 0.820 0.895

CVAE 0.736 0.325 0.927 0.630 0.950
SAAE 0.738 0.345 0.928 0.653 0.951
ACGAN 0.712 0.200 0.905 0.601 0.947

ACGAN-SVM 0.752 0.205 0.932 0.658 0.953
CDAAE 0.741 0.416 0.963 0.693 0.962

CDAAE-KNN 0.753 0.441 0.972 0.702 0.971

DT

ORIGINAL 0.430 0.221 0.500 0.777 0.962
SMOTE-SVM 0.446 0.348 0.892 0.782 0.964
BalanceCascade 0.522 0.486 0.897 0.786 0.965

CVAE 0.612 0.538 0.992 0.796 0.968
SAAE 0.629 0.542 0.920 0.800 0.968
ACGAN 0.523 0.506 0.905 0.799 0.967

ACGAN-SVM 0.601 0.584 0.909 0.834 0.958
CDAAE 0.650 0.592 0.934 0.816 0.971

CDAAE-KNN 0.660 0.598 0.941 0.823 0.976

RF

ORIGINAL 0.760 0.357 0.500 0.846 0.951
SMOTE-SVM 0.780 0.436 0.945 0.882 0.954
BalanceCascade 0.793 0.439 0.949 0.888 0.956

CVAE 0.824 0.572 0.958 0.921 0.958
SAAE 0.823 0.571 0.956 0.922 0.956
ACGAN 0.804 0.448 0.954 0.892 0.958

ACGAN-SVM 0.834 0.589 0.962 0.901 0.965
CDVAE 0.835 0.602 0.962 0.976 0.962

CDVAE-KNN 0.842 0.623 0.966 0.984 0.970

3.3.2 Generative Models Analysis.

We used the Parzen window method to estimate the likelihood of the synthe-
sized samples following the distribution of the original data where a higher value
presents a better generative model. Table 3.2 evidences that the quality of the
generated data of CDAAE is always better than the other models. This result
explains why machine learning algorithms trained on the augmented datasets
of CDAAE often achieve better performance than those trained on the other
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Algorithm 2 CDAAE-KNN algorithm.
INPUT:
X: original training set; X̃: generated data samples; m: number of nearest
neighbours; d(x,y): Euclide distance between vector x and vector y
OUTPUT:
Xnew: new sampling set
BEGIN:
1. Training CDAAE on X to have the trained decoder network (De)
2. Set X̃ contains minority samples generated by De
3. Run KNN algorithm on set X ∪ X̃
for each xi ∈ X̃ do
- Set m = number of majority class samples in k nearest neighbours
- Set n = number of minority class samples in k nearest neighbours
if m ≥ α1 and n ≥ α2 then
Xnew = X ∪ {xi}

end if
end for
return Xnew

END.

16

0.0001 0.001 0.01 0.1 0.5 1.0
C

0.5

0.6

0.7

0.8

0.9

1.0

AU
C-
Io
T2

Standalone
DBN

AE
MAE

MDAE
MVAE

(a) SVM.

cosine euclidean manhattan  mahalanobis chebyshev
Metric

0.5

0.6

0.7

0.8

0.9

1.0

AU
C-
Io
T2

Standalone
DBN

AE
MAE

MDAE
MVAE

(b) NCT.

Fig. 2.3: AUCs of (a) SVM and (b) NCT with different parameters on IoT-2.

2.3.4 Complexity of Proposed Models
In general, model complexity can be defined as a function of a number of

trainable parameters. Table 2.3 presents the training time and the number of
trainable parameters in each AE-based model. As presented in the training time
and the trainable parameters of AE-based models with the same architecture
are similar. Therefore, adjusting loss functions of the proposed models does not
affect much to training time and model size of AE-based models.
2.4 Conclusion

In this chapter, we have designed three novel AE based models for learning a
new latent representation to enhance the accuracy in NAD. In our models, nor-
mal data and known attacks are projected into two narrow separated regions in
the latent feature space. To obtain such a latent representation, we have added
new regularized terms to three AE versions, resulting in three regularized mod-
els, namely the MVAE, MAE and MDAE. These regularized AEs are trained on
the normal data and known IoT attacks, and the bottleneck layer of the trained
AEs was then used as the new feature space for linear classifiers.
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Table 2.1: Comparision ofAUC scores.

Class-
ifiers

Models Datasets
IoT-1 IoT-2 IoT-3 IoT-4 IoT-5 IoT-6 IoT-7 IoT-8 IoT-9

RF STA 0.979 0.963 0.962 0.670 0.978 0.916 0.999 0.968 0.838

SVM

STA 0.839 0.793 0.842 0.831 0.809 0.934 0.999 0.787 0.799
DBN 0.775 0.798 0.950 0.941 0.977 0.822 0.960 0.772 0.757
CNN 0.500 0.500 0.702 0.878 0.815 0.640 0.996 0.809 0.845
AE 0.845 0.899 0.548 0.959 0.977 0.766 0.976 0.820 0.997
VAE 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
DAE 0.849 0.990 0.569 0.968 0.980 0.803 0.982 0.818 0.996
MVAE 0.914 0.948 0.978 0.985 0.932 0.950 0.998 0.826 0.858
MAE 0.999 0.997 0.999 0.987 0.9820.9990.999 0.846 0.842
MDAE 0.9990.998 0.999 0.9920.9820.9990.9990.892 0.902

PCT

STA 0.768 0.834 0.568 0.835 0.809 0.933 0.998 0.753 0.802
DBN 0.995 0.786 0.973 0.954 0.697 0.847 0.957 0.783 0.755
CNN 0.500 0.500 0.674 0.877 0.812 0.635 0.996 0.797 0.844
AE 0.849 0.892 0.498 0.965 0.977 0.813 0.977 0.814 0.815
VAE 0.503 0.501 0.499 0.501 0.507 0.497 0.500 0.500 0.499
DAE 0.882 0.903 0.534 0.969 0.982 0.862 0.984 0.857 0.849
MVAE 0.954 0.947 0.972 0.986 0.923 0.923 0.997 0.823 0.849
MAE 0.996 0.996 0.9990.9980.9890.9990.999 0.833 0.991
MDAE 0.9960.9970.9990.9980.9890.9990.9990.8890.991

NCT

STA 0.743 0.747 0.498 0.785 0.692 0.570 0.993 0.770 0.748
DBN 0.994 0.786 0.954 0.938 0.961 0.927 0.859 0.781 0.964
CNN 0.500 0.500 0.680 0.877 0.767 0.632 0.977 0.777 0.799
AE 0.985 0.767 0.498 0.834 0.835 0.997 0.945 0.746 0.767
VAE 0.501 0.506 0.511 0.487 0.499 0.505 0.500 0.488 0.479
DAE 0.989 0.770 0.580 0.882 0.863 0.997 0.966 0.806 0.788
MVAE 0.846 0.939 0.973 0.984 0.927 0.937 0.998 0.822 0.796
MAE 0.998 0.996 0.999 0.987 0.982 0.9990.999 0.828 0.799
MDAE 0.996 0.998 0.998 0.9920.9850.9990.9990.887 0.889

LR

STA 0.862 0.837 0.565 0.829 0.802 0.932 0.998 0.791 0.800
DBN 0.776 0.939 0.960 0.955 0.961 0.837 0.962 0.779 0.755
CNN 0.500 0.500 0.710 0.878 0.811 0.636 0.997 0.801 0.843
AE 0.850 0.894 0.498 0.958 0.987 0.743 0.996 0.795 0.998
VAE 0.500 0.499 0.500 0.500 0.500 0.500 0.500 0.500 0.500
DAE 0.871 0.902 0.587 0.966 0.982 0.801 0.996 0.810 0.988
MVAE 0.921 0.989 0.981 0.985 0.933 0.955 0.999 0.828 0.858
MAE 0.999 0.997 0.999 0.988 0.984 0.9990.999 0.835 0.840
MDAE 0.996 0.998 0.998 0.992 0.985 0.9990.9990.887 0.889
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Gloss =
1

n

n∑
i=1

log(difake). (3.7)

The total loss function of CDAAE is the combination of the three above loss
as in (3.8), and CDAAE is trained to minimize this loss function.

LCDAAE = Rloss +Dloss −Gloss. (3.8)

3.2.3 Borderline Sampling with CDAAE-KNN

In ACGAN-SVM, SVMs are also used to learn the boundary of classes and
over-sampling the minor samples around these boundaries. However, when deal-
ing with imbalanced datasets, the class boundary learned by SVMs may be
skewed toward the minority class, thereby increasing the misclassified rate of
the minority class. Therefore, we further improve choosing the borderline sam-
ples using the K nearest neighbor algorithm (KNN). Specifically, we propose a
hybrid model between CDAAE and KNN (shorted as CDAAE-KNN) for gen-
erating malicious data for the NAD. In this model, KNN is used to select the
generated samples by CDAAE that are close to the borderline.

Algorithm 2 describes the details of CDAAE-KNN. The algorithm divides
into two phases: generation and selection. In the generation phase (Step 1 and
2), we train a CDAAE model on the original dataset X. We then use the decoder
network De of CDAAE to generate new samples for the minority classes. The
generated dataset is called X̃. In the selection phase, the KNN algorithm is
executed in the sample set X ∪ X̃ to find the k nearest neighbors of the samples
xi ∈ X̃. For each xi, we calculate the number of nearest samples which belong to
minority classes n and the number of nearest samples that belong to majority
classes m. If m and n are larger than thresholds α1 and α2, respectively, the
sample xi will be considered as the borderline samples, and it is added to the
output set Xnew.
3.3 Results and Discussions

3.3.1 Performance Comparison

Overall, Table 3.1 shows that the generative models can be used to generate
meaningful samples for the minor classes on NAD. Moreover, our proposed
models often achieve better results compared to the previous models.
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the bottleneck z̃. The latent representation z̃ is used to guide the decoder of
CDAAE to reconstruct the input at its output from a desired distribution, i.e.,
the standard normal distribution. Let WEn, WDe, bEn, and bDe be the weight
matrices and the bias vectors of En and De, respectively, and x = {x1, x2, . . . , xn}
be a training dataset where n is the number of training data samples, the com-
putations of En and De based on each training sample are presented in Eq. 3.1
and Eq. 3.2, respectively.

z̃i = fEn(WEn(xinoise | yt + bEn), (3.1)

x̃i = fDe(WDe(zi | yt) + bDe), (3.2)

where | is concatenation operator and fEn and fDe are the activation functions
of the encoder and the decoder, respectively. yt is the label of the data sample
xi, xinoise is generated from xi by a Gaussian noise. The reconstruction phase
aims to reconstruct the original data x from the corrupted version xnoise by
minimizing the reconstruction error (Rloss) in Eq. 3.3.

Rloss =
1

n

n∑
i=0

(
xi − x̂i

)2
. (3.3)

In the regularization phase, an adversarial network is used to regularize the
hidden representation z̃ of CDAAE. The generator (Ge) of the adversarial net-
work, which is also the encoder of the Denoising AutoEncoder (En), tries to
generate the latent variable z̃ that is similar to sample z drawn from a standard
normal distribution, p(z) = N(z|0, 1). We define dreal and dfake as the outputs of
Di with inputs z and z̃, respectively. Let WDi and bDi be the weight matrix and
the bias vector of Di, respectively. For each data point xi, direal and difake are
calculated as follows:

direal = fDi(WDiz
i + bDi), (3.4)

difake = fDi(WDiz̃
i + bDi), (3.5)

where fDi is the activation function of Di.
The discriminator (Di) attempts to distinguish the true distribution z ∼ p(z)

from the latent variable z̃ by minimizing in Eq. 3.6 whereas the generator Ge (or
En) tries to generate z̃ to fool the discriminator Di by maximizing in Eq. 3.7.

Dloss = − 1

n

n∑
i=0

(
log(direal) + log(1− difake)

)
, (3.6)
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Table 2.2: AUC score of the NCT classifier on the IoT-2 dataset in the
cross-datasets experiment.

Train/
Test botnets

STA DBN AE MVAE MAE MDAE

Gafgyt/Mirai 0.747 0.732 0.717 0.943 0.974 0.988
Mirai/Gafgyt 0.747 0.720 0.628 0.999 0.999 0.999

Table 2.3: Complexity of AE-based models trained on the IoT-1 dataset.
Models Training Time Trainable Parameters

AE 370.868 25117
VAE 420.969 25179
DAE 405.188 25117
MVAE 408.047 25179
MAE 354.990 25117
MDAE 424.166 25117
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Chapter 3

DEEP GENERATIVE LEARNING MODELS

FOR NETWORK ATTACK DETECTION

3.1 Introduction
In Chapter 2, the proposed representation learning method helps to improve

the accuracy of machine learning in NAD. However, this approach only performs
well with the assumption that we can collect enough labeled data from both nor-
mal traffic and anomalous traffic. Nevertheless, many network attack datasets
are imbalanced. In this chapter, we develop three deep generative models to
synthesize malicious samples on the network systems. The proposed models
generate samples that further improve NAD’s accuracy.
3.2 Deep Generative Models for NAD

3.2.1 Generating Synthesized Attacks using Auxiliary Conditional Gen-

erative Adversarial Network-Support Vector Machine (ACGAN-

SVM)

The first method for generating artificial data is ACGAN-SVM. ACGAN-
SVM attempts to produce samples that are nearby the borderline area defined
by the SVM model.

Algorithm 1 presents a detailed description of using ACGAN-SVM for gener-
ating synthesized data. The technique is divided into two main phases, i.e., gen-
eration and selection. In the generation phase, the ACGAN network is trained
on the training dataset X. After that, the generator network (G) of ACGAN
is used to generate synthesized samples X ′. In the selection phase, the SVM
model is trained on the training dataset X, and the set of support vectors of
this model is called SVs. For each support vector svi ⊂ SVs, we calculate the
average Euclidean distance di of m nearest neighbor samples of svi in X to svi.
If a generated sample xj ⊂ X ′ has the distance to svi smaller than di, this sample
is kept. Conversely, if the distance from xi to svi is greater than di, the sample
is removed. The algorithm will stop when the augmented dataset is balanced
for every class. The augmented dataset is then used to train three classification
algorithms as in ACGAN.
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Algorithm 1 ACGAN-SVM algorithm for oversampling.
Inputs: original training set X, generated data samples X ′, number of near-
est neighbors m, Euclid distance between vector x and vector y d(x,y).
Outputs: new sampling set Xnew.
begin

Training ACGAN on X to have trained Generator G Set X ′ contains
minority samples generated by G network Train SVM model on X to
have the set of support vectors SV s
foreach svi ∈ SV s do

Compute m nearest neighbors in X Compute di that is average of
Euclid distance from m nearest neighbors to svi

foreach xj ∈ X ′ do
if d(xj, svi) ≤ di then

Xnew = X ∪ {xj}

return Xnew.

3.2.2 Conditional Denoising Adversarial AutoEncoder (CDAAE)

The disadvantage of ACGAN-based model is that the training process is
difficult to convergence. Thus, we propose a new generative model, i.e., CDAAE
and CDAAE-K Nearest Neighbor (CDAAE-KNN) to improve NAD.
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Fig. 3.1: Structure of CDAAE.

As described in Fig. 3.1, two networks in CDAAE are jointly trained in two
phases, i.e., the reconstruction phase and the regularization phase. In the re-
construction phase, the encoder of CDAAE (En), receives two inputs, i.e., a
noisy data xnoise and a class label y, and generates the latent representation or
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