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Introduction

In this dissertation, we are concerned with several concrete topics in DC

programming and data mining. Here and in the sequel, the word “DC” stands

for Difference of Convex functions. Fundamental properties of DC func-

tions and DC sets can be found in the book “Convex Analysis and Global

Optimization” (2016) of Professor Hoang Tuy, who made fundamental con-

tributions to global optimization. The whole Chapter 7 of that book gives

a deep analysis of DC optimization problems and their applications in de-

sign calculation, location, distance geometry, and clustering. We refer to the

books “Global Optimization, Deterministic Approaches” (1993) of R. Horst

and H. Tuy, “Optimization on Low Rank Nonconvex Structures” (1997) of

H. Konno, P. T. Thach, and H. Tuy, the dissertation “Some Nonconvex Op-

timization Problems: Algorithms and Applications” (2019) of P. T. Hoai, and

the references therein for methods of global optimization and numerous appli-

cations. We will consider some algorithms for finding locally optimal solutions

of optimization problems. Thus, techniques of global optimization, like the

branch and bound method and the cutting plane method, will not be applied

herein. Note that since global optimization algorithms are costly for many

large-scale nonconvex optimization problems, local optimization algorithms

play an important role in optimization theory and real world applications.

DC programming and DC algorithms (DCA, for brevity) treat the problem

of minimizing a function f = g − h, with g, h being lower semicontinuous,

proper, convex functions on Rn, on the whole space. Usually, g and h are

called d.c. components of f . The DCA are constructed on the basis of the DC

programming theory and the duality theory of J. F. Toland. Details about

DCA can be seen in the paper by Pham Dinh Tao and Le Thi Hoai An (Acta

Math. Vietnam., 1997), and Hoang Ngoc Tuan’s PhD Dissertation “DC

Algorithms and Applications in Nonconvex Quadratic Programing” (2015).

The main applications of DC programming and DCA include: Nonconvex

optimization, Image analysis, Data mining, Machine learning; see H. A. Le
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Thi and T. Pham Dinh (Math. Program., 2018).

DCA has a tight connection with the proximal point algorithm (PPA, for

brevity). One can apply PPA to solve monotone and pseudomonotone vari-

ational inequalities. Since the necessary optimality conditions for an opti-

mization problem can be written as a variational inequality, PPA is also a so-

lution method for solving optimization problems. In the paper by L. D. Muu

and T. D. Quoc (Optimization, 2010), PPA is applied to mixed variational

inequalities by using DC decompositions of the cost function. Linear con-

vergence rate is achieved when the cost function is strongly convex. For

nonconvex case, global algorithms are proposed to search a global solution.

Indefinite quadratic programming problems (IQPs for short) under linear

constraints form an important class of optimization problems. IQPs have

various applications (see, e.g., Bomze (1998)). Since the IQP is NP-hard (see

Pardalos and Vavasis (1991), Bomze and Danninger (1994)), finding its global

solutions remains a challenging question.

New results on the convergence and the convergence rate of DCA applied

for the IQP problems are proved in this dissertation. We also study the

asymptotic stability of the Proximal DC decomposition algorithm (which is

called Algorithm B) for the given IQP problem. Numerical results together

with an analysis of the influence of the decomposition parameter, as well as

a comparison between the Projection DC decomposition algorithm (which is

called Algorithm A) and Algorithm B are given.

According to Han, Kamber, and Pei (2012), Wu (2012), and Jain and

Srivastava (2013), data mining is the process of discovering patterns in large

data to extract information and transform it into an understandable structure

for further use.

Cluster analysis or simply clustering is a technique dealing with problems

of organizing a collection of patterns into clusters based on similarity. Cluster

analysis is applied in different areas; see, e.g., Aggarwal and Reddy (2014),

Kumar and Reddy (2017).

Clustering problems are divided into two categories: constrained clustering

problems (see, e.g., Basu, Davidson, and Wagstaff (2009), Covões, Hruschka,

and Ghosh (2013), Davidson and Ravi (2005)) and unconstrained clustering
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problems. We focus on studying some problems of the second category.

In the Minimum Sum-of-Squares Clustering (MSSC for short) problems

(see, e.g., (see Bock (1998), Brusco (2006), Costa, Aloise, and Mladenović,

(2017), Du Merle, Hansen, Jaumard, and Mladenović (2000), Kumar and

Reddy (2017), Le Thi and Pham Dinh (2009), Peng and Xiay (2005), Sherali

and Desai (2005), Aragón Artacho, Fleming, and Vuong (2018)), one has to

find a centroid system with the minimal sum of the minimal of the squared

Euclidean distances of the data points to the closest centroids. The MSSC

problems with the required numbers of clusters being larger or equal to 2 are

NP-hard (see Aloise, Deshpande, Hansen, and Popat (2009)).

We establish a series of basic qualitative properties of the MSSC problem.

We also analyze and develop solution methods for the MSSC problem. Among

other things, we suggest several modifications for the incremental algorithms

of Ordin and Bagirov (see Ordin and Bagirov (2015)) and of Bagirov (see

Bagirov (2014)). We focus on Ordin and Bargirov’s approaches, because

they allow one to find good starting points, and they are efficient for dealing

with large data sets. Properties of the new algorithms are obtained and

preliminary numerical tests of those on real-world databases are shown. The

finite convergence, the convergence, and the rate of convergence of solution

methods for the MSSC problem are presented here for the first time.

So, this dissertation proves the convergence and the convergence rate of

DCA applied to IQPs, establishes a series of basic qualitative properties of the

MSSC problem, suggests several modifications for the incremental algorithms

in the papers of Ordin and Bagirov (2015), and of Bagirov (2014), studies

finite convergence, convergence, and the rate of convergence of the algorithms.

The dissertation has four chapters and a list of references.

Chapter 1 collects some basic notations and concepts from DC program-

ming and DCA.

Chapter 2 considers an application of DCA to indefinite quadratic pro-

gramming problems under linear constraints.

In Chapter 3, several basic qualitative properties of the MSSC problem are

established.

Chapter 4 analyzes and develops some solution methods for the MSSC
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problem.

Chapter 1

Background Materials

In this chapter, we review some background materials on Difference-of-

Convex Functions Algorithms (DCAs for brevity); see Pham Dinh and Le

Thi (1997, 1998), Hoang Ngoc Tuan’s PhD Dissertation (2015).

1.1 Basic Definitions and Some Properties

By N we denote the set of natural numbers, i.e., N = {0, 1, 2, . . .}. Consider

the n-dimensional Euclidean vector space X = Rn which is equipped with the

canonical inner product 〈x, u〉 :=
n∑

i=1

xiui for all vectors x = (x1, . . . , xn) and

u = (u1, . . . , un). Here and in the sequel, vectors in Rn are represented as

rows of real numbers in the text, but they are interpreted as columns of

real numbers in matrix calculations. The transpose of a matrix A ∈ Rm×n

is denoted by AT . So, one has 〈x, u〉 = xTu. The norm in X is given by

‖x‖ = 〈x, x〉1/2. Then, the dual space Y of X can be identified with X.

A function θ : X → R, where R := R ∪ {+∞,−∞} denotes the set of

generalized real numbers, is said to be proper if it does not take the value −∞
and it is not equal identically to +∞, i.e., there is some x ∈ X with θ(x) ∈ R.

The effective domain of θ is defined by dom θ := {x ∈ X : θ(x) < +∞}.
Let Γ0(X) be the set of all lower semicontinuous, proper, convex functions

on X. The Fenchel conjugate function g∗ of a function g ∈ Γ0(X) is defined

by

g∗(y) = sup{〈x, y〉 − g(x) | x ∈ X} ∀ y ∈ Y.
Denote by g∗∗ the conjugate function of g∗, i.e.,

g∗∗(x) = sup{〈x, y〉 − g∗(y) | y ∈ Y }.
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Definition 1.1 The subdifferential of a convex function ϕ : Rn → R∪{+∞}
at u ∈ domϕ is the set

∂ϕ(u) := {x∗ ∈ Rn | 〈x∗, x− u〉 ≤ ϕ(x)− ϕ(u) ∀x ∈ Rn}.

If x /∈ domϕ then one puts ∂ϕ(x) = ∅.

Proposition 1.1 The inclusion x ∈ ∂g∗(y) is equivalent to the equality

g(x) + g∗(y) = 〈x, y〉.

Proposition 1.2 The inclusions y ∈ ∂g(x) and x ∈ ∂g∗(y) are equivalent.

In the sequel, we use the convention (+∞)−(+∞)=+∞.

Definition 1.2 The optimization problem

inf{f(x) := g(x)− h(x) : x ∈ X}, (P)

where g and h are functions belonging to Γ0(X), is called a DC program. The

functions g and h are called d.c. components of f .

Definition 1.3 For any g, h ∈ Γ0(X), the DC program

inf{h∗(y)− g∗(y) | y ∈ Y }, (D)

is called the dual problem of (P).

Proposition 1.3 (Toland’s Duality Theorem; see Pham Dinh and Le Thi

(1998)) The DC programs (P) and (D) have the same optimal value.

Definition 1.4 One says that x̄ ∈ Rn is a local solution of (P) if the value

f(x̄) = g(x̄) − h(x̄) is finite (i.e., x̄ ∈ dom g ∩ domh) and there exists a

neighborhood U of x̄ such that

g(x̄)− h(x̄) ≤ g(x)− h(x) ∀x ∈ U.

If we can choose U = Rn, then x̄ is called a (global) solution of (P).

Proposition 1.4 (First-order optimality condition; see Pham Dinh and Le

Thi (1997)) If x̄ is a local solution of (P), then ∂h(x̄) ⊂ ∂g(x̄).

Definition 1.5 A point x̄ ∈ Rn satisfying ∂h(x̄) ⊂ ∂g(x̄) is called a station-

ary point of (P).

Definition 1.6 A vector x̄ ∈ Rn is said to be a critical point of (P) if

∂g(x̄) ∩ ∂h(x̄) 6= ∅.
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1.2 DCA Schemes

The main idea of the theory of DCAs in Pham Dinh and Le Thi (1997)

is to decompose the given difficult DC program (P) into two sequences of

convex programs (Pk) and (Dk) with k ∈ N which, respectively, approximate

(P) and (D). Namely, every DCA scheme requires to construct two sequences

{xk} and {yk} in an appropriate way such that, for each k ∈ N, xk is a

solution of a convex program (Pk) and yk is a solution of a convex program

(Dk), and next properties are valid:

(i) The sequences {(g − h)(xk)} and {(h∗ − g∗)(yk)} are decreasing;

(ii) Any cluster point x̄ (resp. ȳ) of {xk} (resp., of {yk}) is a critical point

of (P) (resp., of (D)).

Based on above propositions, definitions and observations, we get a sim-

plified version of DCA (which is called DCA Scheme 1). It can be found in

Hoang Ngoc Tuan’s PhD Dissertation (2015), and Pham Dinh and Le Thi

(1997). The following DCA Scheme 2 includes a termination procedure.

Scheme 1.2

Input: f(x) = g(x)− h(x).

Output: Finite or infinite sequences {xk} and {yk}.
Step 1. Choose x0 ∈ dom g. Take ε > 0. Put k = 0.

Step 2.

Calculate yk by solving the convex program (Dk)

min{h∗(y)− 〈xk, y〉 | y ∈ Y }.

Calculate xk+1 by solving the convex program (Pk)

min{g(x)− 〈x, yk〉 | x ∈ X}.

Step 3. If ||xk+1 − xk|| ≤ ε then stop, else go to Step 4. Step 4. k := k + 1

and return to Step 2.
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1.3 General Convergence Theorem

The general convergence theorem for DCA from the paper T. Pham Dinh,

H. A. Le Thi, “Convex analysis approach to d.c. programming: theory, al-

gorithms and applications” (Acta Math. Vietnam., 1997) is recalled in this

section.

Four illustrative examples for the fundamental properties of DC program-

ming and DCA are given in Chapter 1.

Chapter 2

Analysis of a Solution Algorithm in

Indefinite Quadratic Programming

This chapter addresses the convergence and the asymptotical stability of

iterative sequences generated by the Proximal DC decomposition algorithm

(Algorithm B). We also analyze the influence of the decomposition parameter

on the rates of convergence of DCA sequences and compare the performances

of the Projection DC decomposition algorithm (Algorithms A) and Algo-

rithm B upon randomly generated data sets.

2.1 Indefinite Quadratic Programs and DCAs

Consider the indefinite quadratic programming problem under linear con-

straints (called the IQP for brevity):

min
{
f(x) :=

1

2
xTQx+ qTx | Ax ≥ b

}
, (2.1)

where Q ∈ Rn×n and A ∈ Rm×n are given matrices, Q is symmetric, q ∈ Rn

and b ∈ Rm are arbitrarily given vectors. The constraint set of the problem

is C :=
{
x ∈ Rn | Ax ≥ b

}
. Since xTQx is an indefinite quadratic form,
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the objective function f(x) may be nonconvex; hence (2.1) is a nonconvex

optimization problem.

Following Pham Dinh, Le Thi, and Akoa (2008), to solve the IQP via a

sequence of strongly convex quadratic programs, one decomposes f(x) into

the difference of two convex linear-quadratic functions

f(x) = ϕ(x)− ψ(x)

with ϕ(x) = 1
2
xTQ1x+ qTx and ψ(x) = 1

2
xTQ2x, where Q = Q1 −Q2, Q1 is a

symmetric positive definite matrix andQ2 is a symmetric positive semidefinite

matrix. Then (2.1) is equivalent to the DC program

min
{1

2
xTQ1x+ qTx− xTQ2x

k | x ∈ C
}
.

Definition 2.1 For x ∈ Rn, if there exists a multiplier λ ∈ Rm such thatQx+ q − ATλ = 0,

Ax ≥ b, λ ≥ 0, λT (Ax− b) = 0,

then x is said to be a Karush-Kuhn-Tucker point (a KKT point) of the IQP.

The smallest eigenvalue (resp., the largest eigenvalue) of Q is denoted by

λ1(Q) (resp., by λn(Q)). The number ρ is called the decomposition parameter.

We have the following iterative algorithms.

Algorithm A (Projection DC decomposition algorithm) can be found in

the paper by Pham Dinh, Le Thi, and Akoa (2008).

Algorithm B. (Proximal DC decomposition algorithm) Fix a positive

number ρ > −λ1(Q) and choose an initial point x0 ∈ Rn. For any k ≥ 0, com-

pute the unique solution, denoted by the point xk+1, of the strongly convex

quadratic minimization problem

min
{
ψ(x) :=

1

2
xTQx+ qTx+

ρ

2
‖x− xk‖2 | Ax ≥ b

}
. (2.2)

The objective function of (2.2) can be written as 1
2
xTQ1x + qTx − xTQ2x

k,

where Q1 = Q+ ρE and Q2 = ρE.

One illustrative example for Algorithms A and B is given in this section.
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2.2 Convergence and Convergence Rate of the Algo-

rithm

Denote by C∗ the KKT point set of (2.1). The convergence and the rate

of convergence of Algorithm B, the Proximal DC decomposition algorithm,

can be formulated as follows.

Theorem 2.1 If (2.1) has a solution, then for each x0 ∈ Rn, the DCA se-

quence {xk} constructed by Algorithm B converges R-linearly to a KKT point

of (2.1), that is, there exists x̄ ∈ C∗ such that

limsup
k→∞

‖xk − x̄‖1/k < 1.

2.3 Asymptotical Stability of the Algorithm

The concept of asymptotical stability of a KKT point can be found in in

Leong and Goh (2013). The main result of this section can be formulated as

follows.

Theorem 2.2 Consider Algorithm B and require additionally that ρ > ‖Q‖.
Suppose x̄ is a locally unique solution of problem (2.1). In that case, for any

ε > 0 there exists δ > 0 such that if x0 ∈ C ∩B(x̄, δ) and if {xk} is the DCA

sequence generated by Algorithm B and the initial point x0, then

(a) xk ∈ C ∩B(x̄, ε) for any k ≥ 0;

(b) xk → x̄ as k →∞.

In other words, x̄ is asymptotically stable w.r.t. Algorithm B.

An illustrative example for asymptotical stability of Algorithm B is given

in this section.

2.4 Influence of the Decomposition Parameter

Algorithm A and B were implemented in the Visual C++ 2010 environ-

ment. We have carried many numerical experiments which demonstrate that:

9



- The decomposition parameter greatly influences the convergence rate of

DCA sequences. When decomposition parameter increases, the execution

time is also increased.

- Algorithm B is more efficient and more stable than Algorithm A upon

randomly generated data sets.

Chapter 3

Qualitative Properties of the

Minimum Sum-of-Squares Clustering

Problem

A series of basic qualitative properties of the minimum sum-of-squares

clustering are established in this chapter.

3.1 Clustering Problems

The Minimum Sum-of-Squares Clustering (MSSC for short) problem re-

quires to partition a finite data set into a given number of clusters in order to

minimize the sum of the squared Euclidean distances from each data point

to the centroid of its cluster as small as possible.

Let A = {a1, ..., am} be a finite set of points (representing the data points

to be grouped) in the n-dimensional Euclidean space Rn. Given a positive in-

teger k with k ≤ m, one wants to partition A into disjoint subsets A1, . . . , Ak,

called clusters, such that a clustering criterion is optimized.

If one associates to each cluster Aj a center (or centroid), denoted by

xj ∈ Rn, then the following well-known variance or SSQ (Sum-of-Squares)

clustering criterion (see, e.g., Bock (1998)). Thus, the above partitioning
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problem can be formulated as the constrained optimization problem

min
{
ψ(x, α) := 1

m

∑m
i=1

(∑k
j=1 αij‖ai − xj‖2

)
| x ∈ Rn×k,

α = (αij) ∈ Rm×k, αij ∈ {0, 1},
k∑

j=1

αij = 1, i = 1, . . . ,m, j = 1, . . . , k
}
,

(3.1)

where the centroid system x = (x1, . . . , xk) and the incident matrix α = (αij)

are to be found. Since this model is a difficult mixed integer programming

problem, one considers the following problem (see, e.g., Ordin and Bagirov

(2015)):

min
{
f(x) :=

1

m

m∑
i=1

(
min

j=1,...,k
‖ai − xj‖2

)
| x = (x1, . . . , xk) ∈ Rn×k

}
. (3.2)

Put I = {1, . . . ,m} and J = {1, . . . , k}.

3.2 Basic Properties of the MSSC Problem

Given a vector x̄ = (x̄1, . . . , x̄k) ∈ Rn×k, we inductively construct k subsets

A1, . . . , Ak of A in the following way. Put A0 = ∅ and

Aj =
{
ai ∈ A \

( j−1⋃
p=0

Ap
)
| ‖ai − x̄j‖ = min

q∈J
‖ai − x̄q‖

}
(3.3)

for j ∈ J .

Definition 3.1 Let x̄ = (x̄1, . . . , x̄k) ∈ Rn×k. We say that the component x̄j

of x̄ is attractive with respect to the data set A if the set

A[x̄j] :=
{
ai ∈ A | ‖ai − x̄j‖ = min

q∈J
‖ai − x̄q‖

}
is nonempty. The latter is called the attraction set of x̄j.

Proposition 3.1 If (x̄, ᾱ) is a solution of (3.1), then x̄ is a solution of (3.2).

Conversely, if x̄ is a solution of (3.2), then the natural clustering defined by

(3.3) yields an incident matrix ᾱ such that (x̄, ᾱ) is a solution of (3.1).

Proposition 3.2 If a1, ..., am are pairwise distinct points and {A1, . . . , Ak}
is the natural clustering associated with a global solution x̄ of (3.2), then Aj

is nonempty for every j ∈ J .
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Theorem 3.1 Both problems (3.1), (3.2) have solutions. If a1, ..., am are

pairwise distinct points, then the solution sets are finite. Moreover, in that

case, if x̄ = (x̄1, . . . , x̄k) ∈ Rn×k is a global solution of (3.2), then the attrac-

tion set A[x̄j] is nonempty for every j ∈ J and one has

x̄j =
1

|I(j)|
∑
i∈I(j)

ai, (3.4)

where I(j) := {i ∈ I | ai ∈ A[x̄j]} with |Ω| denoting the number of elements

of Ω.

Proposition 3.3 If x̄ = (x̄1, . . . , x̄k) ∈ Rn×k is a global solution of (3.2), then

the components of x̄ are pairwise distinct, i.e., x̄j1 6= x̄j2 whenever j2 6= j1.

Theorem 3.2 If x̄ = (x̄1, . . . , x̄k) ∈ Rn×k is a local solution of (3.2), then

(3.4) is valid for all j ∈ J whose index set I(j) is nonempty, i.e., the compo-

nent x̄j of x̄ is attractive w.r.t. the data set A.

3.3 The k-means Algorithm

The k-means clustering algorithm (see, e.g., Aggarwal and Reddy (2014),

Jain (2010), Kantardzic (2011), and MacQueen (1967)) is one of the most

popular solution methods for (3.2).

An illustrative example is given in this section to show how the k-means

algorithm is performed in practice.

3.4 Characterizations of the Local Solutions

Proposition 3.4 One has Ji(x) = {j ∈ J | ai ∈ A[xj]} .

Consider the following condition on the local solution x:

(C1) The components of x are pairwise distinct, i.e., xj1 6= xj2 whenever

j2 6= j1.

Definition 3.2 A local solution x = (x1, ..., xk) of (3.2) that satisfies (C1)

is called a nontrivial local solution.
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Theorem 3.3 (Necessary conditions for nontrivial local optimality) Suppose

that x = (x1, ..., xk) is a nontrivial local solution of (3.2). Then, for any

i ∈ I, |Ji(x)| = 1. Moreover, for every j ∈ J such that the attraction set

A[xj] of xj is nonempty, one has

xj =
1

|I(j)|
∑
i∈I(j)

ai, (3.5)

where I(j) = {i ∈ I | ai ∈ A[xj]}. For any j ∈ J with A[xj] = ∅, one has

xj /∈ A[x], (3.6)

where A[x] is the union of the balls B̄(ap, ‖ap − xq‖) with p ∈ I, q ∈ J

satisfying p ∈ I(q).

Theorem 3.4 (Sufficient conditions for nontrivial local optimality) Suppose

that a vector x = (x1, ..., xk) ∈ Rn×k satisfies condition (C1) and |Ji(x)| = 1

for every i ∈ I. If (3.5) is valid for any j ∈ J with A[xj] 6= ∅ and (3.6) is

fulfilled for any j ∈ J with A[xj] = ∅, then x is a nontrivial local solution

of (3.2).

Three examples are given in this section. The first shows that a local

solution of the MSSC problem need not be a global solution; the second one

presents a complete description of the set of nontrivial local solutions; and

the last one analyzes the convergence of the k-means algorithm.

3.5 Stability Properties

Now, let the data set A = {a1, ..., am} of the problem (3.2) be subject to

change. Put a = (a1, ..., am) and observe that a ∈ Rn×m. Denoting by v(a)

the optimal value of (3.2), one has

v(a) = min{f(x) | x = (x1, . . . , xk) ∈ Rn×k}.

The global solution set of (3.2), denoted by F (a), is given by

F (a) =
{
x = (x1, . . . , xk) ∈ Rn×k | f(x) = v(a)

}
.

Definition 3.3 A family {I(j) | j ∈ J} of pairwise distinct, nonempty sub-

sets of I is said to be a partition of I if
⋃
j∈J

I(j) = I.
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From now on, let ā = (ā1, ..., ām) ∈ Rn×m be a fixed vector with the property

that ā1, ..., ām are pairwise distinct.

Theorem 3.5 (Local Lipschitz property of the optimal value function) The

optimal value function v : Rn×m → R is locally Lipschitz at ā, i.e., there exist

L0 > 0 and δ0 > 0 such that

|v(a)− v(a′)| ≤ L0‖a− a′‖

for all a and a′ satisfying ‖a− ā‖ < δ0 and ‖a′ − ā‖ < δ0.

Theorem 3.6 (Local upper Lipschitz property of the global solution map)

The global solution map F : Rn×m ⇒ Rn×k is locally upper Lipschitz at ā, i.e.,

there exist L > 0 and δ > 0 such that

F (a) ⊂ F (ā) + L‖a− ā‖B̄Rn×k

for all a satisfying ‖a− ā‖ < δ. Here

B̄Rn×k :=
{
x = (x1, . . . , xk) ∈ Rn×k |

∑
j∈J

‖xj‖ ≤ 1
}

denotes the closed unit ball of the product space Rn×k, which is equipped with

the sum norm ‖x‖ =
∑
j∈J

‖xj‖.

Theorem 3.7 (Aubin property of the local solution map) Let x̄ = (x̄1, ..., x̄k)

be an element of F1(ā) satisfying condition (C1), that is, x̄j1 6= x̄j2 whenever

j2 6= j1. Then, the local solution map F1 : Rn×m ⇒ Rn×k has the Aubin

property at (ā, x̄), i.e., there exist L1 > 0, ε > 0, and δ1 > 0 such that

F1(a) ∩B(x̄, ε) ⊂ F1(ã) + L1‖a− ã‖B̄Rn×k

for all a and ã satisfying ‖a− ā‖ < δ1 and ‖ã− ā‖ < δ1.
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Chapter 4

Some Incremental Algorithms for the

Clustering Problem

Solution methods for the minimum sum-of-squares clustering (MSSC) prob-

lem are analyzed and developed in this chapter.

4.1 Incremental Clustering Algorithms

One calls a clustering algorithm incremental if the number of the clusters

increases step by step. As noted in (Ordin and Bagirov (2015)), the available

numerical results demonstrate that incremental clustering algorithms (see,

e.g., Bagirov (2008), Ordin and Bagirov (2015)) are efficient for dealing with

large data sets.

4.2 Ordin-Bagirov’s Clustering Algorithm

This section is devoted to the incremental heuristic algorithm of Ordin and

Bagirov (2015) and some properties of the algorithm.

4.2.1 Basic constructions

Let ` be an index with 1 ≤ ` ≤ k − 1 and let x̄ = (x̄1, ..., x̄`) be an

approximate solution of (3.2), where k is replaced by `. So, x̄ = (x̄1, ..., x̄`)
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solves approximately the problem

min
{
f`(x) :=

1

m

m∑
i=1

(
min

j=1,...,`
‖ai − xj‖2

)
| x = (x1, . . . , x`) ∈ Rn×`

}
. (4.1)

For every i ∈ I, put

d`(a
i) = min

{
‖x̄1 − ai‖2, ..., ‖x̄` − ai‖2

}
.

Let g(y) = f`+1(x̄
1, ..., x̄`, y). Then, the problem

min
{
g(y) | y ∈ Rn

}
(4.2)

is called the auxiliary clustering problem. The objective function of (4.2) can

be represented as g(y) = g1(y)− g2(y), where

g1(y) =
1

m

m∑
i=1

d`(a
i) +

1

m

m∑
i=1

‖y − ai‖2 (4.3)

is a smooth convex function and

g2(y) =
1

m

m∑
i=1

max
{
d`(a

i), ‖y − ai‖2
}

(4.4)

is a nonsmooth convex function. Consider the open set

Y1 :=
⋃
i∈I

B
(
ai, d`(a

i)
)

=
{
y ∈ Rn | ∃i ∈ I with ‖y − ai‖2 < d`(a

i)
}
.

By (4.3) and (4.4), we have

g(y) <
1

m

m∑
i=1

d`(a
i) ∀y ∈ Y1.

Therefore, any iteration process for solving (4.2) should start with a point

y0 ∈ Y1.

To find an approximate solution of (3.2) where k is replaced by `+ 1, i.e.,

the problem

min
{
f`+1(x) :=

1

m

m∑
i=1

(
min

j=1,...,`+1
‖ai − xj‖2

)
| x = (x1, . . . , x`+1) ∈ Rn×(`+1)

}
,

(4.5)

we use a procedure in Ordin and Bagirov (2015). The selection of ‘good’

starting points to solve (4.5) is controlled by two parameters: γ1 ∈ [0, 1] and

γ2 ∈ [0, 1].

16



4.2.2 Version 1 of Ordin-Bagirov’s algorithm

In this version, Ordin and Bagirov (2015) use the k-means first to find

starting points for the auxiliary clustering problem (4.5), and then to find

an approximate solution of the problem (3.2). The computation of a set of

starting points to solve problem (4.5) is controlled by a parameter γ3 ∈ [1,∞).

The input of Version 1 of Ordin-Bagirov’s algorithm (called Alogrithm 4.1)

is the data setA = {a1, . . . , am}, and the output is a centroid system {x̄1, . . . , x̄k},
which is the approximate solution of (3.2).

Alogrithm 4.1 is based on Procedure 4.1, whose aim is to find starting

points for (4.5). The input of the procedure is an approximate solution

x̄ = (x̄1, ..., x̄`) of problem (4.1), ` ≥ 1, and the output is a set Ā5 of starting

points to solve problem (4.5).

One illustrative example is given in this subsection.

4.2.3 Version 2 of Ordin-Bagirov’s algorithm

We propose a new version of Ordin-Bagirov’s algorithm, where we use the

k-algorithm only one time.

The input of Version 2 (called Algorithm 4.2) consists of the parameters

n,m, k, and the data set A = {a1, . . . , am}. The output are a centroid system

x̄ = (x̄1, . . . , x̄k) of (3.2) and the corresponding clusters A1, ..., Ak.

Algorithm 4.2 is based on Procedure 4.2 that finds starting points for (4.5).

With an approximate solution x̄ = (x̄1, ..., x̄`) of problem (4.1) being the

input, the procedure returns an approximate solution x̂ = (x̂1, . . . , x̂`+1) of

problem (4.5).

Some properties of Procedure 4.2 and Algorithm 4.2 are described in The-

orems 4.1 and 4.2 below. We will need the following assumption:

(C2) The data points a1, ..., am in the given data set A are pairwise distinct.

Theorem 4.1 Let ` be an index with 1 ≤ ` ≤ k− 1 and let x̄ = (x̄1, ..., x̄`) be

an approximate solution of problem (3.2) where k is replaced by `. If (C2)

is fulfilled and the centroids x̄1, ..., x̄` are pairwise distinct, then the centroids

x̂1, . . . , x̂`+1 of the approximate solution x̂ = (x̂1, . . . , x̂`+1) of (4.5), which is
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obtained by Procedure 4.2, are also pairwise distinct.

Theorem 4.2 If (C2) is fulfilled, then the centroids x̄1, . . . , x̄k of the centroid

system x̄ = (x̄1, . . . , x̄k), which is obtained by Algorithm 4.2, are pairwise

distinct.

One illustrative example is given in this subsection.

4.2.4 The ε-neighborhoods technique

The ε-neighborhoods technique (see Ordin and Bagirov (2015)) allows one

to reduce the computation volume of Algorithm 4.1 (as well as that of Algo-

rithm 4.2, or another incremental clustering algorithm), when it is applied to

large data sets.

4.3 Incremental DC Clustering Algorithms

Some incremental clustering algorithms based on Ordin-Bagirov’s cluster-

ing algorithm and the DC algorithms of Pham Dinh and Le Thi are discussed

and compared in this section.

4.3.1 Bagirov’s DC Clustering Algorithm and Its Modification

In Step 5 of Procedure 4.1 and Step 4 of Algorithm 4.1, one applies KM.

Bagirov (2014) suggested an improvement of Algorithm 4.1 by using DCA

(see Le Thi, Belghiti, and Pham Dinh (2007), Pham Dinh and Le Thi (1997,

2009)) twice at each clustering level ` ∈ {1, . . . , k}. Consider a DC program

of the form

min
{
ϕ(x) := g(x)− h(x) | x ∈ Rn

}
, (4.6)

where g, h are continuous convex functions on Rn. If x̄ ∈ Rn is a local solution

of (4.6), then by the necessary optimality condition in DC programming

one has ∂h(x̄) ⊂ ∂g(x̄). The DCA scheme for solving (4.6) is shown in

Procedure 4.3. The input of the procedure is a starting point x1 ∈ Rn, and

the ouput is an approximate solution xp of (4.6).
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If ∂h(xp) is a singleton, then the condition yp = ∇g(xp) is an exact require-

ment for xp to be a stationary point. From our experience of implementing

Procedure 4.3, we know that the stopping criterion yp = ∇g(xp) greatly delays

the computation. So, it is reasonable to employ another stopping criterion.

Combining Procedure 4.3 with the above analysis, one obtains Proce-

dure 4.4, which is a modified version of Procedure 4.3 with the new stopping

criterion ‖xp+1 − xp‖ ≤ ε, where ε is a small positive constant. The criterion

guarantees that Procedure 4.4 always stops after a finite number of steps.

Now we turn our attention back to problem (4.2) whose objective function

has the DC decomposition g(y) = g1(y) − g2(y), where g1(y) and g2(y) are

given respectively by (4.3) and (4.4). Specializing Procedure 4.3 for the

auxiliary clustering problem (4.2), one gets Procedure 4.5, which is a DCA

scheme for solving (4.2). The input and output of Procedure 4.5 are the same

as those of Procedure 4.3. Procedure 4.6 is a modified version of Procedure 4.5

with the same stopping criterion as the one in Procedure 4.4.

Theorem 4.3 The following assertions hold true:

(i) The computation by Procedure 4.5 may not terminate after finitely

many steps.

(ii) The computation by Procedure 4.6 with ε = 0 may not terminate after

finitely many steps.

(iii) The computation by Procedure 4.6 with ε > 0 always terminates after

finitely many steps.

(iv) If the sequence {xp} generated by Procedure 4.6 with ε = 0 is finite)

then one has xp+1 ∈ B, where B = {bΩ | ∅ 6= Ω ⊂ A} and bΩ is the barycenter

of a nonempty subset Ω ⊂ A, i.e., bΩ = 1
|Ω|

∑
ai∈Ω

ai.

(v) If the sequence {xp} generated by Procedure 4.6 with ε = 0 is infinite,

then it converges to a point x̄ ∈ B

Theorem 4.4 If the sequence {xp} generated by Procedure 4.6 with ε = 0 is

infinite, then it converges Q−linearly to a point x̄ ∈ B. More precisely, one

has

‖xp+1 − x̄‖ ≤ m− 1

m
‖xp − x̄‖

for all p sufficiently large.
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Now, we can describe a DCA to solve problem (3.2), whose objective func-

tion has the DC decomposition f(x) = f 1(x)− f 2(x), where f 1(x) and f 2(x)

are defined by

f 1(x) :=
1

m

∑
i∈I

(∑
j∈J

‖ai − xj‖2
)

and

f 2(x) :=
1

m

∑
i∈I

(
max
j∈J

∑
q∈J\{j}

‖ai − xq‖2
)
.

Procedure 4.7 is a DCA scheme for solving (4.5) (see Bagirov (2014)). The

input of the procedure is an approximate solution x̄ = (x̄1, ..., x̄`), and the

output of it is a set Â5 ⊂ Rn×(`+1) consisting of some approximate solutions

xp+1 = (xp+1,1, . . . , xp+1,`+1) of (4.5).

Combining Procedure 4.5 with Procedure 4.7, one obtains the DC incre-

mental clustering algorithm of Bagirov (called Algorithm 4.3) to solve (3.2).

The algorithm gets parameters n,m, k, and the data set A = {a1, . . . , am}
as input. Its output is a centroid system {x̄1, . . . , x̄k} and the corresponding

clusters {A1, . . . , Ak}.
In Procedure 4.7, the condition xp+1,j = xp,j for j ∈ {1, . . . , ` + 1} at

Step 4 is an exact requirement which slows down the speed of computation by

Algorithm 4.3. So, we prefer to use the stopping criterion ‖xp+1,j − xp,j‖ ≤ ε,

where ε is a small positive constant. The condition is used in Procedure 4.8,

which is a modified version of Procedure 4.7 with the input and output of it

being the same as those of Procedure 4.7.

Based on Procedures 4.6 and 4.8, we can propose Algorithm 4.4, which is

an improvement for Algorithm 4.3. Algorithm 4.4 produces a centroid system

{x̄1, . . . , x̄k} and the corresponding clusters {A1, . . . , Ak} with input being the

parameters n,m, k, and the data set A = {a1, . . . , am}. Unlike Algorithms 1

and 2, both Algorithms 4.3 and 4.4 do not depend on the parameter γ3.

One illustrative example for Algorithm 4.4 is given in this subsection. An-

other example of this subsection shows the efficiency of Algorithms 4.4 com-

pared with that of Algorithms 1 and 2.

Theorem 4.5 The following assertions hold true:
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(i)The computation by Algorithm 4.3 may not terminate after finitely many

steps.

(ii) The computation by Algorithm 4.4 with ε = 0 may not terminate after

finitely many steps.

(iii) The computation by Algorithm 4.4 with ε > 0 always terminates after

finitely many steps.

(iv) If the computation by Procedure 4.8 with ε = 0 terminates after finitely

many steps then, for every j ∈ {1, . . . , `+ 1}, one has xp+1,j ∈ B.

(v) If the computation by Procedure 4.8 with ε = 0 does not terminate

after finitely many steps then, for every j ∈ {1, . . . , ` + 1}, the sequence

{xp,j} converges to a point x̄j ∈ B.

4.3.2 The Third DC Clustering Algorithm

To accelerate the computation speed of Algorithm 4.4, one can apply the

DCA in the inner loop and apply the k-means algorithm in the outer loop.

First, using the DCA scheme in Procedure 4.6 instead of the k-means al-

gorithm, we can modify Procedure 1 and get Procedure 4.9 including inner

loop with DCA. An approximate solution x̄ = (x̄1, ..., x̄`) of problem (4.1) is

the input of Procedure 4.9. Its output is a set Ā5 of starting points to solve

problem (4.5).

Based on Procedure 4.9, one has Algorithm 4.5, which includes DCA in the

inner loop and k-means algorithm in the outer loop. The input of Algorithm

4.5 are the parameters n,m, k, and the data set A = {a1, . . . , am}, and the

output of it are a centroid system {x̄1, . . . , x̄k} and the corresponding clusters

{A1, . . . , Ak}.
An illustrative example is given in this subsection.

4.3.3 The Fourth DC Clustering Algorithm

In Algorithm 4.2, which is Version 2 of Ordin-Bagirov’s Algorithm, one

applies the k-means algorithm to find an approximate solution of (4.5). Ap-

plying the DCA instead, we obtain Algorithm 4.6, which is a DC algorithm.
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The input of the algorithm are the parameters n,m, k, and the data set

A = {a1, . . . , am}, and its output are the set of k cluster centers {x̄1, . . . , x̄k}
and the corresponding clusters A1, ..., Ak.

Algorithm 4.6 is based on Procedure 4.10, which uses an approximate solu-

tion x̄ = (x̄1, ..., x̄`) of problem (4.1) as an input and produces an approximate

solution x̂ = (x̂1, . . . , x̂`+1) of problem (4.5) as the output.

An illustrative example is given in this subsection.

4.4 Numerical Tests

Using several well-known real-world data sets, we have tested the efficien-

cies of the five Algorithms 4.1, 4.2, 4.4, 4.5, and 4.6 above, and compared

them with that of the k-means Algorithm. Namely, 8 real-world data sets,

including 2 small data sets (with m ≤ 200) and 6 medium size data sets (with

200 < m ≤ 6000), have been used in our numerical experiments.

To sum up, in term of the best value of the cluster function, Algorithm 4.2

is preferable to Algorithm 4.1, Algorithm 4.5 is preferable to Algorithm 4.6,

Algorithm 4.2 is preferable to KM, and Algorithm 4.5 is also preferable to

KM.
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General Conclusions

In this dissertation, we have applied DC programming and DCAs to ana-

lyze a solution algorithm for the indefinite quadratic programming problem

(IQP problem). We have also used different tools from set-valued analysis

and optimization theory to study qualitative properties (solution existence,

finiteness, and stability) of the minimum sum-of-squares clustering problem

(MSSC problem) and develop some solution methods for this problem.

Our main results include:

1) The R-linear convergence of the Proximal DC decomposition algorithm

(Algorithm B) and the asymptotic stability of that algorithm for the given

IQP problem, as well as the analysis of the influence of the decomposition

parameter on the rate of convergence of DCA sequences;

2) The solution existence theorem for the MSSC problem together with the

necessary and sufficient conditions for a local solution of the problem, and

three fundamental stability theorems for the MSSC problem when the data

set is subject to change;

3) The analysis and development of the heuristic incremental algorithm of

Ordin and Bagirov together with three modified versions of the DC incremen-

tal algorithms of Bagirov, including some theorems on the finite convergence

and the Q−linear convergence, as well as numerical tests of the algorithms

on several real-world databases.

In connection with the above results, we think that the following research

topics deserve further investigations:

- Qualitative properties of the clustering problems with L1−distance and

Euclidean distance;

- Incremental algorithms for solving the clustering problems with L1−distance

and Euclidean distance;

- Booted DC algorithms to increase the computation speed;

23



- Qualitative properties and solution methods for constrained clustering

problems for the definition of constrained clustering problems and two basic

solution methods.
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