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ABSTRACT

Remote sensing images have been widely used in many fields thanks to

their outstanding advantages such as large coverage area, short update

time and diverse spectrum. On the other hand, this data is subject to a

number of drawbacks, including: a high number of dimensions, numerous

nonlinearities, as well as a high level of noise and outlier data, which pose

serious challenges in practical applications.

The dissertation develops a number of fuzzy clustering techniques ap-

plied to the remote sensing image analysis problem. The proposed meth-

ods are based on the type-1 fuzzy clustering and interval type-2 fuzzy

clustering. Learning techniques and labeled data are used to overcome

some disadvantages of existing methods. The problem of classification

and detection of land-cover changes from remote sensing image data is

applied to prove the effectiveness of the proposed methods.
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PREAMBLE

1. Problem statement

Remote sensing (RS) technology is one of the most important tech-

niques used to collect information regarding the Earth’s surface. RS

image data with many advantages such as wide coverage, short update

time can provide much essential data for applications [22], [54] includ-

ing urban planning, mapping, classification and detection of land-cover

changes, climate change, weather forecast, etc. On the other hand, RS

images are also characterized by a multi-dimension nature and a high

level of nonlinearities [26]; due to the effect of natural conditions dur-

ing data acquisition. Therefore, they usually contain many uncertainties

and vaguenesses.

In recent years, the strong development of satellite technology has led

to an explosion of RS data sources [31] which has necessitated for process-

ing of large amounts of data. In RS image analysis, the data clustering is

at an early stage, but is essential for advanced image analysis issues. For

clustering problems, the boundaries between objects may be unclear or

overlapping, meaning that some data objects belong to different clusters.

Objects on the land surface are continually changing (shape, size, color,

etc) such as the change in the color of vegetation during development,

change in population distribution due to socioeconomic development.

RS data collection also faces many challenges, such as the sheer vol-

ume of data and their global magnitude. The algorithms need to be suf-

ficiently robust for for problem-solving on large datasets. There has not

been a comprehensive and systematic study of classification and detec-

1



tion of land-cover changes from RS image data. Most studies are based

on traditional classification methods such as measurement and digitiza-

tion, minimum distance, maximum likelihood, object-oriented classifica-

tion, etc. Other studies use NDVI image or RGB color image, which do

not adequately describe the land-cover information.

Those who utilize fuzzy clustering methods also have difficulty deter-

mining the optimal parameters. Often these parameters are determined

by experts based on their experience, which does not always result in

the optimal selections [68]. Most fuzzy clustering methods are unsuper-

vised [43] while supervised learning methods often require large amounts

of labeled data for training.

Keeping those challenges in mind, the utilization of remote sensing

image analysis is still an open question which calls for further investiga-

tion.

2. Motivations

With their many advantages, RS image data applications have been

widely utilized in different applications. The rapid development of satel-

lite technology has led to a large amount of RS image data that needs to

be processed. Besides, It also faces many challenges, such as ”big data”,

high volume and multi-dimension nature of data as well as a high degree

of uncertainties and vagueness.

The urbanization process is causing constant changes to the features

on the surface of the Earth. For the problem of land-cover mapping, tra-

ditional methods of creating land-cover maps are increasingly unfeasible

due to budget and time constraints, which leads to the need for more

2



modern and powerful new techniques.

For those reasons, it has become apparent that the study of RS image

analysis problem is highly justified and has a great potential for academic

research as well as practical applications. These are great motivations to

help me choose the topic ”Fuzzy clustering techniques for remote

sensing image analysis” for my dissertation.

The dissertation contents will focus on developing robust clustering

algorithms based on the fuzzy set including the type-1 fuzzy clustering,

interval type-2 fuzzy clustering; combined with a number of learning

methods and labeled data to overcome the drawbacks of previous meth-

ods. With the advantage of uncertain data processing [30], [46], fuzzy

clustering is a good choice for RS image analysis problems. Moreover,

the approach to semi-supervised learning method is a solution suitable

for problems with very little labeled data [51], [77]. The issue of select-

ing the optimal parameters can be solved by using optimization tech-

niques [72], [114].

The explanation of reasons, motivations and methods in the disserta-

tion is as follows:

Spatial information: This method rests upon the fundamental concept

that geographic regions have similar colors, so detecting those regions is

good. The author has established a measurement of information about

pixels’ color similarity with pixels in a defined neighborhood. Such that

the larger the spatial informational measure value, the higher the color

similarity of the neighboring points. Furthermore, the new idea is that

the larger the measure of information by neighboring pixels of the same

3



size, the greater the chance of representing a terrain area. With that in

mind, this similarity depends on two main factors: distance in color space

(spectrum) and Euclidean distance of neighboring pixels. Based upon

this observation, the dissertation establishes a formula for the desired

measure of information. This increases the separation between pixels in

one geographic area and another, which can help achieve more accurate

classification. Moreover, the dissertation also proposes a method to mea-

sure the density of pixels of similar color in a neighborhood defined by

a super sphere with a radius determined by the minimum standard de-

viation according to image channels. This density information, used as

the initial focus, can stabilize the algorithm while allowing it to achieve

higher accuracy.

Large data: Remote sensing images usually have many spectral chan-

nels; different image channels are usually suitable for different problem

layers, which means that not all problems need to use all image chan-

nels. To reduce computational complexity, the author only selects an

appropriate number of image channels based on each object’s spectral

reflectance characteristics.

Multi-spectrum data: This is a type of multidimensional data. The

single kernel fuzzy clustering method aims to convert the image space

into the single-kernel space characterized by a transform function, such

as the Gaussian or the Polynomial function. The process of separat-

ing the distribution of pixels is fairly straightforward. The dissertation

utilizes the multiple kernel fuzzy clustering method defined as a linear

combination of Gaussian function and polynomial function. This is a

4



complex multi-kernel transform but can improve clustering efficiency,

requiring the multi-kernel linear combination optimization by the learn-

ing process.

Semi-supervised method : To optimize the clustering process, the dis-

sertation takes advantage of the semi-supervised learning method with

a limited number of samples to optimize the clustering process by de-

termining the value of suitable parameters, including linear combination

parameters of multiple multiplication function, cluster center values and

parameters of the target function.

From the above analysis, it can be observed that the contribution of

the dissertation compared to previous studies includes:

+ Proposing a new formula for calculating spatial information and

density information;

+ Proposing a method to formulate multiple kernel functions with

corrected weights during clustering;

+ Developing hybrid methods between fuzzy clustering type-1, inter-

val type-2 with PSO technique;

+ Establishing a new objective function with tighter constraints by

adopting the semi-supervised method with a limited number of samples.

Those are the basis for improving the accuracy of the proposed meth-

ods.

3. Objectives and scopes

The main objective of the dissertation is to research and develop fuzzy

clustering techniques on remote sensing image data in order to improve

accuracy and improve clustering quality of clustering algorithms.
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The research scope of the dissertation includes the type-1, interval

type-2 fuzzy clustering, and several learning methods include the semi-

supervised method, kernel technique, and particle swarm optimization

(PSO). The problem of classification and detection of land-cover changes

from RS image is applied to prove the effectiveness of the proposed

method.

4. Research method

The dissertation uses analytic tools to set up mathematical equations

which are then utilized to determine optimal solutions and constructs,

and prove the theorems in fuzzy clustering. The dissertation also uses

programming methods to install algorithms.

Cluster quality evaluation indicators and labeled data are used to

compare the dissertation’s research results with others to confirm the

effectiveness of the proposed solutions.

The dissertation has been conducted with strict adherence to scientific

guidelines and under the supervision of academic advisors. The disserta-

tion proposed solutions to presented problems and proved effectiveness

through experiments with published research works in prestigious con-

ferences and journals.

5. Scientific and practical meanings

Theoretically, the dissertation adopts a modern approach, while taking

the advantages of the existing methods into consideration. The proposed

methods also open the door to the possibility of researching solutions to

apply fuzzy clustering to RS image in the case where very little labeled

data is available.
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Regarding practical implications, the results of the dissertation can

be used in problems of land-cover classification and change detection.

Besides improving the accuracy compared to some other methods, the

proposed methods are more automated, thereby being more time-saving

and cost-effective compared to the method using Erdas Imagine RS soft-

ware.

6. Contributions of the dissertation

Most of the work described in this dissertation was conducted at the

Military Technical Academy (MTA)1 in Vietnam. The dissertation has

following main contributions:

1. The dissertation proposes two unsupervised fuzzy c-means cluster-

ing algorithm (FCM), including density fuzzy c-means clustering (DFCM)

[Pub7] and improved fuzzy c-means clustering (IFCM) [Pub1], [Pub3].

DFCM algorithm proposes using density information for selecting initial

centroids for FCM algorithm. IFCM algorithm proposes to using the

spectral clustering and spatial information as a preprocessing step to

map the original data space to a new space based on the main compo-

nents. The proposed methods can improve the accuracy of the algorithm

compared to the original algorithm.

2. The dissertation develops three semi-supervised fuzzy c-means

clustering algorithms, including semi-supervised multiple-kernel fuzzy

c-means clustering (SMKFCM [Pub8]), semi-supervised fuzzy c-means

clustering and the particle swarm optimization technique (SFCM-PSO)

[Pub2] and interval type-2 semi-supervised possibilistic fuzzy c-means
1http://mta.edu.vn/
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clustering and PSO technique (GIT2SPFCM-PSO [Pub9]). SMKFCM

proposes the multiple-kernel technique to make data better separated;

moreover, it uses labelled data to adjust the focus during clustering with

the hope that the algorithm runs more stable. SFCM-PSO is a hybrid

algorithm between semi-supervised method and PSO optimization tech-

nique. GIT2SPFCM-PSO is a hybrid clustering algorithm developed by

the semi-supervised possibilistic fuzzy c-means clustering based on in-

terval type-2 fuzzy set with the parameters optimized by PSO technique

[Pub4], [Pub5], [Pub6]. By using PSO technique for finding the opti-

mal parameters. The proposed methods achieve better accuracy than

existing methods.

The proposed methods can be applied to many types of RS images

(radar, optics) and spatial resolutions (10m, 30m). Most of the exper-

iments are used to the problem of the land cover classification of RS

images. Although some limitations exist, the proposed methods can

provide significantly better classification results than some other recent

classification methods.

7. Organization of the dissertation

The dissertation is organized into three chapters and two sections, as

follows:

Introduction: This section introduces the general issues of the dis-

sertation. The content presented in this section includes the urgency

of the research topic, motivations, objectives and scopes, contributions,

scientific and practical meanings and organization of the dissertation.

Chapter 1 discusses the main issues and foundational theories used
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in the dissertation’s studies. In this chapter, an overview of the research

and some of the related works is introduced. Several reviews of previous

studies with analyses of their advantages and disadvantages are also

provided.

Chapter 2 introduces two unsupervised fuzzy clustering algorithms,

including the density-based fuzzy c-means clustering (DFCM) and the

improved fuzzy c-means clustering (IFCM).

Chapter 3 presents three semi-supervised fuzzy clustering algorithms,

including the semi-supervised multiple kernel fuzzy c-means clustering

(SMKFCM), semi-supervised fuzzy c-means clustering and the particle

swarm optimization technique (SFCM-PSO), the interval type-2 semi-

supervised possibilistic fuzzy c-means clustering and the particle swarm

optimization technique (GIT2SPFCM-PSO).

Conclusions: Summary of dissertation contents, achieved issues and

main contributions of the dissertation, some limitations and future re-

search directions.
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Chapter 1

BACKGROUND AND RELATED WORKS

This chapter presents the basic knowledge used in the dissertation

including fuzzy clustering, interval type-2 fuzzy clustering, and learn-

ing techniques. Some methods evaluated the accuracy of the cluster-

ing algorithm is also given as a way to demonstrate the effectiveness of

the method proposed in the dissertation. This chapter also addresses a

number of the previous works with an analysis of their advantages and

disadvantages.

1.1 Background concepts

1.1.1 Fuzzy clustering

Before introducing the fuzzy set, it is necessary to know the classical

set. Let X be the space of the objects x, x be a data pattern (element)

of X. A classic set A, A ∈ X, is a set of elements A ∈ X, therefore for

each A ∈ X may or may not belong to set A.

Definition 1.1. Classical set A is a set of element pairs (x, 0) with

x /∈ A or (x, 1) with x ∈ A. With the above definition, we can describe

classical set A through the characteristic function: A = {(x, µA (x)) |x ∈
X}

Where µA (x) is a characteristic function that is defined as follows:

µA (x) =







0, x /∈ A

1, x ∈ A
with ∀x ∈ X
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Definition 1.2. If X is a set of objects x, a fuzzy set A, A ⊆ X is defined

as a set of element pairs of degree as follows: A = {(x, µA (x)) |x ∈ X}

Where µA (x) is a MF for the fuzzy set A [97]. The MF maps each

element x ∈ X to the interval [0, 1].

With this definition, in contrast to classical sets, fuzzy sets have a

MF that allows values between 0 and 1. Thus fuzzy sets are a simple

extension of the classical set in which the characteristic function instead

of only 0 or 1, the MF allows their values to be in the range [0, 1]. The

MF of fuzzy set A, once returned to only 0 or 1, the fuzzy set A becomes

a classical set.

a. Fuzzy c-means clustering

One of the widely used fuzzy set applications is FCM algorithm [7].

This algorithm allows each data element to belong to many different

clusters according to different membership grades.

This algorithm considers MF values based on the distance from each

data pattern to cluster centroids [6]. FCM algorithm model is to optimize

the objective function:

min{Jm(U, V,X) =
c∑

i=1

n∑

k=1

µmikd
2
ik} (1.1)

Where U = [µik]cxn is a fuzzy MF, V = (v1, v2, ..., vc) is a vector of (un-

known) cluster centers, X = {xk,xk ∈ RM , k = 1,..., n}, dik = ‖vi − xk‖.
With the following constraints:

m > 1; 0 ≤ µik ≤ 1;
c∑

i=1

µik = 1;1 ≤ i ≤ c; 1 ≤ k ≤ n (1.2)

The objective function Jm(U, V,X) reaches the smallest value when and
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only if:

vi =
n∑

k=1

µmikxk/
n∑

k=1

µmik (1.3)

µik = 1/
c∑

j=1

(dik/djk)
2/(m−1)

(1.4)

Equations 1.3, 1.4 can be obtained based on the Lagrange multiplier the-

orem with the constraints by Equation 1.2. FCM algorithm will perform

iterations according to Equations 1.3, 1.4 until the objective function

Jm(U, V,X) reaches the minimum value.

b. Possibilistic fuzzy c-means clustering

Possibilistic c-means algorithm (PCM) is proposed by Krishnapuram

and Keller [41], which was introduced to avoid the sensitivity of FCM

algorithm. Instead of using the fuzzy MFs such as FCM, PCM uses

possibilistic MFs to represent typicality by τik, the typicality matrix as

T = [τik]cxn.

The PCM model is the constrained optimization problem:

min {Jη(T, V ;X, γ) =
c∑

i=1

n∑

k=1

τ ηikd
2
ik +

c∑

i=1

γi

n∑

k=1

(1−τik)η} (1.5)

Where T = [τik]cxn is a possibilistic MF, V = (v1, v2, ..., vc) is a vector

of cluster centers, γi > 0 is a user-defined constant. With the following

constraints:

η > 1; 0 ≤ τik ≤ 1;
n∑

k=1

τik = 1; 1 ≤ i ≤ c; 1 ≤ k ≤ n (1.6)

Krishnapuram and Keller also suggests using the results of FCM algo-

rithm as a good way to initialize PCM algorithm, and the parameter γi

should be calculated according to the following equation:

γi = K
n∑

k=1

µηikd
2
ik/

n∑

k=1

µηik (1.7)
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Where µik is the fuzzy membership from the results of FCM algorithm,

K is a user-defined constant (usually selected by 1).

FCM and PCM are the most popular approaches of fuzzy cluster-

ing and possibilistic clustering, respectively. However, they suffer from

drawbacks such as high sensitivity to noise and difficulty in working

with overlapping data. PFCM algorithm [67] is a hybrid algorithm be-

tween FCM and PCM inheriting the advantages of both FCM and PCM.

PFCM algorithm has two types of MFs, including the fuzzy MF in FCM

algorithm and the possibilistic MF in PCM algorithm.

PFCM model is the constrained optimization problem:

Jm,η(U, T, V,X, γ) =
c∑

i=1

n∑

k=1

(aµmik + bτ ηik)d
2
ik +

c∑

i=1

γi

n∑

k=1

(1− τik)
η

(1.8)

Where X = {xk,xk ∈ RM , k = 1,..., n} and U = [µik]cxn is a fuzzy parti-

tion matrix, which contains the fuzzy membership degree, T = [τik]cxn is

a typicality partition matrix, which contains the possibilistic member-

ship degree, V = (v1, v2, ..., vc) is a vector of cluster centers, m is the

weighting exponent for fuzzy partition matrix and η is the weighting

exponent for the typicality partition matrix. γi > 0 are constants given

by the user.

Subject to the constraints:

m, η > 1; a, b > 0; 0 ≤ µik, τik ≤ 1;
c∑

i=1

µik = 1;
n∑

k=1

τik = 1; 1 ≤ i ≤ c; 1 ≤ k ≤ n

(1.9)

The objective function Jm,η(U, T, V,X) reaches the smallest value with

the constraints 1.9 when and only if:

vi =

(
n∑

k=1

(aµmik + bτ ηik)xi/
n∑

k=1

(aµmik + bτ ηik)

)

(1.10)
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µik = 1/
c∑

j=1

(
d2ik/d

2
jk

)2/(m−1)
(1.11)

τik = 1/
(

1 + (bd2ik/γi)
1/(η−1)

)

(1.12)

In which, with the constraints 1.9, Equations 1.10 and 1.11 achieved in

the same way as FCM algorithm, Equation 1.12 achieved in the same

way as PCM algorithm.

1.1.2 Interval type-2 fuzzy c-means clustering

A T2FS in X is denoted Ã, and its membership grade of x ∈ X is

µÃ(x, u), u ∈ Jx ⊆ [0, 1] [37], [57], which is a T1FS in [0, 1]. The elements

of domain of µÃ(x, u) are called primary memberships of x in Ã and

memberships of primary memberships in µÃ(x, u) are called secondary

memberships of x in Ã.

Figure 1.1: The T1FS, blurred T1FS and T2FS with uncertainty [56]

Definition 1.3. A T2FS, denoted Ã, is characterized by a type-2 MF

µÃ(x, u) where x ∈ X and u ∈ Jx ⊆ [0, 1], i. e. ,

Ã = {((x, u), µÃ(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (1.13)
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or

Ã =

∫

x∈X

∫

u∈Jx

µÃ(x, u))/(x, u), Jx ⊆ [0, 1] (1.14)

in which 0 ≤ µÃ(x, u) ≤ 1.

At each value of x, say x = x′, the 2-D plane whose axes are u and

µÃ(x
′, u) is called a vertical slice of µÃ(x, u). A secondary MF is a vertical

slice of µÃ(x, u). It is µÃ(x = x′, u) for x ∈ X and ∀u ∈ Jx′ ⊆ [0, 1], i. e.

µÃ(x = x′, u) ≡ µÃ(x
′) =

∫

u∈Jx′

fx′(u)/u, Jx′ ⊆ [0, 1] (1.15)

in which 0 ≤ fx′(u) ≤ 1.

T2FSs are called an IT2FSs if the secondary MF fx′(u) = 1 ∀u ∈ Jx

i. e. an IT2FS is defined as follows:

Definition 1.4. An IT2FS Ã is characterized by an interval type-2 MF

µÃ(x, u) = 1 where x ∈ X and u ∈ Jx ⊆ [0, 1], i. e. ,

Ã = {((x, u), 1)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (1.16)

Figure 1.2: The MF of an IT2FS [45]

Uncertainty of Ã, denoted FOU, is union of primary functions i. e.

FOU(Ã) =
⋃

x∈X Jx. Upper/lower bounds of MF (UMF/LMF), denoted

µ̄Ã(x) and Ã(x), of Ã are two type-1 MF and bounds of FOU [58].

IT2FCM is an extension of FCM algorithm by using two fuzziness pa-

rameters m1,m2 to make FOU, corresponding to upper and lower values
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of fuzzy clustering [30]. The use of fuzzifiers gives different objective

functions to be minimized as follows:

Jm1
(U, V,X) =

N∑

k=1

C∑

i=1

um1
ik d

2
ik and Jm2

(U, V,X) =
N∑

k=1

C∑

i=1

um2
ik d

2
ik

(1.17)

In which dik = ‖xk − vi‖ is the Euclidean distance between the pattern

xk and the centroid vi, C is number of clusters and N is the number

of patterns. Upper/lower degrees of membership, ūik and uik are deter-

mined as follows:

ūik =







1/
C∑

j=1

(dik/djk)
2/(m1−1)

if1/
C∑

j=1

(dik/djk) <
1
C

1/
C∑

j=1

(dik/djk)
2/(m2−1)

otherwise
(1.18)

uik =







1/
C∑

j=1

(dik/djk)
2/(m1−1)

if1/
C∑

j=1

(dik/djk) ≥ 1
C

1/
C∑

j=1

(dik/djk)
2/(m2−1)

otherwise
(1.19)

In which i = 1, C, k = 1, N .

Because each pattern has a membership interval as the upper ū and

the lower u, each cluster centroid is represented by the interval between

vL and vR. The algorithm to find cluster centroids is the enhanced

iterative algorithm and stopping condition algorithm (EIASC) [56]. This

algorithm has been shown to significantly reduce the time of cluster

centroid determination compared to KM and EKM algorithms [56].

EIASC algorithm to find the vRi centroid is described in detail as

follows:

The process to find the vLi centroid is similar to the Algorithm 1.1,

only with changes made in steps 3, 4 and 5. EIASC algorithm to find
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Algorithm 1.1 EIASC algorithm to find the vRi centroid

Input: Dataset X = {xk,xk ∈ RM , k = 1,..., n}, the number of clusters c(1 < c < n), fuzzifier
parameters m1,m2,m.
Output: The centroid matrices vRi .
Step 1: Without loss generality assum that sort n patterns on each of M features in an ascending
order: x1 ≤ x2 ≤ ... ≤ xn (ūik, ik, uik will also change the order corresponding to x1 ≤ x2 ≤ ... ≤ xn).
Step 2: Compute by using equations 1.18, 1.19 and uik = (ūik + uik)/2.

Step 3: Initialize ai =
n∑

k=1

ūikxk; bi =
n∑

k=1

ūik; t = n.

Step 4: Compute
ai = ai + xt(ūit − it); bi = bi + (ūit − uit)
vRi = ai/bi; t = t− 1
Step 5: If vRi > xt stop, else go to Step 4.

the vLi centroid is described in detail as follows:

Algorithm 1.2 EIASC algorithm to find the vLi centroid

Input: Dataset X = {xk,xk ∈ RM , k = 1,..., n}, the number of clusters c(1 < c < n), fuzzifier
parameters m1,m2,m.
Output: The centroid matrices vRi .
Step 1: Without loss generality assum that sort n patterns on each of M features in an ascending
order: x1 ≤ x2 ≤ ... ≤ xn (ūik, ik, uik will also change the order corresponding to x1 ≤ x2 ≤ ... ≤ xn).
Step 2: Compute uik by using equations 1.18, 1.19 and uik = (ūik + uik)/2.

Step 3: Initialize ai =
n∑

k=1

µ
ik
xk; bi =

n∑

k=1

uik; t = 0.

Step 4: Compute
t = t+ 1; ai = ai + xt(ūit − uit); bi = bi + (ūit − uit)
vLi = ai/bi
Step 5: If vLi ≤ xt+1 stop, else go to Step 4.

After obtaining vRi and vLi , a type-reduction operator is applied to

obtain centroid of the ith cluster. We defuzzify the interval set by using

average of vRi and vLi as follows:

vi = (vRi + vLi )/2 (1.20)

For membership grades:

ui(xk) = (uRi (xk) + uLi (xk))/2, i = 1, ..., C (1.21)

in which

uLi =
M∑

l=1

uil/M, uil =







ūi(xk) if xil uses ūi(xk)forv
L
i

ui(xk) otherwise
(1.22)
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uRi =
M∑

l=1

uil/M, uil =







ūi(xk) if xil uses ūi(xk)forv
R
i

ui(xk) otherwise
(1.23)

Cluster centroids is computed in the same way of FCM as follows:

vi =
N∑

k=1

umikxk/
N∑

k=1

umik (1.24)

Next, defuzzification for IT2FCM is conducted as if ui(xk) > uj(xk) for

j = 1, ..., C and i 6= j then xk is assigned to cluster i.

Algorithm 1.3 Interval type-2 fuzzy c-means algorithm (IT2FCM)

Input: Dataset X = {xk,xk ∈ RM , k = 1,..., n}, the number of clusters C(1 < C < n), fuzzifier
parameters m1,m2,m, and t = 0;
Output: The membership matrix U and the centroid matrix V .

Step 1: Initialize the centroid matrix V (t) = [v
(t)
i ], V (t) ∈ RMxC by choosing randomly from the

input dataset X.
Step 2: Compute U (t) by using Equations 1.18, 1.19, 1.21, 1.22 and 1.23).
Step 3: Repeat
3.1 t = t+ 1
3.2 Update the centroid matrix V (t) = [v

(t)
1 ,v

(t)
2 , ..., v

(t)
C ] by using the Algorithm 1.1 or 1.2.

3.3 Compute U (t) by using Equations 1.18, 1.19, 1.21, 1.22 and 1.23).
3.4 Assign data xk to the ith cluster if uik ≥ ujk, j = 1, ..., C; j 6= C.
3.5 Check if max(

∥
∥U (t+1) − U (t)

∥
∥) ≤ ε. If yes then stop else go to Step 3.

Defuzzification: Assign xk to the ith cluster if uik ≥ ujk, j = 1, ..., C; j 6= C.

1.1.3 Some learning methods

a. Semi-supervised method

One of the research directions that many scientists are interested in

is the semi-supervised clustering method [91], which takes advantage

of both supervised and unsupervised methods. They are often used in

cases where the labelling data is limited to monitoring and adjusting the

clustering process.

There are many semi-supervised clustering approach methods, in which

the method of using additional information is commonly used. Yasunori

et al. [102] proposed a semi-supervised fuzzy clustering algorithm with

18



additional information that is used as an additional MF in the objective

function of FCM algorithm.

Accordingly, the objective function of FCM algorithm is changed as

follows:

J =
∑∑

|uij − ūij|
m
|xi − vj|2min (1.25)

Where ūij is the additional MF, which is determined by expert experience

or labeled data. Subject to the constraints:

ūij, uij ∈ [0, 1], ∀i = 1, N ; j = 1, C;
C∑

j=1

ūij ≤ 1;
C∑

j=1

uij = 1; (1.26)

The goal of a semi-supervised clustering method is to add additional in-

formation to the clustering process to improve the accuracy of clustering

results.

b. Kernel technique

There are two ways of making linear classifiers non-linear in input

space:

❼ The first is to choose a mapping ϕ which explicitly gives us a kernel

k [78].

❼ The second is choosing a Mercer kernel k which implicitly corre-

sponds to a fixed mapping ϕ [25].

Though mathematically equivalent, kernels are often much easier to

define and have the intuitive meaning of serving as a similarity measure

between data patterns x, y ∈ χ.

The kernel method realizes the clustering in the feature space. First,

a nonlinear map is applied to map the data space to the feature space.

Then, the problem can be easily solved in the high dimensional feature

19



space. The key idea in the kernel is that we have conducted the high

dimensional feature space quickly. The product in the high dimensional

feature space can be calculated through the kernel function in the input

space RP [86].

However, not any symmetric function k can be used as a kernel. The

necessary and sufficient conditions of k: χ ∗ χ → R to be a kernel is

given by Mercers theorem.

Theorem 1.1. Functions of kernels. Let k1: χ∗χ→ R and k2: χ∗χ→
R be any two Mercer kernels. Then, the functions k: χ ∗χ→ R is given

by:

❼ k(x, y) = k1(x, y) + k2(x, y)

❼ k(x, y) = c ∗ k1(x, y) + k2(x, y), ∀c ∈ R+

❼ k(x, y) = k1(x, y) + c, ∀c ∈ R+

❼ k(x, y) = k1(x, y) ∗ k2(x, y)

❼ k(x, y) = f(x) ∗ f(y), ∀f : χ→ R

are also Mercer kernels.

Theorem 1.2. Let k1: χ ∗ χ → R be any Mercer kernels. Then, the

functions k: χ ∗ χ→ R given by:

❼ k(x, y) = (k1(x, y) + θ1)
θ2, ∀θ1 ∈ R+, ∀θ2 ∈ N

❼ k(x, y) = exp(k1(x, y)/δ
2), ∀δ ∈ R+

❼ k(x, y) = exp(−k1(x,x)−2k1(x,y)+k1(y,y)

2δ2
), ∀δ ∈ R+

❼ k(x, y) = k1(x,y)√
k1(x,x)k1(y,y)

are also Mercer kernels.
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The commonly used kernel functions are:

❼ Degree polynomial K (x, y) =
(

〈x, y〉χ
)P

, P ∈ N+

❼ Complete polynomial K (x, y) =
(

〈x, y〉χ + c
)P

, c ∈ R+, P ∈ N+

❼ Gaussian kernel K (x, y) = exp
(

‖x−y‖χ
2∂2

)

, ∂ ∈ R+

There are two main forms of kernel-based fuzzy cluster. The first form

calculates the prototype in feature space and is called KFCM-F (the F

stands for feature space). In the second type, referred to as KFCM-K,

the prototype is retained in the kernel space, and the prototype must

be approximated in the feature space by computing an inverse mapping

from kernel space to feature space [86]. The objective function of KFCM-

F and KFCM-K has the same constraints as FCM as follows:

The KFCM-F objective function:

Q =
c∑

i=1

N∑

k=1

umik(Φ(xk)− Φ(vi))
2

(1.27)

The KFCM-K objective function:

Q =
c∑

i=1

N∑

k=1

umik(Φ(xk)− vi)
2

(1.28)

c. Spectral clustering

Spectral clustering techniques make use of the spectrum (eigenvalues)

of the similarity matrix of the data to perform dimensionality reduc-

tion before clustering in fewer dimensions [89]. The similarity matrix

is provided as an input and consists of a quantitative assessment of the

relative similarity of each pair of points in the dataset [49].

Let X = {x1,x2,...,xn} be the set of n points to be clustered, and S be

the nxn similarity matrix with its elements, sij, showing pairwise simi-
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larities between n points. Let G = (V, S,X) be a weighted, undirected

graph with V representing n nodes (xi ∈ X to be clustered), and S defin-

ing the edges. When constructing similarity graphs the goal is to model

the local neighborhood relationships between the data points. There are

other several popular constructions to transform the data points with

pairwise similarities sij into a graph. S is usually constructed as a Gaus-

sian function based on (often Euclidean) distances, d(xi, xj), between

samples xi, xj:

sij = exp

(

−d
2(xi,xj)

σ2

)

(1.29)

with a global parameter σ determining the decay of the similarity. This

definition requires either a user-set σ value or a selection among many

σ values to find the optimal value. D is a diagonal matrix and its

elements are the degrees of the nodes of G. The degree of each node, di,

is computed with:

di =
∑

j

s(i, j) (1.30)

The Laplacian matrix L, is constructed using the similarity matrix S and

degree matrix D, depending on the approach for graph-cut optimization

[79]. Ng et al. [62] defined a normalized Laplacian matrix, Lnorm, as:

Lnorm = D−1/2SD−1/2 (1.31)

Then Lnorm is used for extraction of k clustering by finding its k eigen-

vectors with the k highest eigenvalues [89]. The spectral clustering al-

gorithm can be summarized as follows:

d. Particle swarm optimization

PSO is an adaptive evolution algorithm based on finding the optimal
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Algorithm 1.4 Spectral clustering algorithm (SC)

1. Calculate a similarity matrix S (1.29), diagonal degree matrix D (1.30), and Lnorm (1.31).
2. Find the k eigenvectors {e1, e2, ..., ek} of Lnorm, associated with the k highest eigenvalues
{λ1, λ2, ..., λk}.
3. Construct the nxk matrix E = [e1, e2, ..., ek] and obtain nxk matrix U by normalizing the rows of

E to have norm 1, i.e. uij = eij/
√
∑

k

e2ik.

4. Cluster the n rows of U with the clustering algorithm into k clusters.

solution for the population; the principle of algorithms comes from the

hunting behaviour of the birds [114]. Each problem will converge at

one or several optimal solutions in the search space, considering each

individual a particle and each set of particles a population.

Each state of the population in the search space is considered as a

candidate solution. An optimal solution is found by moving particles in

the search space according to the position and velocity as the following

equation:

vtk+1
i = w ∗ vtki + c1 ∗ r1 ∗ (Pibest − vki ) + c2 ∗ r2 ∗ (Gibest − vki )

vk+1
i = vki + vtk+1

i

(1.32)

In which, vki is the position of individual ith in kth generation, vtki is the

velocity of individual ith in kth generation, ω is the coefficient of inertia,

c1, c2 is the acceleration coefficient, with a value of 1.5 to 2.5; r1, r2 is the

random number, with values in the range [0, 1].

Algorithm 1.5 Particle swarm optimization algorithm (PSO)

1. for i := 1 to n
1.1 initialize vi and vti.
1.2 Pibest = vi

2. while stop conditions not satisfied do

2.1 v
(t+1)
i = v

(t)
i + vt

(t+1)
i

2.2 update Pibest and Gibest.

2.3 vt
(t+1)
i = ω ∗ vt(t)i + c1 ∗ r1 ∗ (Pibest − v

(t)
i ) + c2 ∗ r2 ∗ (Gibest − v

(t)
i )

In each loop, the optimal position search is performed by updating

the velocity and position of the individual. In addition to each loop, the
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location of each individual is determined by an objective function.

1.1.4 Evaluation methods

Most of the clustering methods are unsupervised methods, so cluster-

ing results do not guarantee a consistently accurate result. There are two

commonly used methods, including the internal evaluation and external

evaluation. In this dissertation, both approaches are used to evaluate

the quality of cluster results.

Internal evaluation: This method considers the degree of separation

between clusters, clustering results are good when the data patterns in

the same cluster are as close to each other as possible and the data

patterns belonging to two different clusters as far as possible. This can

be achieved by comparing the distance between the set of data patterns

of this cluster with the set of data patterns of the remaining clusters.

Also, comparing by the variance value is a good approach, the smaller

the variance shows the high degree of convergence of the objects in the

same cluster. The internal evaluation method is widely used due to

the easy calculation. Commonly used indices are the Bezdek’s partition

coefficient (PC-I), Dunn’s separation index (D-I), Xie and Beni’s index

(XB-I), τ index, Classification Entropy index (CE-I), Cluster separation

index (CS-I) [8,14,55,110], image quality index (IQI) [112], Mean squared

error (MSE) [113], and Sum of Squared Error (SSE).

Large values with indexes PC-I, D-I, and IQI as well as small values

with indexes SSE, CE-I, XB-I, τ − I, CS-I and MSE are good for clus-

tering results. However, to match the proposed method, we modify the

calculation of some indicators accordingly as follows:
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- Partition Coefficient index:

PC − I =
1

n

C∑

i=1

n∑

k=1

(µ2
ik + τ 2ik) (1.33)

- Classification Entropy index: The classification entropy (CE) is similar

to the PC but it measures the fuzziness of the cluster partition only by

Bezdek.

CE − I = −1

n

C∑

i=1

n∑

k=1

(µik log µik + τik log τik) (1.34)

- Dunn’s index is defined as follows:

D − I = min
i=1,...,C

{

min
j=1,...,C;j 6=i

{

δ(Ai, Aj)/ max
t=1,...,C

{∆(At)}
}}

δ(Ai, Aj) = min {d(xi, xj)|xi ∈ Ai, xj ∈ Aj}
∆(At) = max {d(xi, xj)|xi, xj ∈ At}

(1.35)

With d is a distance function, and Ai is the set whose elements are the

data points assigned to the ith cluster. The main drawback with direct

implementation of Dunn’s index is its computation since calculation be-

comes much more computationally expensive as c and n increases. If a

data set contains well-separated clusters, the distances among the clus-

ters are usually large, and the diameters of the clusters are expected to

be small. Therefore, large values of Dunn’s index corresponds to a good

clustering solution.

- Xie and Beni’s index: The index (XB) aims to quantify the ratio of

the total variation within clusters and the separation of clusters by Xie

and Beni.

XB − I =
1

n

C∑

i=1

n∑

k=1

µmikd
2
ik/ min

i,j=1,...,C;i 6=j
‖vi − vj‖2 (1.36)

25



- The index τ is defined as follows:

τ =
1

n

C∑

i=1

n∑

k=1

τ ηikd
2
ik/ min

i=1,...,C;∀xk /∈vi
‖vi − xk‖2 (1.37)

- The CS measure is proposed to evaluate clusters with different den-

sities and/or sizes. It is computed as:

CS − I =

1
c

c∑

i=1

{

1
|Ai|

∑

xj∈Ai

maxxk∈Ai
{d(xj, xk)}

}

1
c

c∑

i=1

{minj∈c,j 6=i {d(vi, vj)}}
(1.38)

Where |Ai| is the number of elements in cluster Ai and d(xj, xk) is a

distance function. The smallest CS measure indicates a valid optimal

clustering.

- MSE (Mean Squared Error index): X = {xi} = {x1, x2, ..., xn} and

V = {vi} = {v1, v2, ..., vc} are the initial pixels and the centroid of the

clusters, respectively. The small MSE index represents clustering results

as well.

MSE(x, v) =
1

n

c∑

i=1

n∑

k=1

(xik − vi)
2

(1.39)

- Sum of Squared Error: SSE index is calculated by the distance from

the object to its cluster centroid, the SSE index is defined as follows.

SSE =
c∑

i=1

1

|Ai|
∑

xj∈Ai

‖xj − vi‖2 (1.40)

- Image Quality Index:

IQI =
4σxyxy

(σ2
x + σ2

y)(x
2 + y2)

(1.41)

With x = 1
N

N∑

i=1

xi, y = 1
N

N∑

i=1

yi, σ
2
x =

1
N−1

N∑

i=1

(xi − x), σ2
y =

1
N−1

N∑

i=1

(yi − y),

σxy =
1

N−1

N∑

i=1

(xi − x)(yi − y). The best value 1 is achieved if and only if

yi = xi, the lowest value of -1 occurs when yi = 2x− xi with i = 1, N .
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External evaluation: This method often uses a labeled data set to com-

pare with cluster results; the advantage of external assessment method is

its high reliability. Besides, statistical data that is stored in government

agencies can also be used as a good way to estimate the effectiveness of

the proposed method. However, the disadvantage is its dependency on

the quantity and reliability of data labeled.

There are several terms that are commonly used along with the de-

scription of accuracy. It is necessary to distinguish between the mis-

classification of positive samples (FP) and negative samples (FN ) and

the correct classification of positive samples (TP) and negative samples

(TN ). Thus, TP+FN is the number of all positive assessments; FP+TN

is the number of all negative evaluations. To assess the accuracy of

the classification results, the performance of the classification was evalu-

ated with the True Positive Rate (TPR) and False Positive Rate (FPR),

which are defined by the following equations:

TPR =
TP

TP + FN
(1.42)

Where TPR is the ratio between the number of true positive assessments

and the number of all positive assessments, TP is the number of correctly

classified data, and FN is the number of incorrectly misclassified data.

FPR =
FP

FP + TN
(1.43)

in which FPR is the ratio between the number of false positive assess-

ment) and the number of all negative evaluations, FP is the number of

incorrectly classified data, and TN is the number of correctly misclassi-

fied data. According to equation 1.42, the value of TPR is as large as
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possible, while the value of FPR is as small as possible (equation 1.43).

Accuracy (ACC) is the most intuitive performance measure. Accuracy

is simply a ratio of the correctly predicted classifications (both True

Positives and True Negatives) to the total test dataset.

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(1.44)

The clustering results or classification quality are shown in the indi-

cators TPR, FPR, and Accuracy. The efficient algorithms have a larger

values TPR, Accuracy and smaller FTR value.

We also compared the correct classification rate on the number of la-

beled pixels according to the land-cover. It is calculated by the following

equations:

P ercentageclassi = N true
i /Ni

P ercentagetotal = N true/N
(1.45)

Where P ercentageclassi, P ercentagetotal are the correct classification rate

according to the land cover and the correct classification rate for the

entire area; N,Ni are the number of labeled pixels on the entire area

and the i cluster; N true, N true
i are the number of labeled pixels correctly

classified on the entire area and on the i cluster, i = 1, 2, ..., c.

The algorithms selected for comparison include the pre-improvement

algorithms and the algorithms that have a similar approach to the pro-

posed methods (unsupervised and semi-supervised). The content of the

dissertation only focuses on developing unsupervised and semi-supervised

fuzzy clustering techniques on the assumption that there are no or very

little labeled data.
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The purpose of the comparison method is to prove the effectiveness

of the proposed method, or the approach of the dissertation has better

accuracy than before improvement. Finally, to evaluate the applicability

in practice, the results are compared with the best results when classified

on Erdas software, which is widely used in Vietnam and around the

world.

1.2 Related works

1.2.1 Overview of fuzzy clustering

Generally, clustering methods can be categorised by one of two ways:

hard clustering and soft clustering (fuzzy). In hard clustering, each data

pattern only belongs to a single cluster, while in fuzzy clustering, each

data pattern can simultaneously belong to many clusters with different

proportions. One of the widely used hard clustering algorithms is the

k-Means. This algorithm is constrained by the requirement that clusters

do not overlap and separate well, which many types of data cannot meet.

Fuzzy sets theory is first introduced in 1965 by L. A. Zadeh [97],

and they have become a major research area in many sciences and have

been widely applied in many fields. The widely used fuzzy clustering

algorithm is fuzzy c-mean (FCM). The original concept was proposed

by Bezdek [6]. This method was later improved and applied in the ge-

ographic data analysis problems which had shown fuzzy partitions in

geographic data regions [7]. FCM algorithm has advantages in describ-

ing uncertain data. However, they are sensitive to noise and outliers.

Moreover, their MFs are crisp, and they can not fully describe the types

of data whose membership is not a crisp one or data with fuzzy MFs.
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Recently, the commonly used method to improve accuracy is semi-

supervised. The advantage of this method is that it can be utilized in

cases where very little labeled data is available. Figure 1.3 shows the

number of publications per year, including citations and patents when

searching for the term ”semi-supervised fuzzy” and ”semi-supervised

fuzzy in RS”1. Noticeably, the number of studies on semi-supervised

fuzzy clustering and semi-supervised fuzzy clustering in RS is increasing

rapidly from 2015 to 2020.

Figure 1.3: The number of papers, citations and patents on the term ”semi-
supervised fuzzy”

A review of previous studies indicated that, most fuzzy cluster-based

approaches were an extension of FCM algorithm [21]. According to

FCM algorithm, MF values are calculated by the distance between data

patterns and cluster centres. There are various ways to determine the

distance between the data pattern and cluster centres, which is most

commonly used as the Euclidean distance. This distance is preferable

with spherical clusters but less desirable with in cases where complex

shapes and overlapping data are involved [7].
1Data from https://scholar.google.com/ on Feb 6, 2021
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There are many different approaches to improving FCM algorithm,

such as using kernel technique [24, 104]; using the complementary in-

formation [4, 103, 108]; using the semi-supervised method [13, 51, 95];

hybridization with other algorithms [43, 47, 102], etc. Recently, type-

2 fuzzy sets (T2FSs) and interval type-2 fuzzy sets (IT2FSs) extended

from original type-1 fuzzy sets (T1FSs) have shown the advantages in

handling uncertainties [36, 45]. It has been developed and applied in

many different problems [56, 60], including RS image analysis [69, 94].

The kernel fuzzy c-means clustering (KFCM) algorithm was proposed

to overcome the above drawbacks by mapping input data into an ap-

propriate space using a nonlinear function [23, 27]. This approach has

received considerable attention because kernels make it possible to map

data into Hilbert feature space with a higher dimensional to increase

the representable capability of a linear clustering [105]. There are two

typical kernel-based fuzzy clustering approaches: one with the proto-

types located in the feature space (KFCM-F) and the other where the

prototypes are distributed in the kernel space (KFCM-K).

A number of studies were conducted using kernel technique in clus-

tering [78,87]. Girolami [25] proposed a kernel-based clustering method

for a wider variety of clusters; Tzortzis and Likas [85] also introduced

an algorithm based on kernel methods to deal with the cluster initial-

ization problem. Later, Zhang and Chen [98] proposed the kernel-based

fuzzy c-means (KFC) algorithm, which allows for incomplete data as

well. Graves and Pedrycz [23, 24] launched a comprehensive compara-

tive analysis of kernel-based fuzzy clustering and fuzzy clustering.
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Because of the advantages of clustering methods based on the ker-

nel techniques, these algorithms have been applied in many different

fields, particularly in image processing. Several studies and applica-

tions, including the kernelized FCM clustering (KFCM) [104] used a

kernel-induced distance metric and a spatial penalty on MFs. A novel

modified kernel FCM (NMKFCM) [93] algorithm based on conventional

KFCM incorporates the neighbour term in its objective function.

Recently, the density-based spatial clustering of applications with

noise (DBSCAN) has been commonly used [5, 39]. This algorithm re-

quires only one input parameter and supports the users in determining

an appropriate value for it. It discovers clusters of arbitrary shape and

divides high-density areas into cluster without depending on data size. In

terms of implementation, this method is limited by the fact that optimal

radius of the density function around each pixel is hard to determine. To

overcome these limitations, Peherstorfer et al. [73] presented a grid-based

density estimation method to improve the speed of clustering. Chen et

al. [11] improved DBSCAN algorithm by expanding the clusters which

use the bound of the objects to reduce the computation time. These

improvements significantly reduce clustering time.

A variant of the fuzzy clustering based on the possibilistic approach

was first proposed in [40]. This method determines a possibilistic par-

tition with the possibilistic membership to define the typicality degree

of the data pattern. One major drawback of this method is the diffi-

culty in separating similar clusters. For improvement, Zhang et al. [100]

proposed a possibilistic approach based on c-means clustering (PCM) to
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deal with similar clusters. However, users of PCM still have difficulty

in selecting parameters, and this approach is not effective with clusters

that contain complex structures and shapes.

Subsequently, in 2005, Nikhil et al. [67] proposed a possibilistic fuzzy

c-means (PFCM) algorithm. PFCM is a hybridization algorithm of PCM

and FCM algorithm to make use of the advantages of both the aforemen-

tioned algorithms. Although, PFCM can overcome the coincident cluster

problem of PCM and the outliers of FCM, it still suffers from the draw-

backs of T1FS, such as difficulty in selecting parameters and sensitivity

to noise. A generalized entropy-based PFCM algorithm (GEPFCM) is

proposed by Askari et al. [2] for clustering noisy data. The main objec-

tive of GEPFCM is to determine accurate cluster centres of noisy data

by generalizing entropy c-means (ECM) combined with PFCM.

One of the other popular approaches to improving the accuracy of

fuzzy clustering algorithms is to use the semi-supervised method. The

semi-supervised algorithm introduced by Yasunori et al. [91] can be

viewed as a typical algorithm in using additional information to im-

prove the accuracy. Yin et al. [92] developed a novel semi-supervised

metric-based fuzzy clustering algorithm called SMUC by introducing

metric learning and entropy regularization simultaneously into the con-

ventional fuzzy clustering algorithm based on prior membership degrees.

Mai and Long [51] introduced a semi-supervised FCM clustering (SFCM)

algorithm for the change detection problem on multi-spectral satellite

images. The additional information from labeled pixels is added in the

objective function to adjust cluster centroids and reduce the ability to
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fall into local optimization. Zhang et al. [101] introduces another semi-

supervised clustering approach for kernel FCM algorithm (SSKFCM).

Accordingly, the global optimization is obtained through repeatedly up-

dating the fuzzy memberships and the optimized kernel parameter. How-

ever, it is difficult to choose the number of kernels for kernel-based meth-

ods, which affects both accuracy and computational complexity.

Furthermore, an approach using an ensemble of semi-supervised clas-

sifiers were proposed for change detection in remotely sensed images [77]

by using multiple classifier systems in semi-supervised (learning) frame-

work instead of a single weak classifier. In the semi-supervised change

detection method, Yuan et al. [95] suggested a new distance metric learn-

ing framework by abundant spectral information in noisy hyperspectral

image condition. Liu et al. [50] proposed a novel semi-supervised SVM

(PS3VM) model using the self-training approach to solve the problem of

RS land-cover classification.

Currently, many optimization methods do not need to use the deriva-

tive of objective functions. These methods are often called evolutionary

methods [56] or methods of biological inspiration [72] such as EP, GA,

PSO, simulated annealing, differential evolution, ant colony optimiza-

tion, gravitational search, etc. These methods tend to be stronger than

derivative-based methods because the process of finding a globally opti-

mal solution is repeated many times until convergence is achieved.

The standard fuzzy clustering methods are also dependent upon the

initialization of centroids and the selection of parameters. It is easily

stuck in a local optimization [43,54,114]. To deal with this issue, Zhang
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et al. [102] proposed a hybrid method of fuzzy clustering and PSO to

find the optimal parameters. Lilin et al. [47] proposed an improved fuzzy

clustering method based on a self-adaptive cell genetic algorithm.

These bio-inspired methods usually require a large number of loops to

find the optimal solution, and they need a significant amount of time to

evaluate the objective function for each candidate. If the calculation time

is not subject to constraints, these are potent methods. The advantage

of PSO algorithm is its faster convergence than GA algorithm, which is

suitable for large data sets such as satellite image data. Besides complex

calculations, the disadvantage of using the derivative is the fact that the

calculation will change as the upper MF or lower MF cause changes to

the mathematical equation on the specified domain. Moreover, they are

easily stuck at a local extreme [7, 37].

Despite their widespread use, existing fuzzy clustering methods still

face some of the following issues [90]: (1) the Euclidean distance tends

to work poorly if the importance of the features is different and (2) it is

difficult to determine the optimal parameter for the objective function.

(3) the fuzzy clustering based on T1FSs is not able to fully describe

uncertainties because their MFs are crisp. Therefore, they cannot avoid

the disadvantages of T1FSs.

1.2.2 Overview of type-2 fuzzy clustering

Over the years, there has been a significant increase in the study of

high-level fuzzy logic types; especially the use of general type-2 and

interval type-2 fuzzy sets. Figure 1.4 shows the number of publications

per year, including citations and patents when searching for the term
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”type-2 fuzzy” and ”type-2 fuzzy in RS”2 from 2015 to 2020.

Figure 1.4: The number of papers, citations and patents on the term ”type-2 fuzzy”

T2FS is an extension of the type-1 fuzzy set (T1FS) to deal with

the uncertainty data [34, 37] which is applied in many fields, including

satellite image classification [60, 64]. While two-way MFs characterize

T1FSs, wherein each pattern of T1FS has a membership grade that

is a crisp number in [0, 1]. T2FSs are characterized by self-fuzzy MFs,

meaning that the membership grade for each pattern of a T2FS is a fuzzy

set in [0, 1] [36, 45]. MFs of T2FSs are three dimensional and include a

footprint of uncertainty (FOU), it is the new third dimension of T2FSs

and the footprint of uncertainty that make it possible to directly model

and handle uncertainties [35, 37]. The T2FSs is useful in circumstances

where it is difficult to determine the exact MF for a fuzzy set, which is

helpful in incorporating uncertainties [57].

On the other hand, MF value of a T1FS is a crisp number. For many

types of data patterns, it is difficult to determine the crisp values for

MFs. Once the type-1 MF has been chosen, all uncertainties disappear
2Data from https://scholar.google.com/ on Feb 6, 2021
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because type-1 MF is totally precise [34]. MF of T2FS is self-fuzzy, which

may be modeled uncertainties better than the T1FS. In case MF is crisp,

then T2FSs become T1FSs, the same probability becomes determined

[56].

T2FSs can describe uncertainty better than T1FSs because their MFs

are self-fuzzy. Once there is no uncertainty, then T2FS decreases to a

T1FS, similar to the probability of returning to the determination. The

difficulty in working with T2FSs is highly computational expensive [45].

In fact, the special case that is often used is the interval type-2 fuzzy

set [58] and the clustering algorithm based on IT2FS is the interval type-

2 fuzzy c-means clustering algorithm (IT2FCM) [30].

In the study [60], Melin et al. reviewed some applications of T2FS in

classification and pattern recognition and pointed out that the general

T2FS is limited by high computational complexity [57] and difficulty in

installation. So, in practical applications, IT2FS, the special case of the

general T2FS is more widely used [45, 58]. One of the ways to apply

IT2FS in clustering is to use the interval type-2 FCM clustering algo-

rithm (IT2FCM) [22,30]. In IT2FCM, FOU (footprint of uncertainty) of

T2FS is built by using two fuzzier values to handle uncertainties. Some

studies applying IT2FCM algorithm for RS image clustering problems

can be found in [69, 94].

Recently, there have been some studies improving IT2FCM algorithm.

Accordingly, in [52] and [26], a new distance was introduced to replace

the traditional Euclidean distance in IT2FCM algorithm using both spec-

tral information and spatial information for multispectral RS image clus-
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tering. In [68], SIIT2FCM algorithm expanded from IIT2FCM [52] for

the problem of change detection on multispectral satellite images that

have used the spatial information (SIIT2FCM) and the semi-supervised

method to improve the accuracy of classification results. Some stud-

ies develop IT2FCM algorithm mentioned in [64, 65] using the multiple

kernel technique for data classification.

Besides, Ji et al. [33] introduced an interval-valued PFCM algorithm

using both fuzzy MFs and possibilistic MFs to model the uncertainties.

This method can significantly improve accuracy when compared with

the original PFCM algorithm. Wang et al. [111] proposed a supervised

classification method for the high-resolution RS image based on IT2FS

by analyzing the data characteristics and building an interval type-2 MF

to model the uncertainty of pixels. However, this algorithm requires a

lot of labeled data to train. An improvement from IT2FCM algorithm

for land-cover classification from hyperspectral image data is proposed

by Huo et al. [31], in which, the interval type-2 fuzzy MF is ranked by

the confidence level based on the uncertainty of the spectral information.

1.2.3 Some limitations of the above methods and solutions

In Vietnam, with the introduction of the ”National Program of Space

Science and Technology”3, the government has encouraged the research

and application of science and technology to solving problems related to

satellite images. Some recent studies have applied object-oriented classi-

fication techniques, support vector machines, etc. The land-cover classi-

fication studies from RS data mainly use pixel-based clustering methods
3http://spaceprogram.vast.vn/
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such as minimum distance, maximum likelihood. However, the number

of research projects of exploiting RS image is not commensurate with its

potential and the practical applications are still quite limited.

There are very few studies applying fuzzy sets (T1FS, T2FS) for RS

image analysis [51]. Most of the recent studies involve unsupervised

methods which can be mentioned such as interval type-2 fuzzy cluster-

ing [64,69], collaborative fuzzy clustering [70], fuzzy co-clustering [75,76]

or fuzzy clustering based on granular computing [84]. Furthermore, these

studies only used RS images in natural color combinations [70] or nor-

malized difference vegetation index (NDVI) images [64, 69] to classify,

resulting in data uncertainty that is not fully described. Some hybrid

methods only determine the optimal number of clusters and still have

difficulty determining the optimal fuzzy parameters. The common point

of these studies is that it is challenging to work on large image areas,

unable to leverage the knowledge gained from previous classification re-

sults; and their accuracy is highly dependent on data sampling.

Although the fuzzy theory has been widely used in many problems

[66, 71, 74], they still have limitations such as high computational com-

plexity, especially when using T2FSs; difficulty in choosing the optimal

parameters; sensitivity to noise and outlier elements, etc. Moreover, Eu-

clidean distances in most algorithms are not effective with overlapping

clusters and complex shapes [68, 81].

Firstly, most fuzzy clustering algorithms are unsupervised methods

[22,61], and the desired ac-curacy may not be guaranteed in the cluster-

ing results [49,102]. In contrast, supervised methods require a sufficiently
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large amount of labeled data for training. These methods are usually in-

effective when labeled data is limited. In this case, the semi-supervised

method is a more suitable solution [91]. This method has the advan-

tages of the supervised method and overcomes the disadvantages of the

unsupervised method [77,95]. Many research results on semi-supervised

methods recently in the field of RS image analysis and other areas show

the enormous potential of this method [51,81].

Second, selecting the optimal parameters is an challenging task for

most fuzzy clustering algorithms. A commonly used approach to this is-

sue is the hybridization method between fuzzy clustering and optimiza-

tion techniques such as particle swarm optimization (PSO) [102, 114],

genetic algorithm (GA) [63], evolutionary computation [9], neural net-

works [109].

Third, most clustering algorithms ignore spatial relationships between

data patterns, which are often used in advanced image analysis problems.

Therefore, the study of using additional information in the clustering

process is necessary to improve accuracy [49]. Additional information

can include information about spatial relationships, information about

the density of objects, information about labeled data, so on [86, 107].

Fourth, RS image has high overlapping characteristics, complexly

shaped clusters, and uncertain data. The use of Euclidean measurements

has many limitations when working with data that contain overlapping

clusters. Spatial transformations such as kernel techniques, spectral clus-

tering, principal component analysis are often used to model data and

separate clusters better to make clustering easier [12, 29, 107].
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Keeping some limitations mentioned above in mind, the research and

development of fuzzy clustering algorithms is still a research direction

with great potential. The dissertation focuses on developing fuzzy clus-

tering methods based on fuzzy logic, including T1FS, T2FS. The study

also used optimization techniques and additional information to deal

with the limitations of some previous studies. With the ability to cope

with uncertainty and nonlinear data, fuzzy clustering promises to address

the challenges of RS image processing problems. The experiments were

performed on a multi-spectral satellite image (Landsat-5 TM, Landsat-7

ETM+, Landsat-8, Sentinel-2A) for land-cover classification and change

detection.

1.3 Framework of remote sensing image analysis problem

Figure 1.5 shows the general framework of the proposed algorithms

in the dissertation. In this framework, RS image data is extracted into

components: spectral information, spatial information and labeled data.

Depending on the image data collected, the input for the proposed al-

gorithm may have one, two or all three components.

The proposed algorithm will perform on the input data set, resulting

in data clusters. The clusters are assigned to the corresponding land-

covers based on labeled data samples. The accuracy of classification

results is assessed based on cluster quality measurement indicators and

labeled data (if any).

Experiments are written in Visual C++ 2015 environment using libtiff

library4. Experimental data are taken from the UCI Machine Learn-
4http://www.libtiff.org
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Figure 1.5: Framework of remote sensing image analysis problem

ing Repository library5, the Vietnam National Remote Sensing Center

(VNRSC) and a number of publicly available data sources provided on

the internet6. Before using the proposed methods, data preprocessing

problems such as geometry correction, atmospheric correction are han-

dled by Erdas Imagine software (Version 2016).

The details of the framework consist of the following four main steps:

Algorithm 1.6 General steps of remote sensing image analysis problem

Input: Remote sensing image data, parameters of proposed algorithm
Ouput: Map of land-covers.
Step 1: Pre-processing step for remote sensing image data.
Step 2: Remote sensing image data is clustered by the proposed algorithm
Step 3: Clustering results will be classified into landcover classes.
Step 4: Compute the percentage of the individual regions:

Si = ni/N (1.46)

where Si is the area of the ith region, ni is the number of pixels of the ith region, N is the total
samples of n-bands imagery.

5https://archive.ics.uci.edu/
6http://earthexplorer.usgs.gov/, https://earth.esa.int/
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1.4 Chapter summary

Chapter 1 has introduced an overview of research issues, related back-

ground theories, and reviewing previous work related to the dissertation.

Several commonly used methods to evaluate the accuracy of RS image

classification results are also introduced. In the next chapter, the disser-

tation will present some improvements of FCM algorithm.
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Chapter 2

FUZZY C-MEANS CLUSTERING ALGORITHMS USING
DENSITY AND SPATIAL INFORMATION

This chapter will present improved unsupervised-methods from FCM

algorithm. Algorithms are introduced including DFCM and IFCM.

The main idea behind DFCM is to use density information to deter-

mine initial centroids instead of random initialization.

IFCM is the algorithm that uses information about spatial relation-

ships of pixels to better identify geographical regions. The spectral clus-

tering algorithm is also used in IFCM with the expectation of better

data separation. Each proposed algorithm has a different approach, but

the goal is to overcome some of the limitations that clustering algorithms

are subject to.

2.1 Introduction

Despite it widespread use, FCM still has many limitations, such as

difficulty in parameter selection and poor performance with overlapping

clusters. This chapter will discuss and present some improvements of

FCM algorithm, which uses the information on density and spectral

clustering.

Firstly, the concept of density can be understood as the quantity rep-

resenting the amount of matter in a unit of measure (length, area, vol-

ume) [5]. Usually, the centroid of a cluster is the average numerical value

of the pixels. If the pixel has a high frequency of appearance, that pixel
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is closer to the centroid of the cluster.

The algorithm uses information about the density, which has been

recently used as DBSCAN [39]. It discovers clusters of arbitrary shape

and divides high-density areas into cluster regardless of data size. In

terms of implementation, this algorithm is limited by the difficulty in

finding an optimal radius of the density function around each pixel [73],

[11]. In this chapter, the initial centroids are chosen based on the density

of the pixels.

Secondly, the spectral clustering is a clustering method based on alge-

braic graph theory [89]. The advantage of this method is its capability to

cluster with functional data separation. Spectral clustering is applied in

various fields such as medical, remote sensing, bio-informatics. However,

the raw spectral clustering is often based on Euclidean distance, while

ignoring information about the spatial relationship between pixels. It

suffers from several drawbacks, the inability to determine a reasonable

cluster number and high sensitivity to initial condition and not robust

to outliers.

The Gaussian kernel function is widely used for spectral clustering

which measures the similarity between data points. However, choosing

a suitable scaling parameter in the Gaussian kernel similarity measure

is not an easy task. In this chapter, a robust approach named improved

fuzzy c-means clustering (IFCM) is introduced. The proposed method

combines spectral clustering and fuzzy clustering with spatial informa-

tion to deal with clustering problems on RS image. This method can find

the spatial distribution characteristics of complex data, and can further

45



stabilize clusters. Experimental results show that it can improve the

accuracy and minimize the risk of falling into local optimum.

The next sections of the chapter will provide further details of the

proposed methods.

2.2 Density fuzzy c-mean clustering

In this section we propose a method for clustering satellite imagery

based on density. It consists of two main steps: finding cluster cen-

troid using density, and data clustering using fuzzy c-Means algorithm

(DFCM). The results obtained in this study can be used to potentially

improve classification accuracy of satellite images.

2.2.1 Proposed method

One of the difficulties of clustering algorithms is the initialization of

the initial cluster centroid. This affects the steps taken and results in

clustering, if the centroid of the initiator cluster is too close together

or too far apart, it will quickly lead to local convergence, which nega-

tively affects the accuracy or stability of the clustering algorithm. There

should be an approach to initializing the centroid of clusters that makes

clustering algorithms stable and efficient. In this study, initialization

of cluster center was proposed based on the density of pixels and FCM

algorithm applied to the land cover classification on RS image.

The image data is stored as numeric values, and partition problem is

usually based on the degree of similarity among these values to decide

whether an object belongs to any region in the image. Hence, the key to

determine a pixel belonging to a particular area is based on the similarity
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in spectral values. This measurement is calculated through a distance

function in the color space dik between the pattern xk and the centroid

vi. Meanwhile, the centroid will be in the samples where the density

surrounding the sample data is large.

For the first step, the mean pattern x̄j is computed by the following

equation:

x̄j =
1

n

n∑

i=1

xij, j = 1, d (2.1)

And standard deviation si:

sj =

√
√
√
√

1

n

n∑

i=1

(xij − x̄i)
2
, j = 1, d (2.2)

In which, i = 1, d, X = {x1, x2, ..., xn} , xk ∈ Rd, k = 1, n. Considering

the surrounding of each data point a m-dimensional box with a radius

defined by the standard deviation of r = min
1<j<d

(sj). Density Di of pattern

xi is computed as:

Di =
n∑

j=1

T (r − |xj − xi|) =
n∑

j=1

T (∆r);T (∆r) =







1 ∆r ≥ 0

0 ∆r < 0
(2.3)

Call V a set of pixels in order of density from high to low. Our task is

to find the pixel satisfying the condition: Di
∗ = max

1≤j≤d
(Di).

Put xi into the result set V according to the following equations:

V = V ∪ xi and X = X\xi. If X = ∅ given a set of candidate points V ,

otherwise the process is repeat to find Di .

If V is large, then we can proceed with this algorithm to reduce the

number of candidate clusters. The calculations can be speeded up by

dividing the input data set into subsets, and then the algorithm can be

applied for each subset to find candidates set vi. Call V is the set of
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all candidates, ∪vi = V , apply this algorithm on the V set. The initial

centroids can be initialized by choosing V according to the density of

candidates.

Algorithm 2.1 Density-based fuzzy clustering algorithm (DFCM)

Input: Data set X with n data sample X = {x1, x2, ..., xn} , xk ∈ Rd, k = 1, n, the number of clusters
is C, stop condition ǫ.
Output: Set of result clusters
Step 1. Calculate sample expectations and standard deviations by Equation 2.1 and 2.2, the radius
of the sphere r = min

1<i<d
(si) in the m-dimensional space.

Step 2. Density calculation Di by Equation 2.3.
Step 3. Find xi by Di

∗ = max
1≤i≤n

(Di), and assign xi to result set by V = V ∪ xi and X = X\xi.

Step 4. Calculate Y = {xj ,r − |xi − xj | ≥ 0} and set X = X\Y . If X = ∅ the go to Step 5, else go
to Step 1.
Step 5. Given set of centroids V = {v1, v2, ..., vC}.
Step 6. Use the fuzzy clustering algorithm to cluster with the initial centroids just found.

The computational complexity of the proposed method includes the

complexity of finding the initial centroid and the complexity of the clus-

tering algorithm. The proposed algorithm needs c loops to finding the

original centroids with the computational complexity being O(ndc). The

computational complexity of FCM algorithm is O(ndcTmax). DFCM al-

gorithm will have a computational complexity of O(ndcTmax). With Tmax

is the maximum number of loops of FCM algorithm, d is the number of

data dimensions.

2.2.2 Experiments

In the experiments, the authors have selected the problem of clas-

sification on RS image to test the proposed algorithm. The accuracy

of the proposed method is compared with the clustering results by the

algorithms k-Means, DBSCAN, and FCM. In that, step 1 is the initial

pre-processing step, select the processing area on the satellite image and

image geometry correction. Implement DFCM algorithm to classifying
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the SPOT-5 and Landsat-7 ETM+ multispectral images into six clusters

(see Algorithm 1.6).

Table 2.1: The various validity indices computed from Landsat-7 ETM+ image

Index MSE IQI SSE D-I CS-I
k-Means 0.2413 0.2843 147.9054 0.1873 0.9819
DBSCAN 0.1721 0.4183 111.7842 0.4762 0.5877
FCM 0.0982 0.5643 86.4691 0.4648 0.4769
DFCM 0.0981 0.5631 69.4386 0.6742 0.2852

Table 2.2: The various validity indices computed from SPOT-5 image

Index MSE IQI SSE D-I CS-I
k-Means 0.3283 0.1987 132.9342 0.2654 1.2766
DBSCAN 0.1982 0.5762 109.7648 0.6811 0.3978
FCM 0.1098 0.6731 79.7632 0.7428 0.4991
DFCM 0.0963 0.6984 65.9823 0.7829 0.3618

In this study, to evaluate the quality of clusters, we considered the dif-

ferent validity indices, including MSE, IQI, SSE, D-I, and CS-I. These

indices are calculated without the fuzzy membership information. It can

be observed that the accuracy of clustering results using k-Means algo-

rithm was very low. Many objects, such as bare soil and water, bare

soil and sparse vegetation were misclassified. The accuracy of land cover

clustering was improved when using DBSCAN and FCM algorithms;

however, it was not sufficiently high. The results of calculation of MSE,

IQI, SSE, D-I, and CS-I indices by four algorithms k-Means, DBSCAN,

FCM and DFCM were shown in Table 2.3 and 2.2. It is apparent that

the DFCM algorithms provided better clustering result than other algo-

rithms, such as k-Means, FCM and DBSCAN.

The computational complexity of DBSCAN is O(n2dTmax). While the

computational complexity of the k-Means algorithms, FCM and DFCM
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is O(ndcTmax), where n is the number of pixels.

DFCM algorithm enables the generation of initial centroids based on

density. However, with clusters that are too close to or overlapping

each other, this algorithm proves ineffective. In the next section, the

dissertation will introduce a new algorithm based on spectral clustering

and information about the spatial relationship between pixels.

2.3 Spatial-spectral fuzzy c-mean clustering

2.3.1 Proposed method

In image analysis, the key to determine a pixel belonging to a spe-

cific area is based on the similarity of these colors, which is calculated

through a distance function in the color space dij = ‖xi − xj‖ e.g. Eu-

clidean distance between the pattern xi and xj. The shape and structure

of the cluster also have a certain influence on clustering results. This

means that together with information about color, the local information

of pixels also needs to be considered when clustering.

Spectral clustering is a clustering method that uses the spectrum

(eigenvalues) of the similarity matrix of the data to perform dimen-

sionality reduction before clustering the data in fewer dimensions. We

use a mask of size nxn to position on the image; the center pixel of the

mask is the considered pixel. The number of neighbouring pixels P is

determined according to the selected type of mask size, i.e. 8 pixels for

mask 3x3, 24 pixels for mask 5x5, 48 pixels for mask 7x7, so on.

To determine the degree of influence of the neighboring pixels for the

center pixels, a local information measure Mi is defined on the basis of
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the distance ‖xi − xj‖ and the attraction distance rij:

Mi =
P∑

j=1

(‖xi − xj‖ rij)−1
/

P∑

j=1

r−1
ij (2.4)

In which ‖xi − xj‖ is the distance of the all neighboring element xj on

the mask to the cluster xi. The distance attraction rij is the squared

Euclidean distance between elements (xi, yi) and (xj, yj) regarding their

positions on the mask. According to the above expression, local informa-

tion of each pixel comes with a higher value if its color is similar to the

color of neighboring pixels and vice versa. We use the inverse distance

r−1
ij because the closer the neighbors xj of the center xi are the more

influence they exert on the result and vice versa.

The idea behind the use of this spatial relationship information can

be outlined as follows: Considering the local nxn mask and for sliding

the mask on the image. Calculating the spatial information of the center

pixel xi based on the location of the center pixel xi with the pixels xj in

the mask and the distance in color space ‖xi − xj‖.
This aims to reduce the effect of noise on the image. From the above

description, this method of similarity measure fully considers the local

information and can eliminate the influence of the image noise.

Set r = max(rij)∀i,j is the radius of the largest circle in which pix-

els that affect the central pixel. Next, without loss of generality, we

standardized similar measurements on the following equation:

M i =
Mi −min (Mi)∀i

max(Mi)∀i −min (Mi)∀i
(2.5)
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From above description, a new similarity measure is defined as follows:

sij = exp

(

−d
2(xi,xj)

r2

)

(2.6)

where sij shows pairwise similarities between pixels xi and xj; d(xi, xj) =

‖xi − xj‖ is the Euclidean distance between xi and xj; r is the radius

of the largest circle in which pixels affect the central pixel. Similarity

matrix sij is usually constructed according to the equation 2.6.

With degree matrix D, it is established by adding local spatial infor-

mation of each pixel, the degree of each pixel, di, is computed with:

di =M i ∗
∑

j

s(i, j) (2.7)

From the above description, the new Laplacian matrix Lnew, is con-

structed using the new similarity matrix S and new degree matrix D:

Lnew = D−1/2SD−1/2 (2.8)

Figure 2.1 is a schematic diagram of the implementation steps of IFCM

algorithm.

The main steps of the proposed method are given as follows:

Algorithm 2.2 Improved fuzzy c-means algorithm (IFCM)

Input: Matrix size used to calculate local spatial information, number of clusters c, ǫ, Tmax, t = 0.
Output: Clustering results C1, C2, ..., Cc with Ci = {xj|uij ∈ ci}. Evaluate accuracy, assign color to
layers, and display results.
Step 1. Calculate local information measure Mi by Equation 2.5.
Step 2. Calculate a new similarity matrix S by Equation 2.6.
Step 3. Calculate a diagonal degree matrix D by Equation 2.7.
Step 4. Calculate a new matrix Lnew by Equation 2.8.
Step 5. Find the c eigenvectors {e1, e2, ..., ec} of Lnew, associated with the c highest eigenvalues
{λ1, λ2, ..., λc} and define the c dimensional space Y = (yi)i=1,...,n ∈ Rc.
Step 6. Running FCM algorithm on new space
6.1 t++
6.2 Calculates the function value uij by Equation 1.4.
6.3 Update centroids ci, i = 1, ..., c by Equation 1.3.
6.4 Calculate the J function value.
6.5 Checks the stop condition: If max{

∥
∥J (t+1) − J (t)

∥
∥ } ≤ ε||(t > Tmax) go to Output, otherwise

return to Step 6.
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Figure 2.1: Diagram of the implementation steps of IFCM algorithm

With this approach, the new algorithm will overcome the challenges in

the selection of parameters σ and pepper salt noise reduction in the im-

age. This can increase the accuracy of clustering results by the spectral

clustering algorithm.

It is a flexible class of clustering algorithms that can produce high-

quality clusterings on small data sets, but has limited applicability to

solve large scale problems due to its computational complexity of O(n3d).

The computational complexity of determining spatial information isO(nd)

and FCM algorithm is O(ndcTmax). Thus, the computational complexity

of IFCM algorithm is O(n3d).
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2.3.2 Experiment

The test data is Landsat-7 ETM+ remote sensing image taken in

Hanoi central area in 20091, coordinates from (105038′38.8289”E, 21007′5.3254”N)

to (105058′53.5268”E, 20058′14.9711”N) with an area of 564.13km2 (see

Figure 2.2).

Figure 2.2: Results of land-cover classification in Hanoi area, FCM (a), ISC (b),
IFKM (c) and the IFCM (d)

The results of land cover classification were shown in Figure 2.2, in

which Figure 2.2(a, b, c and d) are classification results of FCM, ISC,

IFKM and IFCM proposed algorithm, respectively. Whereas, IFKM is

the improvement algorithm of fuzzy k-means [Pub 1].
1https://earthexplorer.usgs.gov/
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Figure 2.3: Remote sensing image in Hanoi center

Table 2.3: Performance of the FCM, ISC, IFKM and the IFCM algorithms

Index FCM ISC IFKM IFCM
MSE 0.1469 0.1497 0.1483 0.1108
IQI 0.7290 0.7362 0.7879 0.9022
DI 0.1022 0.1043 0.1085 0.1279
CSI 1.0081 0.8772 0.7139 0.4887
SSE 32.5587 31.1285 22.3652 18.8745
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In this study, to evaluate the quality of clusters, we considered the

different validity indices, such as MSE, IQI, DI and CSI. The calcula-

tion results of IQI, MSE, DI and CSI indices by four algorithms FCM,

ISC, IFKM and IFCM were shown in Table 2.3. The proposed IFCM

algorithm gives the best results in all five indicators.

The advantages of the proposed algorithms is clearly demonstrated

with its capability of reducing noise on the image. Test results show that

proposed algorithm has high segmentation accuracy and significantly re-

duces the computational complexity of classical spectral clustering al-

gorithm and through experimental results, according to the visual and

validity indexes MSE, IQI, DI and CSI, basically IFCM for sharper image

quality, better noise reduction.

2.4 Application

2.4.1 SAR image segmentation

The proposed method is tested on SAR images. In particular, SAR

image of the oil spill area on the Gulf of Mexico in 2010.

Synthetic Aperture Radar (SAR) used to obtain high-resolution im-

ages from broad areas of terrain [81]. SAR is capable of operating under

inclement weather conditions, day or night. SAR images have wide ap-

plications in RS and mapping of the surfaces of both the Earth and other

planets [63]. There are many other applications for this technology. from

environmental monitoring, earth-resource mapping, surveillance and tar-

geting information to military operations, oil spill classification [114], etc.

However, SAR image clustering represents a major challenge in RS appli-

cations due to the influence of the speckle noise (see Fig. 2.4). Therefore,
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conventional methods will not be inefficient with speckle noise. To test

the proposed algorithm, the SAR image is used to classify the oil spill

on the sea.

(a) (b)

Figure 2.4: Spill oil area on Envisat ASAR image in Gulf of Mexico (a) 26April2010,
(b) 29April2010

Test data include Asar Envisat images taken of a spill oil area in

Gulf of Mexico on 26April2010 (2.4a) and 29 April 2010 (2.4b), with co-

ordinates (0014′02.75”N , 0003′56.39”E to 0004′27.33”N , 0022′13.94”E),

covering an area of 23.32 hectare. Oil stains can be easily recognized

on Fig. 2.4a with clearer boundaries, whereas in Fig. 2.4b, the contrast

between the surrounding waters and the boundaries of oil stains is not

clear, many parts showing mixed areas of water and oil stains because

the oil stains have long existed on the sea.

Classification results are shown in Fig. 2.5 in the Gulf of Mexico

on 26April2010, FCM, ISC [48], DFCM and IFCM algorithm with Fig.

2.5a, Fig. 2.5b, Fig. 2.5c and Fig. 2.5d, respectively. A high level of

noise exists on Fig. 2.5a, Fig. 2.5b and Fig. 2.5c, especially, on Fig.
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(a) (b)

(c) (d)

Figure 2.5: Oil spill classification results from the Envisat ASAR image in Gulf of
Mexico on 26April2010

2.5a. Classification results on Fig. 2.5d shows that the noise is almost

nonexistent and the water layer spill area is also clear than other results.

Table 2.4: Indicators for evaluating oil stain classification results on 26April2010

Index FCM ISC DFCM IFCM
MSE 0.1871 0.1212 0.1189 0.0986
IQI 0.4595 0.7851 0.8876 0.8968
DI 0.0186 0.0561 0.0604 0.0659
CSI 1.1872 0.8725 0.7628 0.6521
SSE 32.7884 17.4663 16.4726 15.3742
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(a) (b)

(c) (d)

Figure 2.6: Oil spill classification results from the Envisat ASAR image in Gulf of
Mexico on 29April2010

Fig. 2.6 shown classification results in the Gulf of Mexico on 29April2010

by algorithms FCM, ISC, DFCM and IFCM in Fig. 2.6a, Fig. 2.6b, Fig.

2.6c and Fig. 2.6d, respectively. It is apparent that a relatively high level

of noise reduction has been achieved on all the results in Fig. 2.6 because

SAR image data has relatively little pepper salt noise (see Fig. 2.6b).

However, a large amount of information about the oil stains on the Fig.

2.6a, 2.6b and 2.6c are mistaken for noise, therefore undetectable. Test
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result with our algorithm on Fig. 2.6d shows that not only is noise re-

duction possible, but oil stains classification result is also more complete

and clearer.

Table 2.5: Indicators for evaluating oil stain classification results on 29April2010

Index FCM ISC DFCM IFCM
MSE 0.1761 0.1082 0.0864 0.0082
IQI 0.4862 0.6823 0.8635 0.9447
DI 0.0372 0.0598 0.0749 0.0872
CSI 1.5786 0.8873 0.7786 0.5619
SSE 15.6455 8.4629 8.4871 8.4631

Table 2.4 and table 2.5 indicate the value of the index assessing the

quality of classification results. Overall, the proposed algorithm pro-

duced better results than the algorithms FCM, ISC and DFCM. Based

on the value of this index, FCM algorithm for clustering result produced

the poorest results, followed by algorithms ISC and DFCM.

2.4.2 Landcover classification

The second experiments are more visible and could be performed on

multi-spectral RS images. The pixel information in these images is ac-

quired from different temporal sensors. The proposed method is tested

using Landsat 7-ETM+ images taken at Lam Dong province in the

central-highland of Vietnam, see Fig. 2.7, (107028′24.61”E, 12013′04.66”N

to 108054′52.39”N , 11037′36.87”E), with an area is of 9958.6km2 and a

capacity of 116.89Mb.

The image data are clustered to 6 classes as follows: Class 1: Surface

water ; Class 2: Bare land ; Class 3: Grass, shrubs ; Class

4: Planted forests, low woods ; Class 5: Perennial tree crops ;

Class 6: Dense vegetation .

60



(a) (b)

Figure 2.7: Landsat 7-ETM+ image of Lamdong area: a) Color Image; b) NDVI
Image

To compare the proposed method with the previously studied meth-

ods, empirical tests were performed on four methods FCM, ISC, DFCM

and IFCM (which is the proposed method in this dissertation). The

output images are shown in Figure 2.8 below.

Table 2.6: Indicators for evaluating land-cover classification results of Lamdong area

Index FCM ISC DFCM IFCM
MSE 0.1763 0.1075 0.0982 0.0918
IQI 0.5623 0.6732 0.7849 0.8721
DI 0.0123 0.0365 0.0428 0.0452
CSI 1.2512 0.7784 0.7750 0.7751
SSE 98.6389 78.8599 52.8752 46.3986

To evaluate the accuracy of the proposed method, several validity

indexes such as MSE, IQI, DI, CSI, and SSE were considered. Table 2.6

shows that IQI index and DI index are the largest with 0.8721 and 0.0452

on IFCM algorithm, while these figures for DFCM algorithm are 0.7849
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(a) (b)

(c) (d)

Figure 2.8: Land-cover classification results of Lamdong area

and 0.0428, respectively. These indicators decrease to 0.6732 and 0.5623;

0.0365 and 0.0123, respectively on algorithms ISC and FCM. With MSE

index, the largest value is 0.1763 when tested on FCM algorithm, and

descending on algorithms ISC, DFCM and IFCM. The lowest value is
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0.0918 on IFCM algorithm. The smallest value of CSI index is 0.7750

with DFCM algorithm, while the values achieved by IFCM algorithm and

ISC algorithm are 0.7751 and 0.7784, respectively. It is apparent that

these variations are insignificant. Meanwhile, the CSI index with FCM

algorithm is 1.2512. Thus, based on the value of the index clustering

quality evaluation, in most cases, the IFCM algorithm was shown to

have produced better clustering results than the algorithm DFCM, ISC

and FCM did.

Despite possessing clear advantages over the original algorithms, two

algorithms DFCM and IFCM are subject to serious drawbacks in that

they are unsupervised and sensitive to clusters that are too close to-

gether.

2.5 Chapter summary

This chapter presents two algorithms DFCM, IFCM. The main idea

of DFCM algorithm is to use density information as a preprocessing

step to select initial centroids while IFCM algorithm is based on local

information and spectral clustering to improve data separation, thereby

making clustering easier and more accurate.

The proposed methods in this chapter were published in the Inter-

national Journal of Fuzzy System Applications (2019, Scopus, Q2)

[Pub7], Vietnam Journal of Science and Technology (2018) [Pub1], and

the international conference ACIIDS (2018) [Pub3].

Although it has overcome some disadvantages of FCM algorithm, the

implementation of the proposed algorithms is restricted by the difficulty

in choosing parameters for fuzzy algorithms. Furthermore, as FCM clus-
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tering is based on fuzzy set type-1, they cannot fully describe the char-

acteristics of the data, especially data with a high level of uncertainty.

In the next chapter, the dissertation presents the semi-supervised mul-

tiple kernel fuzzy c-means clustering algorithm and hybrid algorithms

between fuzzy clustering and PSO technique to overcome this problem.

64



Chapter 3

IMPROVED FUZZY C-MEANS CLUSTERING
ALGORITHMS WITH SEMI-SUPERVISION

In this chapter, the author presents three semi-supervised fuzzy clus-

tering methods including SMKFCM, SFCM-PSO and GIT2SPFCM-

PSO.

The SMKFCM algorithm combines labeled and unlabeled data to im-

prove performance. The labeled patterns are used to calculate the cen-

trality of clusters considered as the initial centroids, which are added to

the objective functions.

The idea behind SFCM-PSO algorithm is to use the combination of

SFCM and PSO techniques in the clustering process to determine the op-

timal parameters for each specific problem where SFCM is an extension

of FCM, constructed by adding additional information to the clustering

process.

Furthermore, from this approach, GIT2SPFCM-PSO algorithm has

been extended from PFCM using type-2 fuzzy sets. The results show

that they can handle uncertainty better than previous methods. Most of

the experiments are applied to the problem of the land cover classification

of RS images.

3.1 Introduction

In numerous clustering problems, highly complex shaped data repre-

sent a challenge in separating patterns. In the previous studies, kernel-
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based methods have exhibited the effectiveness in the partition of such

data. This chapter also proposed a robust semi-supervised clustering

method based FCM algorithm using multiple kernel technique [106],

called SMKFCM, in which the initial centroids are directly used in the

clustering process.

The hybridization of algorithms often aims to take advantage of the

two previous methods to establish a new, more efficient ones. There

are many optimization techniques and their variations. In RS image

analysis, the semi-supervised technique can improve the accuracy of un-

supervised fuzzy clustering due to the addition of some labeled data [51].

However, these algorithms are often subject to difficulty in choosing pa-

rameters and initial centroids [68]. The selection of fuzzy parameters

and cluster centroids can be made by optimization techniques [72] such

as PSO, GA and their variations. This dissertation chooses PSO as one

of the techniques to hybridize. The advantage of PSO is that it is easier

to install than the optimal algorithms of the genetic family. Although

PSO does not guarantee convergence, but to reduce the risk, for each ex-

periment, the we performed ten runs and selected the best results among

them.

The results obtained from the SFCM-PSO algorithm serve as a sug-

gestion for the authors to continue researching the hybrid method be-

tween the interval type-2 fuzzy clustering algorithm and PSO technique.

Therefore, algorithm GIT2SPFCM-PSO is an extension and continua-

tion of the research direction from the result of SFCM-PSO algorithm.

Moreover, land cover classification studies are still limited because
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most fuzzy clustering algorithms and their variants are unsupervised

methods [102]. The clustering process only uses information about the

spectral value of the object. Objects also have additional information

such as information about spatial relationships, information on shape,

information about labeled data, etc. Therefore spectral information does

not adequately describe the object characteristics, and clustering results

may not achieve the desired accuracy.

On the other hand, the goal of the clustering process is to optimize the

objective function. Therefore, besides the use of additional information

to propose a new and more suitable objective function, the hybrid of

optimization techniques to select the optimal parameters will provide

additional stability and efficiency to the algorithm.

SMKFCM algorithm can be used to both clustering and classification

problems. The experimental results show that SMKFCM algorithm can

improve the accuracy compared to the semi-supervised kernel fuzzy c-

means (S2KFCM), the semi-supervised fuzzy c-means (SFCM) and the

self-trained semi-supervised SVM algorithm (PS3VM).

In this chapter, hybrid approaches of fuzzy clustering and particle

swarm optimization method based on the semi-supervised technique for

RS imagery analysis (SFCM-PSO, GIT2SPFCM-PSO) is proposed to

overcome the above disadvantages. The main idea of this method con-

sists of two stages. Stage 1 involves the utilization of labeled data to

refine the objective function by adding constraints, which can stabilize

the algorithm and reduce the risk of falling into local optimization. Stage

2 uses PSO technique to determine the optimal parameters. This tech-
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nique is integrated into the clustering process. Once this process ends

the final parameters will be the optimal parameters. This study can also

be used in cases where very little data has been labeled.

Experiments on different types of RS images show that the proposed

methods can significantly improve the accuracy of classification results

compared to the original methods.

3.2 Semi-supervised multiple kernel fuzzy c-means clustering

3.2.1 Semi-supervised kernel FCM clustering

Land cover maps are a vital input variable to many types of environ-

mental research and management. While they can be produced automat-

ically by machine learning techniques, to achieve high levels of accuracy,

these techniques require substantial training data which are not always

available.

In most cases, fuzzy clustering algorithms will determine the prototype

of clusters depending on the structure of patterns. When a small number

of patterns in the entire datasets could be labeled, the semi-supervised

clustering algorithms are implemented on the combination of the labeled

and unlabeled data to improve performance.

In the proposed method, the labeled data was used to calculate the

rudimentary centroid of clusters, denoted by V ∗. The idea of the ap-

proach is to use the rudimentary centroids V ∗ to adjust centroids to

move closer to V ∗ by extending to semi-supervised kernel FCM in fea-

ture space (SKFCM-F).

The measure of the difference between the rudimentary clusters and
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the final clusters are determined as follows:

‖φ(v∗i )− φ(vi)‖2 = k(v∗i , v
∗
i ) + k(vi, vi)− 2k(vi, v

∗
i ) (3.1)

The distance dij between the pattern xj and the prototype vi in the

kernel space is computed as follows:

‖φ(xj)− φ(vi)‖2 = k(xj, xj) + k(vi, vi)− 2k(xj, vi) (3.2)

The prototype vi are constructed in the kernel space so it obtains the

objective function as follow:

Jm(U, v) =
c∑

i=1

n∑

j=1

umij

(

‖φ(xj)− φ(vi)‖2 + ‖φ(v∗i )− φ(vi)‖2
)

(3.3)

In which uij satisfies the constraint
c∑

i=1

uij = 1, n is the number of pat-

terns, c is the number of clusters. When minimizing the objective func-

tion, Lagrange multiplier is used to find the solution by the following

function:

L(uij, λj) =
c∑

i=1

n∑

j=1

umij

(

‖φ(xj)− φ(vi)‖2 + ‖φ(v∗i )− φ(vi)‖2
)

+
n∑

j=1

λj(1−
c∑

i=1

uij)

(3.4)

Calculate the first derivative of function L(uij, λj) follow uij and vi:

∆uijL(uij, λj) = 0

m.um−1
ij (‖φ(xj)− φ(vi)‖2 + ‖φ(v∗i )− φ(vi)‖2)− λj = 0

2m.um−1
ij (2− k(xj, vi)− k(v∗i , vi))− λj = 0

uij =
(

λj
2m(2−k(xj ,vi)−k(v

∗
i ,vi))

)1/(m−1)

(3.5)

With the constraint
c∑

i=1

uij = 1 we have:

uij =








1
2(2−k(xj ,vi)−k(v

∗
i ,vi))

c∑

j=1

[
1

2(2−k(xj ,vi)−k(v
∗
i ,vi))

]1/(m−1)








1/(m−1)

(3.6)
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vi =

n∑

j=1

umij [k(xj, vi)xj+k(v
∗
i , vi)v

∗
i ]

n∑

j=1

umij [k(xj, vi)+k(v
∗
i , vi)]

(3.7)

With Gaussian kernel k(x, y) = exp(−‖x− y‖2/r2), it obtains the equa-
tions of membership function 3.6 and prototypes 3.7. Following are the

detailed steps of SKFCM-F algorithm.

Algorithm 3.1 Semi-supervised kernel fuzzy c-means clustering (SKFCM-F)

Input: Given a set of n patterns X = {xi}ni=1 and the desired number of clusters c, number of loops
Tmax.
Output: Membership matrix U = {uij}n,ci,j=1.
Step 1: Estimate the rudimentary centroids from labeled data.
1.1 Extract labeled patterns from dataset.
1.2 Calculating centroid V ∗ = {v∗i }, v

∗

i ∈ Rn from the labeled patterns.
Step 2: Initialization
2.1 Choose fuzzifier m, (1 < m), error ǫ.

2.2 Initialization membership matrix U
(0)
ij .

Step 3:
3.1 t++;
3.2 Update centroids Vj = [vj1,vj2,...,vjc] by using Equation 3.7.

3.3. Compute the membership matrix U
(t)
ij by Equation 3.6.

3.4 IF max(
∣
∣U (t) − U (t−1)

∣
∣) < ε or t > Tmax THEN go to step 4 ELSE go to Step 3.

Step 4: Report results clustering.
4.1 Return (t) and assign a pattern to a cluster.
4.2 Report results of clustering.

3.2.2 Semi-supervised multiple kernel FCM clustering

It should be noted that kernel-based methods depend on the usage

of a suitable kernel function. If the kernel method only selects a single

kernel from a predefined group, then it is sometimes not insufficient to

represent all datasets. Besides, individual features of the selected input

data can result in different clusters corresponding to individual kernels.

Therefore, combining multiple kernels from a set of basis kernels has

been proposed to better refine clusters rather than using a single kernel

method. The most important key in the kernel method is how to use

the formulation of suitable kernel function [106], [20], [29], [96]. Thus,
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kernel fuzzy clustering algorithms are necessary to be extended with the

aggregation of kernel functions from different sources. The additional

information of centroids was also added to the objective function to

adjust the centroids through the iterative computing process.

The kernel-based methods deal with the difficulty in the combination

or selection of the best kernels among the extensive possibilities. This

combination is often strongly influenced by prior knowledge about the

data and by the patterns which are discovered. Besides, many real-world

clustering problems often contain many useful features when combined

together. Therefore, it is necessary to use multiple kernels with their

weights to aggregate for features from different sources into a final ker-

nel function. A semi-supervised multiple kernel fuzzy c-means clustering

(SMKFCM) algorithm is extended from SKFCM-F by combining differ-

ent kernels to obtain better results.

SMKFCMmaps the data from the feature space into kernel space H by

using transform functions: ψ = {ψ1, ψ2, ..., ψM} where ψk(xi)
Tψk(xj) =

Kk(xi, xj) and ψk(xi)
Tψk′(xj) = 0 |k 6= k′

The prototypes vi is constructed in the kernel space, the general frame-

work of SMKFCM aims to minimize the objective function like SKFCM-

F function:

Jm(U, v) =
c∑

i=1

n∑

j=1

umij

(

‖ψ(xj)− ψ(vi)‖2 + ‖ψ(v∗i )− ψ(vi)‖2
)

(3.8)

In which,
c∑

i=1

uij = 1, n is the number of patterns, c is the number of

clusters, ψ(x) = ω1ψ1(x) + ω2ψ2(x), ..., ωMψM(x).

Subject to ω1+ω2+ωM = 1 and ωk ≥ 0, ∀k, where vi is the centroid of
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the ith cluster in the kernel space, (ω1, ω2, ..., ωM) is a vector of weights for

features, respectively. The distance dij concerns the jth data (pattern)

and theith prototype:

‖ψ(xj)− ψ(vi)‖2 = (ψ(xj)− ψ(vi))
T (ψ(xj)− ψ(vi)) (3.9)

Some learning algorithms could automatically adjust the weights ωk on

a typical kernel learning method like multiple-kernel regression and clas-

sification which have been studied. Here, the dissertation proposes a

similar algorithm for SMKFCM using linearly combined kernels in the

typical kernels such as Gaussian kernel and polynomial kernel by intro-

ducing the Lagrange term of the constraint of weights into the objective

function, defined as follows:

L(vi, uij, ωk) =
c∑

i=1

n∑

j=1

umij

(

‖ψ(xj)− vi‖2 + ‖v∗i − vi‖2
)

+
n∑

j=1

λj(1−
c∑

i=1

uij) +
n∑

j=1

βj(1−
M∑

k=1

ωk)
(3.10)

with αj, βj are constants. Optimizing the objective function 3.10 is

expressed as:

∂L(vi, uij, ωk)

∂vi
= 0,

∂L(vi, uij, ωk)

∂uij

= 0,
∂L(vi, uij, ωk)

∂ωk
= 0 (3.11)

Solving the system of Equations 3.11 gives:

vi =
n∑

j=1

umij (ψ(xj) + v∗i )

/

2
n∑

j=1

umij (3.12)

uij =

(
1

m((ψ(xj)−vi)
2+(v∗i −vi)

2)

)1/(m−1)

c∑

i=1

(
1

m((ψ(xj)−vi)
2+(v∗i −vi)

2)

)1/(m−1)
(3.13)

ωk =

βj + 2
c∑

i=1

umij viψk(xj)

2
c∑

i=1

umij ψ
T
k (xj)ψk(xj)

(3.14)
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With ω1 + ω2 + ωM = 1 and after some mathematical transformations

we have:

βj = 2
M∑

k=1

c∑

i=1

umij ψ
T
k (xj)ψk(xj)






1−

M∑

k=1

c∑

i=1

umij viψk(xj)

c∑

i=1

umij ψ
T
k (xj)ψk(xj)







(3.15)

Now it can calculate the distance dik concerning the jth data and the ith

prototype as:

d2ij = ‖ψ(xj)− ψ(vi)‖2 = ψT (xj)ψ(xj)−2ψ(xj)ψ(vi)+ψ
T (vi)ψ(vi) (3.16)

By replacing the vi in Equation 3.12 and ψT (x)ψ(y) = K(x, y) =
M∑

k=1

ωkkk(x, y)

in the above equations, we have:

d2ij =
M∑

k=1

ω2
kKk(xj, xj)−

M
∑

k=1

n
∑

j=1
umij ω

2
k(Kk(xj ,xj)+Kk(xj ,v

∗
i ))

n
∑

j=1
umij

+

M
∑

k=1

n
∑

j=1
u2mij ω2

k(Kk(xj ,xj)+2Kk(xj ,v
∗
i )+Kk(v

∗
i ,v

∗
i ))

(

n
∑

j=1
umij

)2

(3.17)

βj = 2
M∑

k=1

c∑

i=1

umijKk(xj, xj)






1−

M∑

k=1

c∑

i=1

n∑

j=1

umij (Kk(xj, xj) +Kk(xj, v
∗
i ))

2
n∑

j=1

c∑

i=1

umijKk(xj, xj)







(3.18)

d2ij =

βj +
c∑

i=1

n∑

j=1

umij (Kk(xj, xj) +Kk(xj, v
∗
i ))

2
n∑

j=1

umijKk(xj, xj)
(3.19)

To construct multi-kernel, we consider Gaussian kernel as K1 and Poly-

nomial kernel as K2:

K1(x, y) = exp(−‖x− y‖2/r2), K2(x, y) = (xTy + d)p (3.20)

Where r, d ∈ R+, p ∈ N+.
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Algorithm 3.2 Semi-supervised multiple kernel fuzzy c-means (SMKFCM)

Input: Given a set of n patterns X = {xi}ni=1, a set of kernel functions {Kk}Mk=1, and the desired
number of clusters c, number of loops Tmax.
Output: Membership matrix U = {uij}n,ci,j=1 and weights {ωk}Mk=1 for the kernels. To construct
multiple kernels, we use the Gaussian kernel as K1 and Polynomial kernel as K2.
Step 1: Estimating centroids from the labeled data
1.1 Extracting the labeled patterns from the dataset.
1.2. Calculating the rudimentary centroids V ∗ = [v

∗

i ], v
∗

i ∈ Rn from labeled patterns.
Step 2: Initialization
2.1 Choose fuzzifier m, (1 < m), error ǫ.
2.2 Initialize membership matrix U (0).
Step 3:
3.1 t++;
3.2 Calculate constants βj by using Equation 3.18.
3.3 Update weights ωk by using Equation 3.14.
3.4 Calculate the distance in kernel space dij by using Equation 3.19.
3.5 Update memberships U (t) by using Equation 3.13.
3.6 Verify if the termination condition is satisfied:
IF (|U (t) − U t−1|) < ǫ or t > Tmax THEN go to step 4 ELSE go to step 3.
Step 4: Report results clustering.
4.1. Return (t) and ωk with k = 1, 2, ...,.
4.2. Assign a pattern to a cluster and report the results of clustering.

Following are the detailed steps of SMKFCM algorithm.

The computational complexity of SMKFCM isO(n2dcM) per iteration

with M is the multiplier used.

3.2.3 Experiments

The proposed method has been experimented on a number of different

data sets including RS image data and data from the UCI Machine

Learning Repository library1. Details are presented in experiments 1 and

2. The parameters and terminal conditions: The number of iterations

L = 30 and the error ǫ < 0.00001, the fuzzy parameter m is set to 2. Set

δ2 = 4 in kernel K1 and d = 10 and p = 2 in kernel K2.

Experiment 1

The first experiment, was implemented on the well-known datasets

from UCI, consisting of Urban Land Cover (ULC) with 168 instances and
1https://archive.ics.uci.edu/
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148 attributes, Landsat Satellite Data Set (LSDS) with 6435 instances

and 36 attributes, Forest Type Mapping (FTM) with 326 instances and

27 attributes. To evaluate the classification results, we deployed the

previous algorithms such as SFCM [51], S2KFCM [99], and PS3VM [82]

to compare with the proposed algorithms (SMKFCM and SKFCM-F).

The aim of the classification, ULC data is to distinguish between

three classes of water, ponds, lakes; plants and buildings, roads. FTM

data is to distinguish three types of forest, and LSDS dataset consists of

the multi-spectral values of pixels in 3x3 neighbourhoods in a satellite

image, and the classification associated with the central pixel in each

neighbourhood. The aim is to predict this classification, given the multi-

spectral values.

The classifiers were performed 30 times with the averages calculated

as the final results. The labeled data accounted for 5%, 10%, 15% and

30% of the dataset ULC, LSDS, and FTM, respectively.

Table 3.1: Classification results by the algorithms SFCM, S2KFCM, PS3VM,
SKFCM-F and SMKFCM

Data Rate(%) SFCM S2KFCM PS3VM SKFCM-F SMKFCM
ULC TPR 88.21 ± 3.12 92.86 ± 2.98 95.56 ± 1.56 93.16 ± 2.42 96.32 ± 1.32
c=3 FPR 4.31 ± 1.14 3.84 ± 1.85 1.61 ± 0.92 1.38 ± 0.63 1.15 ± 0.46

ACC 95.66 ± 1.52 96.56 ± 1.31 98.13 ± 1.04 97.81 ± 0.99 98.34 ± 0.12
LSDS TPR 90.99 ± 3.92 92.45 ± 3.01 96.98 ± 0.98 94.24 ± 2.69 97.79 ± 1.02
c=2 FPR 3.98 ± 1.46 4.11 ± 1.19 1.07 ± 0.41 1.24 ± 0.65 1.04 ± 0.28

ACC 96.68 ± 1.63 97.13 ± 1.62 98.57 ± 0.78 97.37 ± 1.04 99.02 ± 0.31
FTM TPR 89.05 ± 2.92 93.27 ± 2.91 96.32 ± 1.02 93.18 ± 1.02 96.48 ± 0.97
c=3 FPR 3.19 ± 1.68 3.02 ± 1.14 1.23 ± 0.87 1.09 ± 0.68 1.09 ± 0.68

ACC 96.67 ± 1.87 96.92 ± 1.32 99.03 ± 0.55 96.89 ± 1.28 99.21 ± 0.49

Table 3.1 shows that the correctly classifying ratios obtain the best

values from SMKFCM algorithm on datasets ULC, FTM and LSDS. The

SFCM algorithm produces the classes with the lowest rate.
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On the datasets, LSDS, ULC and FTM, SMKFCM algorithm obtain

the largest TPR of 97.79%, 96.32% and 96.48%, which are higher than

the other algorithms. Meanwhile the FPR produced by the SMKFCM

algorithm obtains the smallest values of 1.15% and 1.09%, respectively.

For LSDS dataset, SMKFCM algorithm obtains the best TPR of 97.79%

in comparison with 96.98% from PS3VM and the FPR of 1.02%, 1.07%,

and 1.04% from SMKFCM.

For the Acc index, the proposed method results in more than 98%

accuracy for all data sets. Specifically for ULC data set, Acc reached

98.34% compared with 95.66% to 98.13%; with LSDS data set, Acc

reached 99.0%2 compared with 96.68% to 98.57%; for FTM data set,

Acc reached 99.21% compared with the 96.67% to 99.03% of the other

algorithms, respectively.

In summary, the experiment exhibits that SMKFCM obtains bet-

ter ratios than algorithms including PS3VM, SKFCM-F, S2KFCM, and

SFCM in the all cases on the considered datasets (ULC, FTM, LSDS).

Experiment 2

The second experiment involves the clustering problem on RS image.

The dissertation has proposed using labeled data to adjust the centroid

of the clusters. Besides, the use of kernel techniques allows for better

data separation, which can help improve the accuracy of cluster results.

The second series of experiments involve multi-spectral RS images.

The pixel information is composed of different bands as a feature vec-

tor. The different kernels for pixel intensities are defined by applying

the combined kernel in a multiple-kernel learning algorithm. Landsat-7
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ETM+ satellite image data in three different regions in 2014 was se-

lected for the experiment (see Algorithm 1.6). The spatial resolution of

the imagery is 30m.

In this proposal, the data is divided into two sets consisting of the

labeled and unlabeled components. The labeled data is used to estimate

the centroid of clusters. These centroids are called the rudimentary

centroids, denote V ∗ = [v
∗

1, v
∗
2,..., v

∗
c], which are used into processing the

RS image clustering.

Hanoi capital area (11024′02.32”N , 107036′26.74”E) to (10050′24.61”N ,

108009′50.57”E) with an area of 3161.304km2. The two bands No. 3 and

No. 4 are displayed in Fig. 3.1.

Bao Loc city area, Lam Dong province (11018′29.13”N , 108018′10.57”E)

to (11058′29.63”N , 107001′44.93”E) with an area of 1707.31km2 and the

total number of pixels is 1, 897, 008.

Thai Nguyen city area (105037′16.0190”E, 21037′39.8284”N) to (105059′49.7296”

21028′58.9896”N) with an area of 614.43km2 and the total number of

pixels is 411, 045.

The kernel-based proposal algorithm uses Gaussian kernel K1 for pixel

intensities and the multiple kernel-based proposal algorithm uses Gaus-

sian kernel K1 and polynomial kernel K2 for pixel intensities. Thus,

uij and V values can be calculated according to the equations 3.12 and

3.13 in SKFCM-F and uij, βj, ωk, dij according to the equations 3.14,

3.18 and 3.19 in Algorithm SMKFCM. The labeled data corresponds to

around 5% to 10% for each class.

We use two bands No. 3 and No. 4 to compute NDVI index which is
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Figure 3.1: Landsat-7 ETM+ satellite image of Hanoi capital: a) Band 3 (RED); b)
Band 4 (NIR)

the most common measurement to assess the growth and distribution of

the vegetation on the earth’s surface.

NDV I =
NIR−RED

NIR+RED
(3.21)

In which, NIR (Near-Infrared) and RED (Visible Red) corresponding to

band No. 3 and band No. 4 in the 7-bands of Landsat-7 ETM+ imagery,

respectively. The value of NDVI index of a pixel assumes in the range

[−1, 1]. The no-vegetable pixel takes an amount around zero. The value

of almost 1.0 means the highest density of vegetables. Low values of

NDVI (around 0.1) correspond to barren areas of rock, sand. Moderate

values represent shrub and grassland (0.2 to 0.3), while high values indi-

cate temperate and tropical rainforests (0.6 to 0.8). Conveniently, NDVI

data is converted to the pixel-based image by the following equation:

P ixelvalue = (NDV I + 1) ∗ 127 (3.22)
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Figure 3.2: Land-cover classification results of Hanoi capital (a) NDVI Image; (b)
SFCM; (c) S2KFCM; (d) PS3VM; (e) SKFCM-F; (f) SMKFCM.

We have implemented classification on the different algorithms such as

SFCM, S2KFCM, PS3VM, SKFCM-F and SMKFCM.

To estimate the performance, we considered several validity indexes

such as the PC-I, D-I, S-I, XB-I, and CE-I [8], [14], [110], [55]. Note that

the validity indexes are proposed to evaluate the quality of clustering.

Algorithms producing better results are associated with smaller values

of D-I, S-I, CE-I, XB-I and the larger value of PC-I.

The experimental results are shown in Fig. 3.2 in which (a), (b), (c),

(d), (e) and (f) are NDVI image, the classification results of SFCM,
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Table 3.2: Land-cover classification result of Hanoi area by SMKFCM algorithm

Class The number of pixels Percentage (%) Square (hectares)
1 211 491 6.021 19034.211
2 663 663 18.894 59729.678
3 888 081 25.283 79927.249
4 689 270 19.623 62034.268
5 652 001 18.562 58680.125
6 408 054 11.617 36724.869

S2KFCM, PS3VM, SKFCM-F, and SMKFCM, respectively. Table 3.2

and Fig. 3.3 shows the detailed classification produced by SMKFCM

algorithm according to the number of pixels, the percentage and the

area of the individual classes.

Table 3.3 shows the comparative results between SFCM, S2KFCM,

PS3VM, SKFCM-F and SMKFCM and the data of the Vietnam Na-

tional Remote Sensing Center (VNRSC) on each class (in percentage

%). The significant difference between the algorithm SFCM, S2KFCM,

PS3VM, SKFCM-F and SMKFCM is utilized to determine the area of re-

gions; the largest difference is around 11%. Comparing the experimental

results with VNRSC data, we also consider the accuracy by estimating

the percentage of the class with the lowest deviation, the largest devi-

ation and the average deviation of six layers (in percentage %). The

largest differences produced by SFCM, S2KFCM, SKFCM-F, PS3VM

are 10.78%, 7.743%, 3.77%, 1.925%, respectively. Meanwhile, the value

obtained by SMKFCM algorithm is below 1.0% (see Table 3.4).

Besides, the validity indices in Table 3.4 show that the proposed al-

gorithm obtains better results than other algorithms in most cases. The

validity indices produced by SMKFCM algorithm produces better values

than the ones run by different algorithms, i.e., the PC-I, IQI, CE-I, XB-
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Table 3.3: Land-cover classification results of Hanoi area by some algorithms and
VNRSC data

Class VNRSC SMKFCM SKFCM-F PS3VM S2KFCM SFCM
1 5.833% 6.021% 8.361% 6.389% 9.784% 11.234%
2 19.665% 18.894% 16.178% 18.169% 13.175% 10.763%
3 25.041% 25.283% 27.883% 25.517% 32.784% 35.821%
4 19.857% 19.623% 17.234% 19.273% 14.768% 12.428%
5 17.702% 18.562% 21.472% 19.627% 22.313% 23.274%
6 11.903% 11.617% 8.874% 11.026% 7.176% 6.481%

Figure 3.3: Hanoi area: Land-cover classification results by percentage (VNRSC
data, SMKFCM, SKFCM-F, PS3VM, S2KFCM and SFCM)

Table 3.4: The various validity indexes for Hanoi area

Algorithm SFCM S2KFCM PS3VM SKFCM-F SMKFCM
PC-I 0.5821 0.6314 0.7216 0.6464 0.7376
D-I 0.1125 0.2548 0.1093 0.5422 0.5711
IQI 0.2398 0.4877 0.6982 0.6745 0.8759
CE-I 0.9973 0.9287 0.6241 0.8872 0.5098
XB-I 3.8734 2.0831 1.7034 1.9652 1.6912
CS-I 2.7658 1.0346 1.6983 1.7685 1.0645
MSE 12.4676 9.7728 6.9822 5.8271 5.8269
SSE 37.8758 29.8721 25.9833 24.8856 18.8734

Min deviation 5.401 3.951 0.476 2.528 0.188
Max deviation 10.780 7.743 1.925 3.770 0.860

Average deviation 7.2510 5.4352 0.9857 3.0463 0.4302
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I, MSE, and SSE reach values of 0.7376, 0.8759, 0.5098, 1.6912, 5.8269,

and 18.8734, respectively. The PC-I value is lower and higher values of

IQI, CE-I and XB-I correspond to PS3VM, SKFCM-F, S2KFCM, and

SFCM. While, the value D-I index obtains the largest value of 0.5711 by

running SMKFCM algorithm, followed by SFCM, SKFCM-F, S2KFCM,

and PS3VM with values of 0.1125, 0.2548, 0.5422, 0.1093, respectively.

CS-I index achieves the best value of 1.0346 with S2KFCM algorithm.

Table 3.5: Land-cover classification results for Bao Loc area

Class VNRSC SMKFCM SKFCM-F PS3VM S2KFCM SFCM
1 2.08% 2.13% 2.37% 2.49% 3.00% 4.37%
2 10.26% 11.23% 13.83% 11.10% 15.36% 17.50%
3 18.76% 19.81% 21.09% 21.09% 22.76% 25.07%
4 26.84% 27.82% 30.15% 27.94% 31.90% 36.64%
5 23.20% 21.53% 15.31% 18.63% 14.14% 9.95%
6 18.87% 17.48% 17.25% 18.76% 12.83% 6.47%

Table 3.6: The various validity indexes on the Landsat-7 images in Bao Loc

Algorithm SFCM S2KFCM PS3VM SKFCM-F SMKFCM
PC-I 0.4896 0.6482 0.7653 0.6976 0.7784
D-I 0.1061 0.3652 0.1076 0.4982 0.6851
IQI 0.5895 0.7196 0.7972 0.6298 0.7872
CE-I 0.9938 0.9492 0.7862 0.9273 0.4762
XB-I 4.0982 2.8723 1.6982 2.0874 1.3723
CS-I 1.3464 1.0873 1.0374 0.9983 0.8927
MSE 11.8777 8.2712 8.0724 7.9801 7.8185
SSE 40.9842 41.4526 32.7365 30.1553 27.8274

Min deviation 2.297 0.928 0.112 0.298 0.054
Max deviation 13.248 9.061 4.574 7.888 1.667

Average deviation 8.551 5.034 1.562 3.170 1.019

The results produced from the experiment on dataset No. 2 are

demonstrated in Tables 3.5 and 3.6. Table 3.5 shows the percentages

of the individual classes from algorithms of SFCM, S2KFCM, PS3VM,

SKFCM-F and SMKFCM, and VNRSC, in which, the differences be-

tween VNRSC and SMKFCM assume the smallest values. In Table 3.6,

the validity indices produced by SMKFCM algorithm are also the best
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values i.e, the larger values of PC-I, IQI, CE-I, and XB-I. While, the

value D-I index obtains the largest value of 0.6851 by running SMK-

FCM algorithm, followed by SKFCM-F, PS3VM, S2KFCM and SFCM

with values of 0.4982, 0.3652, 0.1076, and 0.1061, respectively.

Table 3.7: Land-cover classification results for Thai Nguyen area

Class VNRSC SMKFCM SKFCM-F PS3VM S2KFCM SFCM
1 2.631% 2.722% 3.778% 3.247% 3.918% 5.702%
2 14.894% 15.592% 18.036% 15.989% 20.028% 22.813%
3 24.458% 25.253% 27.495% 25.979% 29.685% 31.939%
4 17.559% 17.469% 15.813% 16.723% 14.310% 12.827%
5 23.428% 22.869% 20.724% 21.937% 18.436% 15.251%
6 17.029% 16.095% 14.153% 16.125% 13.623% 11.467%

Table 3.8: The various validity indexes on the Landsat-7 images in Thai Nguyen

Algorithm SFCM S2KFCM PS3VM SKFCM-F SMKFCM
PC-I 0.5287 0.5872 0.7987 0.6098 0.8763
D-I 0.1098 0.2987 0.1265 0.3987 0.4272
IQI 0.6898 0.7981 0.7982 0.8733 0.8721
CE-I 0.9652 0.8869 0.5091 0.7898 0.4827
XB-I 5.8936 4.0673 1.9033 2.6732 1.2871
CS-I 2.3827 1.5877 1.8724 0.8727 0.3875
MSE 14.8752 9.1763 9.7686 6.9924 5.9982
SSE 35.4982 31.9566 27.1536 26.1635 13.8375

Min deviation 3.071 1.286 0.616 1.147 0.090
Max deviation 8.177 5.227 1.521 3.142 0.934

Average deviation 6.157 3.882 1.077 2.442 0.528

In the experiment on dataset No. 3, the smallest differences of the

individual classes also come with SMKFCM in Table 3.7. The indica-

tors CS-I, MSE, SSE, CE-I and XB-I for SMKFCM algorithm obtain

the lowest value of 0.3875, 5.9982, 13.8375, 0.4827 and 1.2871, respec-

tively, in Table 3.8 and the PC-I also produce the best result of 0.8763.

Deviation of percentage area from six classes, when compared to data

collected from VNRSC, shows that the smallest average difference of

only 0.528% for SMKFCM algorithm. In contrast, the differences of al-

gorithms PS3VM, SKFCM-F, S2KFCM and SFCM are 1.077%, 2.442%,

83



3.882%, and 6.157%, respectively.

These results demonstrate that SMKFCM produces a better clus-

tering solution than the other algorithms such as PS3VM, SKFCM-F,

S2KFCM, and SFCM. With spatial resolution of 30m, classification re-

sults can be accepted in the quick assessment of land covers, which is

more cost-effective than the traditional methods. These results not only

make predictions about the land cover changes but also support urban

planning, natural resources management, etc.

A small amount of labeled data can improve the quality of the classi-

fication results. This section describes an approach on semi-supervised

fuzzy clustering for satellite images using kernel technique and centroid

information retrieved from the labeled data part.

The kernel techniques used, involve two cases: single kernel func-

tion for all data features and multiple-kernel functions for data features,

i.e. spatial features and Landsat-band valued features. The proposed

method improves the clustering results and overcomes the drawbacks of

the conventional clustering algorithms. The experiments were conducted

on the well-known datasets (ULC, LSDS, FTM) and RS image clustering

on three datasets (Hanoi, Bao Loc and Thai Nguyen) in Vietnam.

3.3 Hybrid method of fuzzy clustering and PSO

3.3.1 Proposed method

Usually, the supervised clustering technique requires large amounts of

labeled data for training. In cases where labeled data is limited; the

method often used is a semi-supervised clustering method.

Ai is the set of pixels that have been labeled for the ith cluster, with
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i = 1, ..., c. Calculation c centroids by the following formula:

v∗i =

|Ai|∑

j=1

pj(Ai)/ |Ai| (3.23)

In which, |Ai| is the number of labeled pixels for the ith cluster, pj is the

jth pixel in Ai.

The objective function Jm of FCM algorithm is changed as follows:

Jm =
n∑

k=1

c∑

i=1

umik[d
2(vi,xk)+d2(vi, v

∗
i )], 1 < m <∞ (3.24)

With d(vi, xk) is the Euclidean distance between the pixel xk and the

cluster centroid vi and d(vi, v
∗
i ) is the distance between the calculated

cluster centroid and the desired cluster centroid, cluster results are good

when this distance is small.

Minimize the objective function Jm, based on the Lagrange method:

Jm =
n∑

k=1

c∑

i=1

umik[d
2(vi,xk)+d2(vi, v

∗
i )]+

n∑

k=1

λk

c∑

i=1

(1− uik) (3.25)

Minimize Lagrange function by computation of derivatives uik and vi,

we have:

uik =







1/(d2(vi, xk) + d2(vi, v
∗
i ))

c∑

j=1

[1/(d2(vi, xk) + d2(vi, v∗i ))]
1/(m−1)







1/(m−1)

(3.26)

vi =

n∑

k=1

umik(v
∗
i + xk)

2
n∑

k=1

umik

(3.27)

Subject to 0 <
n∑

k=1

uik < n; 0 ≤ uik ≤ 1;
c∑

i=1

uik = 1; 1 ≤ k ≤ n; 1 ≤ i ≤ c.

In clustering data, one of the criteria for evaluating results is the

distance between the cluster centers. In this study, we propose a criterion
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for the minimum distance between cluster centers mini 6=j{d2(vi, vj)}. A

large value indicates that the clusters are more separated from each

other.

Therefore, the dissertation proposes an objective function as follows:

F =

n∑

k=1

c∑

i=1

umik[d
2(vi,xk)+d2(vi, v

∗
i )]

mini 6=j{d2(vi, vj)}
(3.28)

Equation 3.28 is used instead of equation 3.25. Clusters are useful when

the numerator is small, and the denominator is large.

In PSO algorithm, particles never die (this is different from GA). Par-

ticles can be viewed as simple agents, passing through the search space

and recording the best solution they discover. The optimization process

of PSO can be accomplished through several steps as follows: Create

an initial swarm, initialize location and velocity of particles; evaluate

particles; update the location and velocity of the particles. An impor-

Figure 3.4: The matrix represents the particles

tant point to consider is how particles is initialized, so it is necessary to

define the structure of the particles. For multi-spectral image including

b bands (b = 3 for color image), the number of cluster is c: V1;V2; ...;Vc
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with Vi = (vij), i = 1; ...; c; j = 1; ...; b, the components are described in

figure 3.4 following the conditions m > 1, vmin ≤ vij ≤ vmax to limit

the search space (vmin = 0, vmax = 255 for 8 bit image or vmax = 65536

for 16 bit image, etc). In the case of parameter fuzzy m, 1 ≤ m ≤ 4.

After each update step of the algorithm, if vij > vmax then vij = vmax, if

vij < vmin then vij = vmin. With b ∗ c components and fuzzy parameter

m, the number of particles to be initialized is b ∗ c+ 1, see Fig. 3.4.

Typically, the position of the particles will be randomly generated

in the search space, and the algorithm will perform a finite number of

iterations of velocity and position updates. Updating the position adds

velocity value. The velocity value represents the speed of movement of

the particles. If velocity is too high, particles can move out of the search

space. Conversely, if velocity is too small, particles are limited, and the

optimum solution hence may not be achieved. Let vtmax and vtmin be the

velocity limits of the particles, in which vtmax value and vtmin value are

selected by experience. Velocity values are limited from vtmin to vtmax:

vtmax =
vmax − vmin

2
, vtmin = −vmax − vmin

2
(3.29)

A constraint is given, if vti > vtmax then vti = vtmax, if vti < vtmin then

vti = vtmin, with i = 1; 2; ...; c ∗ b+ 1.

Two values which need consideration are Pibest and Gibest. Pibest is the

best solution that ith particle has discovered so far. Gibest is the best

global solution, which means that Gibest is the best solution found by the

whole swarm. These values will be updated based on the optimization

of the objective function F , and the process of moving the particles

will change the value of the objective function F . In each iteration, if
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the movement of the particles optimizes the objective function F (the

smaller objective function), then the location of the particle will be saved

by Pibest; the particle that causes the objective function F to reach the

smallest value then the location of that particle will be saved by Gibest.

An important issue in PSO algorithm is the selection of parameters.

Parameters c1 and c2 represent the influence of the best particle solution

and the best global solution. These two parameters are normally set to

2.05, as suggested in the original document of PSO algorithm [38]. The

parameter ω is the inertial coefficient. This value indicates the rate of

change in the velocity of the particle during moving. Common values

range from zero to one. And r1; r2 are the random numbers in the range

of (0, 1).

Details of implementation steps of the hybrid approach of semi-supervised

fuzzy clustering and particle swarm optimization method for RS imagery

analysis (SFCM-PSO) are presented in algorithm 3.3.

Note that if the objective function 3.25 is optimized, SFCM-PSO al-

gorithm becomes FCM-PSO algorithm. Compared to FCM algorithm,

in SFCM-PSO algorithm, the calculation in steps 2.2, 2.4 and 2.5 is quite

simple. The computing complexity of SFCM-PSO algorithm is similar

to that of the FCM algorithm.

3.3.2 Experiments

The proposed method is tested on Landsat-8 OLI and SPOT-5 images.

Experiments are also carried out on algorithms FCM [7], SFCM [51],

FCM-PSO and SFCM-PSO. For the PSO algorithm, c1 = c2 = 2.05; ω =

0.9 and decrease to 0.1 when the maximum number of loops (generation
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Algorithm 3.3 Semi-supervised fuzzy c-means algorithm (SFCM-PSO)

Input: Given a set of n samples X = {xi}ni=1, where A = A1 ∪A2 ∪ ...∪Ac is the set of labeled data
samples, Ai, i = 1, c is a set of labeled data samples for class i.
Output: U = [uik]
Step 1: Initialize swarm
1.1 Calculation c centroids: V ∗ = [v1,v2,...,vc] by Equation 3.23.
1.2 Set the constants: Maximum loop number T, t = 0, c1, c2, ω, r1, r2, ε.

1.3 Create random locations of particles v
(0)
1 ; v

(0)
2 ; ...; v

(0)
c∗b and v

(0)
c∗b+1 (m(0)) within the limits from

vmin to vmax.
1.4 Create random velocity of particles: vt

(0)
1 ; vt

(0)
2 ; ...; vt

(0)
c∗b and vt

(0)
c∗b+1 (vt

(0)
m ) within the limits from

vtmin to vtmax.
1.5 Calculate the value of U by Equation 3.26.
Step 2: Hybrid algorithm of semi-supervised fuzzy clustering and PSO
2.1 t = t+ 1
2.2 v

(t)
i = v

(t)
i + vt

(t)
i , i = 1, ..., c ∗ b+ 1

2.3 Update F by Equation 3.28.
2.4 Update Pibest and Gibest.

2.5 vt
(t+1)
i = ω ∗ vt(t)i + c1 ∗ r1 ∗ (Pibest − v

(t)
i ) + c2 ∗ r2 ∗ (Gibest − v

(t)
i ), i = 1, ..., c ∗ b+ 1

2.6 Update the value of U by Equation 3.26.

2.7 If max(
∥
∥
∥u

(t+1)
ik − u

(t)
ik

∥
∥
∥) < ε or (t > T ) then go to step 3 else go to step 2.1.

Step 3: Finished
3.1 Given U = [uik].
3.2 Defuzzification and assign pixels to the cluster: if uik > ujk for j = 1; 2; ...; c and then xk is
assigned to cluster i.

number) is reached T = 10000. With FCM and SFCM, the maximum

number of loops is set to 100,m = 2 and experimental results were

averaged over 10 runs of the algorithm.

RS imagery is the Landsat and Spot image. Fig. 3.5(a, b) displays

the original images. These are two distinctive areas of land-cover, one

of which is the city centre and the other is a mountainous area.

The data is clustered into 6 classes as follows: Class 1: Surface water

; Class 2: Bare land ; Class 3: Grass, shrubs ; Class 4:

Planted forests, low woods ; Class 5: Perennial tree crops ;

Class 6: Dense vegetation (see Algorithm 1.6).

The clustering results have been evaluated by some validity indexes,

including PC-I, D-I, CE-I, MSE, CS-I, XB-I and IQI. Significant values

are with indexes PC-I, IQI and D-I for good clustering results while
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(a) (b)

Figure 3.5: Study datasets (a. Hanoi center area, b. Chu Prong area)

small values with indexes DB-I, CE-I, CS-I and XB-I for good clustering

results [8], [14], [110], [55].

Experiment 1

Experimental data from Landsat-8 OLI image is the regional centre

of Hanoi, Vietnam (see Figure 3.5a) with eight image bands, so the

number of particles is 49. The size of each image band is 512x512,

and the number of pixels is 262, 144. The number of samples labeled is

7982; 327; 298; 309; 412 and 278 for class 1; 2; 3; 4; 5 and 6 respectively.

Test results on SFCM-PSO algorithm show that m = 2.18642, on FCM-

PSO algorithm show that m = 2.08265 corresponding to the minimum

value of the function F .

Fig. 3.6(a,b,c,d) shows land-cover classification results for Hanoi area

by four algorithms including FCM, SFCM, FCM-PSO and SFCM-PSO,

respectively. Detailed statistical data are shown in Table 3.9 and Table

3.10.
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(a) (b)

(c) (d)

Figure 3.6: Land-cover classification results of Hanoi city center

Table 3.9 shows that SFCM-PSO has better quality clustering than

FCM, SFCM, FCM-PSO algorithms in most cases. SFCM algorithm

gives the best clustering result at IQI index with a value of 0.877036;

SFCM-PSO algorithm is 0.876242. SFCM-PSO algorithm gives better

clustering results than other algorithms in the indexes PC-I, D-I, DB-I,

CE-I, CS-I, MSE, and XB-I.

Table 3.10 shows the correct classification rate on labeled pixels. The
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Table 3.9: Validity indices obtained for Hanoi area

Method XB-I PC-I CE-I D-I IQI CS-I MSE
FCM 0.175231 0.687263 0.562283 0.198275 0.672641 0.037862 11.37661
SFCM 0.187632 0.779824 0.498472 0.276914 0.877036 0.088651 6.982757

FCM-PSO 0.157295 0.576231 0.389745 0.321874 0.862874 0.108743 6.257482
SFCM-PSO 0.128746 0.782632 0.319768 0.348723 0.876242 0.128743 3.877244

Table 3.10: Land-cover classification results by percentage of Hanoi area

Class Samples FCM (True/%) SFCM (True/%) FCM-PSO (True/%) SFCM-PSO (True/%)
Class 1 7982 7343/91.994% 7954/99.649% 7783/97.507% 7978/99.949%
Class 2 327 284/86.850% 313/95.719% 297/90.826% 320/97.247%
Class 3 298 253/84.899% 264/88.591% 276/92.617% 288/96.644%
Class 4 309 288/93.204% 293/94.822% 289/93.528% 295/95.469%
Class 5 412 347/84.223% 382/92.718% 378/91.748% 389/94.417%
Class 6 278 239/85.971% 260/93.525% 263/94.604% 271/97.482%
Sum 9606 8754/91.131% 9466/98.543% 9286/96.669% 9539/99.303%

results show that the proposed method (SFCM-PSO) produces the high-

est accuracy, especially with class 1 (Surface water) with an accuracy of

99.949% while the lowest accuracy of 94.417% is reached with class 5

(Perennial tree crops). This indicates confusion between planted forests,

low woods; perennial tree crops; and dense vegetation. The average

accuracy of the total number of pixels labeled is 99.303% for SFCM-

PSO algorithm, 96.669% for FCM-PSO algorithm, 98.543% for SFCM

algorithm and 91.131% for FCM algorithm.

Experiment 2

The second experiment is performed with images taken of the area of

Chu Prong district, Gia Lai province (Central highlands of Vietnam, see

Figure 3.5b) with three bands of SPOT image, so the number of particles

is 19. RS data used in the classification is the SPOT-5 multispectral

image. The number of samples labeled is 261; 129; 172; 82; 102 and 93 for

class 1; 2; 3; 4; 5; 6 respectively. Test results on SFCM-PSO algorithm
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show that m = 2.37864, on FCM-PSO algorithm show that m = 1.94764

corresponding to the minimum value of the function F .

Fig. 3.7(a, b, c, d) displays the clustering images obtained when

running each of the algorithms on the images of Chu Prong area. The

results in Table 3.11 show that SFCM-PSO has better quality clustering

than algorithms FCM, SFCM, FCM-PSO.

(a) (b)

(c) (d)

Figure 3.7: Land-cover classification results of Chu Prong area

In table 3.11, FCM-PSO algorithm gives the best clustering result at

CS-I index with value 0.476524; SFCM-PSO algorithm is 0.468753 while
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the other clusters show SFCM-PSO algorithm for better clustering.

Table 3.12 shows the correct classification rate on labeled pixels. The

results show that the proposed method (SFCM-PSO) has the highest

accuracy rate, especially with class 1 (Surface water) with the accuracy

of 99.617%, while with class 5 (perennial tree crops), the lowest accuracy

of 96.078% is reached. The average accuracy of the total number of

pixels labeled is 98.093% for SFCM-PSO algorithm, 93.455% for FCM-

PSO algorithm, 97.139% for SFCM algorithm and 84.148% for FCM

algorithm.

Table 3.11: Validity indices obtained for Chu Prong area

Method XB-I PC-I CE-I D-I IQI CS-I MSE
FCM 0.463852 0.338713 0.376192 0.089362 0.752082 0.187465 23.589621
SFCM 0.277341 0.397653 0.327897 0.168431 0.897409 0.366524 11.824844

FCM-PSO 0.221844 0.427562 0.297846 0.148914 0.762653 0.476524 15.974978
SFCM-PSO 0.187651 0.538762 0.276122 0.187235 0.897431 0.468753 11.824844

Table 3.12: Land-cover classification results by percentage of Chu Prong area

Class Samples FCM (True/%) SFCM (True/%) FCM-PSO (True/%) SFCM-PSO (True/%)
Class 1 261 242/92.720% 259/99.234% 258/98.851% 260/99.617%
Class 2 129 110/85.271% 121/93.798% 117/90.697% 126/97.674%
Class 3 172 127/73.837% 167/97.093% 160/93.023% 170/98.837%
Class 4 82 72/87.805% 81/98.780% 77/93.902% 80/97.561%
Class 5 102 80/78.431% 97/95.098% 89/87.255% 98/96.078%
Class 6 93 74/79.570% 89/95.699% 83/89.247% 90/96.774%
Sum 839 706/84.148% 815/97.139% 787/93.445% 825/98.093%

Through two above experiments, based on the indicators XB-I, PC-I,

CE-I, D-I, IQI, MSE and CS-I, in most cases, the proposed algorithm

SFCM-PSO produce better results than other algorithms, namely: FCM-

PSO, SFCM, and FCM. Furthermore, based on the labeled data, the

results classified by SFCM-PSO algorithm for accuracy 99.608% at Hanoi

area and 98.093% at Chu Pong area. This percentage is lower for SFCM,
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FCM-PSO and FCM algorithms.

Fig. 3.8 shows the changes in the value of the function F by the

number of iterations with images of two areas: Hanoi and Chu Prong.

Figure 3.8: The values of the objective function F

Two experimental areas showed that the hybrid method of semi-

supervised fuzzy clustering and particle swarm optimization method for

RS imagery analysis (SFCM-PSO) achieve higher accuracy FCM-PSO,

SFCM and FCM algorithms. The above results have suggested that us-

ing optimization techniques can improve the accuracy of semi-supervised

clustering algorithms.

In the next section, the dissertation will present a hybrid method

between interval type-2 semi-supervised PFCM and PSO technique.

3.4 Hybrid method of interval type-2 SPFCM and PSO

3.4.1 General Semi-supervised PFCM

The section proposes a general semi-supervised PFCM clustering (GSPFCM)

algorithm to improve the clustering quality of PFCM. Our proposed

method can solve problems in which labeled data is much less than un-
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labeled data.

In this part, we present a general semi-supervised algorithm based

on PFCM algorithm. Consider data X = {xk,xk ∈ Rd, k = 1,..., n},
with X =X1 ∪ X2, X1 = [x∗

1, x
∗
2, ..., x

∗
L] is a labeled data set and X2 =

[xL+1, xL+2, ..., xn] is an unlabeled data set (|X1| << |X2|).
From the labeled data set, the centroid constraints V ∗ = [v∗1, v

∗
2, ..., v

∗
c ]

will be calculated by averaging, c is the number of clusters.

The constraint of fuzzy MF U ∗ = [µ∗
ik] is calculated by equation:

µ∗
ik = 1/

c∑

z=1

(
xk − v∗i
xk − v∗z

)
2/(m−1)

(3.30)

In equation 1.12, the T value is a constant defined by the user, but

in the study [41], Krishnapuram and Keller also suggest using fuzzy MF

as a good way to initialize the parameter T according to the following

formula:

γi = K
n∑

k=1

(µik)
η
d2ik/

n∑

k=1

(µik)
η

(3.31)

Where µik is the fuzzy MF value from the results of the equation

3.30, K is a user-defined constant (usually set to 1). The constraint of

possibilistic MF T (∗) = [τ
(∗)
ik ] is calculated by equation 3.31 and 1.12.

From 3 constraints on fuzzy MF U ∗ = [µ∗
ik], possibilistic MF T (∗) =

[τ
(∗)
ik ] and cluster centroids V ∗ = [v∗1, v

∗
2, ..., v

∗
c ], we propose a new objective

function Jm,η(U, T, V,X, γ) as follows:
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Jm,η =
c∑

i=1

n∑

k=1

(a‖µik − µ∗
ik‖

m
+ b‖τik − τ ∗ik‖

η
)(‖vi − xk‖2

+δ‖vi − v∗i ‖
2
) +

c∑

i=1

γi
n∑

k=1

(1− τik)
η

(3.32)

With the constraints:

0 ≤ µik, τik ≤ 1;
c∑

i=1

µik = 1;
n∑

k=1

τik = 1; 1 ≤ i ≤ c; 1 ≤ k ≤ n (3.33)

Parameters a, b and δ are user-defined constants, representing the

importance of constraints, m, η > 1; a, b > 0; δ ≥ 0. δ = 0 when v∗i does

not exist.

Set D2
ik = ‖vi − xk‖2 + δ‖vi − v∗i ‖

2
.

GSPFCM algorithm is expressed as follows: X = {xk,xk ∈ Rd, k = 1,..., n},
X contains at least c distinct data points. With the constraint 3.33 then

Jm,η(U, T, V,X, γ) may minimize if only:

µik = µ∗
ik +

(1−
c∑

i=1

µ∗
ik)[1/D

2
ik]

1/(m−1)

c∑

i=1

[1/D2
ik]

1/(m−1)
(3.34)

τik =







(

τ ∗ik +
[

γi
bD2

ik

] 1
η−1

)

/

(

1 +
[

γi
bD2

ik

] 1
η−1

)

τik ≥ τ ∗ik
(

τ ∗ik −
[

γi
bD2

ik

] 1
η−1

)

/

(

1−
[

γi
bD2

ik

] 1
η−1

)

else
(3.35)

vi =

n∑

k=1

(a‖µik − µ∗
ik‖

m
+ b‖τik − τ ∗ik‖

η
)(xk + v∗i )

n∑

k=1

(a‖µik − µ∗
ik‖m + b‖τik − τ ∗ik‖η)(1 + δ)

(3.36)

Equation 3.34 can be achieved by using the Lagrange multiplier with

fixed T and V by minimum problem:

min

{
c∑

i=1

n∑

k=1

(a‖µik − µ∗
ik‖

m
)(‖vi − xk‖2 + δ‖vi − v∗i ‖

2
)

}

(3.37)

97



It can be seen that equation 3.34 is independent of the constant a and

depends only on vi and v
∗
i . When µ∗

ik = 0 (µ∗
ik does not exist or not use),

if the distance Dik is considered similar to the distance dik then equation

3.34 is similar the to fuzzy membership in FCM algorithm.

Equation 3.35 is achieved by handling the minimum problem for the

objective function 3.32, with V and U fixed by the minimum problem:

min
{
(a‖µik − µ∗

ik‖
m
+ b‖τik − τ ∗ik‖

η
)D2

ik + γi(1− τik)
η}

(3.38)

When τ ∗ik = 0 (τ ∗ik does not exist or is not used), if the distance Dik is

considered similar to the distance dik then equation 3.35 is similar to the

possibilistic membership in PCM algorithm.

Similarly, equation 3.36 is achieved by minimizing the following ob-

jective function with fixed U and T :

min

{
n∑

k=1

(‖µik − µ∗
ik‖

m
+ ‖τik − τ ∗ik‖

η
)D2

ik

}

(3.39)

If v∗i is not used or does not exist then δ = 0. In equation 3.36, if

additional information (v∗i , τ
∗
ik, µ

∗
ik) is not used, they will become the

equation 1.10 in PFCM.

Without reducing the generality, the additional information µ∗
ik, τ

∗
ik,

v∗i can be achieved by different methods. May be from labeled data,

experts’ experience or results from other methods. The calculation of

µ∗
ik, τ

∗
ik, v

∗
i in this study is only one of them.

Computational complexity: GSPFCM algorithm will execute a condi-

tional loop, when either of the conditionsmax(
∥
∥U (t+1) − U (t)

∥
∥+
∥
∥T (t+1) − T (t)

∥
∥) ≤

ε or t > Tmax comes first, the algorithm will stop and give the classifica-

tion result. Each loop will calculate V , U and T according to equations
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Algorithm 3.4 General semi-supervised possibilistic fuzzy c-means algorithm (GSPFCM)

Input: A dataset X = X1 ∪X2, X1 = [x∗
1, x

∗
2, ..., x

∗
L], X2 = [xL+1, xL+2, ..., xn] (|X1| << |X2|), the

number of clusters c (1 < c < n), fuzzifiers m, η > 1, Tmax, t = 0, a, b > 0; δ ≥ 0.
Output: The membership matrix U , T and the centroid matrix V .

Step 1: Compute V (∗) = [v
(∗)
i ], V (∗) ∈ Rdxc from X1.

Step 2: Compute U (∗) = [µ
(∗)
ik ] by using Equation 3.30.

Step 3: Compute T (∗) = [τ
(∗)
ik ] by using Equation 3.31 and Equation 1.12.

Step 4: Initialize the centroid matrix V (0) and fuzzy MF U (0) by running FCM algorithm on dataset
X.
Step 5: Compute T (0) by using Equation 3.31 and Equation 1.12.
Step 6: Loop
6.1 t = t+ 1
6.2 Compute V (t) = [v

(t)
1 ,v

(t)
2 , ..., v

(t)
c ] by using Equation 3.36.

6.3 Compute U (t) = [µ
(t)
ik ] by using Equation 3.34.

6.4 Compute T (t) = [τ
(t)
ik ] by using Equation 3.31 and 3.35.

6.5 Check if max(
∥
∥U (t+1) − U (t)

∥
∥+

∥
∥T (t+1) − T (t)

∥
∥) ≤ ε or t > Tmax then stop else go to Step 6.1.

Defuzzification: Assign data xk to the ith cluster if uik ≥ ujk, j = 1, ..., c; j 6= c.

3.36, 3.34, 3.31 and 3.35. The algorithm stops at the Tmax loop, the com-

putational complexity of the algorithm will be O(4ndcTmax). When n is

large, the computational complexity of GSPFCM and PFCM algorithm

is the same.

3.4.2 General Interval type-2 Semi-supervised PFCM

In this section, the dissertation presents a hybrid algorithm of the

semi-supervised PFCM clustering and PSO technique based on IT2FS.

Typically, supervised methods require a large amount of labeled data for

training; this method can be applied in cases where there is very little

labeled data.

Dataset X = {xk,xk ∈ Rd, k = 1,..., n} with X = X1 ∪ X2, X1 =

[x
∗

1, x
∗
2,..., x

∗
L] is the labeled dataset and X2 = [xL+1,xL+2,...,xn] is the

unlabeled dataset (|X1| << |X2|). Let c be the number of clusters,

calculation c centroids v∗1, v
∗
2, ..., v

∗
c from the labeled pixel dataset and

V ∗ = [v∗1, v
∗
2, ..., v

∗
c ] is the set of additional cluster centroids, which is
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averaged from the labeled data as follows:

v∗i =
mi∑

s=1

Pis/Ni (3.40)

Where Pis is the sth labeled pixel on the ith cluster, Ni is the number

of labeled pixels on the ith cluster, s = 1, 2, ..., Ni; i = 1, 2, ..., c. The

additional fuzzy MF is calculated based on a set of additional centroid

V ∗ by FCM algorithm:

µ∗
ik = 1/

c∑

z=1

(
xk − v∗i
xk − v∗z

)
2/(m−1)

(3.41)

With γi is calculated according to equation 1.7. The additional pos-

sibilistic MF is calculated based on a set of additional centroid V ∗ by

PCM algorithm:

τ ∗ik = 1/
(

1 + (b ‖v∗i − xk‖)1/(η−1)
/γi
)

(3.42)

We propose a new objective function by adding additional information

including the MFs µ∗
ik, τ

∗
ik and cluster centroids v∗i . A new objective

function is as follows:

min







Jm,η(U, T, V,X, γ) =
c∑

i=1

n∑

k=1

(a‖µik − µ∗
ik‖

m
+ b‖τik − τ ∗ik‖

η
)(‖vi − xk‖2+

+δ‖vi − v∗i ‖
2
) +

c∑

i=1

γi
n∑

k=1

(1− τik)
η







(3.43)

Subject to the constraints:

0 ≤ µik, τik ≤ 1;
c∑

i=1

µik = 1;
n∑

k=1

τik = 1; 1 ≤ i ≤ c; 1 ≤ k ≤ n;m, η > 1; a, b > 0

(3.44)

Set

D2
ik = ‖vi − xk‖2 + δ‖vi − v∗i ‖

2
(3.45)
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Where δ ≥ 0 is a user-defined constant that represents the role of addi-

tional centroid value in the objective function and δ = 0 when v∗i does

not exist. To minimize the objective function 3.43 we use the Lagrange

operator we get U, T, V for the new GSPFCM algorithm, the implemen-

tation steps are similar to PFCM algorithm.

Expanding the equation 3.43 by using two fuzziness parametersm1,m2

and two possibilistic parameters η1, η2. These parameters are conducted

to make FOU corresponding upper and lower values of fuzzy clustering

and possibilistic clustering. The new algorithm is the general interval

type-2 semi-supervised PFCM clustering (GIT2SPFCM).

The use of m1,m2 and η1, η2 gives different objective functions to be

minimized as follows:

Jm1,η1 =
c∑

i=1

n∑

k=1

(a‖µik − µ∗
ik‖

m1 + b‖τik − τ ∗ik‖
η1)D2

ik +
c∑

i=1

γi
n∑

k=1

(1− τik)
η1

Jm2,η2 =
c∑

i=1

n∑

k=1

(a‖µik − µ∗
ik‖

m2 + b‖τik − τ ∗ik‖
η2)D2

ik +
c∑

i=1

γi
n∑

k=1

(1− τik)
η2

(3.46)

Subject to the constraints:

m1, η1,m2, η2 > 1; a, b > 0; δ ≥ 0; 0 ≤ µik, τik ≤ 1;
c∑

i=1

µik = 1;
n∑

k=1

τik = 1; 1 ≤ i ≤ c; 1 ≤ k ≤ n
(3.47)

Theorem 3.1. For X = {xk,xk ∈ RM , k = 1,..., n}, m, η > 1; c ≥ 1, δ ≥
0 and X contains at least c distinct data points. With the constraints 3.47

and the equation 3.46 then Jm1,η1(U, T, V,X, γ) and Jm2,η2(U, T, V,X, γ)
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may minimize if only:

µ
(1)
ik =







µ∗
ik +

(1−
c
∑

i=1
µ∗ik)[1/D2

ik]
1/(m1−1)

c
∑

i=1
[1/D2

ik]
1/(m1−1)

if 1
C
∑

j=1
(Dik/Djk)

< 1
c

µ∗
ik +

(1−
c
∑

i=1
µ∗ik)[1/D2

ik]
1/(m2−1)

c
∑

i=1
[1/D2

ik]
1/(m2−1) otherwise

(3.48)

µ
(2)
ik =







µ∗
ik +

(1−
c
∑

i=1
µ∗ik)[1/D2

ik]
1/(m1−1)

c
∑

i=1
[1/D2

ik]
1/(m1−1)

if 1
C
∑

j=1
(Dik/Djk)

≥ 1
c

µ∗
ik +

(1−
c
∑

i=1
µ∗ik)[1/D2

ik]
1/(m2−1)

c
∑

i=1
[1/D2

ik]
1/(m2−1) otherwise

(3.49)

Where

µ̄i(xk) = max{µ(1)
ik ,µ

(2)
ik }

µ
i
(xk) = min{µ(1)

ik ,µ
(2)
ik }

(3.50)

τ
(1)
ik =







(

τ ∗ik + [γi/bD
2
ik]

1/(η1−1)
)

/
(

1 + [γi/bD
2
ik]

1/(η1−1)
)

τik ≥ τ ∗ik
(

τ ∗ik − [γi/bD
2
ik]

1/(η1−1)
)

/
(

1− [γi/bD
2
ik]

1/(η1−1)
)

else

(3.51)

τ
(2)
ik =







(

τ ∗ik + [γi/bD
2
ik]

1/(η2−1)
)

/
(

1 + [γi/bD
2
ik]

1/(η2−1)
)

τik ≥ τ ∗ik
(

τ ∗ik − [γi/bD
2
ik]

1/(η2−1)
)

/
(

1− [γi/bD
2
ik]

1/(η2−1)
)

else

(3.52)

Where

τ̄i(xk) = max{τ (1)ik ,τ
(2)
ik }

τ i(xk) = min{τ (1)ik ,τ
(2)
ik }

(3.53)

Because each pattern has a membership interval as the upper µ̄, τ̄

and the lower µ, τ , each cluster centroid is represented by the interval

between vL and vR.

For possibilistic membership grades:

τi(xk) = (τ̄i(xk) + τ i(xk))/2; i = 1, ..., c; k = 1, ..., n (3.54)
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Proof. The equations 3.48 and 3.49 are similar to the equations 1.17,

1.18 in IT2FCM algorithm achieved by using the Lagrange multiplier

and providing additional information. When µ∗
ik = 0 (µ∗

ik does not exist

or is not used) and the distance Dik is considered similar to the distance

dik then the equations 3.48 and 3.49 become the equations 1.17, 1.18 in

IT2FCM algorithm.

Equations 3.51 and 3.52 are achieved by handling the minimum prob-

lem for the objective function 3.46, with V and U fixed by minimum

problem:

min
{
Jm1,η1(T ) = (a‖µik − µ∗

ik‖
m1 + b‖τik − τ ∗ik‖

η1)D2
ik + γi(1− τik)

η1
}

(3.55)

and

min
{
Jm2,η2(T ) = (a‖µik − µ∗

ik‖
m2 + b‖τik − τ ∗ik‖

η2)D2
ik + γi(1− τik)

η2
}

(3.56)

When τ ∗ik = 0 (τ ∗ik does not exist or is not used), the distance Dik is

considered similar to the distance dik then the equation 1.26 becomes the

equation 1.6 in PCM algorithm or the equation 1.11 in PFCM algorithm,

but with two possibilistic parameters η1, η2.

Because each pattern has both membership interval values as the up-

per µ̄, τ̄ and the lower µ, τ ; each cluster centroid is represented by an

interval between vL and vR. Using Algorithm 1.1 and 1.2 to find the

centroids vL and vR, where V = [vi] are computed in the same way of

IT2FCM in equation 1.20.

In Equations 3.48, 3.49, 3.51, 3.52 and 3.46, we can use both the

MFs µ∗
ik, τ

∗
ik and the centroid v∗i , or use one of them depending on the
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additional information that has been obtained. It is apparent that, when

µ∗
ik, τ

∗
ik, v

∗
i are not used (µ∗

ik = 0, τ ∗ik = 0, v∗i = 0), GIT2SPFCM algorithm

becomes IT2PFCM algorithm (PFCM based on IT2FS).

Theorem GIT2SPFCM holds exactly as it does in IT2FCM algo-

rithm. The implementation steps of GIT2SPFCM algorithm are similar

to IT2FCM, details of the steps are as follows:

Algorithm 3.5 General interval type-2 semi-supervised possibilistic fuzzy c-means algorithm
(GIT2SPFCM)

Input: Dataset X = {xk,xk ∈ Rd, k = 1,..., n}, the labeled data set X∗ = {Pis,Pis ∈
Rd; s << n; i = 1,..., c}, the number of clusters c(1 < c < n), fuzzifier parameters m1,m2,m, η1, η2, η,
and Tmax, t = 0.
Output: The membership matrix U , T and the centroid matrix V .
Step 1: Compute the additional cluster centroids V ∗ = [v

∗

i ] by using Equation 3.40, the additional
fuzzy MF U∗ = [µ∗

ik] by using Equation 3.41, the additional possibilistic MF T ∗ = [τ∗ik] by using
Equations 1.7, 3.42.

Step 2: Initialize the centroid matrix V (t) = [v
(t)
i ], V (t) ∈ Rdxc by choosing randomly from the input

dataset X.
Step 3: Compute U (t) by using Equations 3.48, 3.49, 3.50, 1.21, 1.22, 1.23.
Step 4: Compute T (t) by using Equations 1.7, 3.51, 3.52, 3.53, 3.54.
Step 5: Repeat
5.1 t = t+ 1
5.2 Compute the centroids vR and vL use Equation 3.46 and the algorithm 1.1 and 1.2.

5.3 Update the centroid matrix V (t) = [v
(t)
1 ,v

(t)
2 , ..., v

(t)
C ] by using Equation 1.20.

5.4 Update U (t) by using Equations 3.48, 3.49, 3.50, 1.21, 1.22, 1.23.
5.5 Update T (t) by using Equations 1.7, 3.51, 3.52, 3.53, 3.54.
5.6 Assign data xk to the ith cluster if uik ≥ ujk, j = 1, ..., c; j 6= c.
5.7 Check if max(

∥
∥U (t+1) − U (t)

∥
∥ +

∥
∥T (t+1) − T (t)

∥
∥) ≤ ε. If yes then stop and go to Output else go

to Step 5.1.

Defuzzification: Assign the data pattern xk to the ith cluster if uik ≥
ujk, j = 1, ..., c; j 6= c.

Similar to algorithms PFCM, GT2SPFCM will execute a conditional

loop, when either of the conditions t ≥ Tmax or max(
∥
∥U (t+1) − U (t)

∥
∥ +

∥
∥T (t+1) − T (t)

∥
∥) ≤ ε comes first, the algorithm will stop and give the

classification result.

Computational complexity : The computational complexity of the pro-

posed algorithm is mainly in Step 5.2, calculate the right and left cen-
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troid according to the algorithms 1.1 and 1.2, this algorithm performs

the process of sorting n patterns on each of d features in ascending or-

der: x1 ≤ x2 ≤ ... ≤ xn then execute d loop to find vR and vL. Using

the quick-sort algorithm, the computational complexity of algorithms 1.1

and 1.2 are O(dcnlogn + dcn). In each loop there is the computational

complexity O(dcnlogn).

When n is large, and the number of iterations is Tmax, the compu-

tational complexity of GIT2SPFCM algorithm is O(dcnlognTmax). The

computational complexity of GIT2SPFCM algorithm is equivalent to

that of IT2FCM algorithm.

3.4.3 Hybrid method of GIT2SPFCM and PSO

In real life applications, users usually have difficulty initializing the

parameters when using the above-proposed algorithms. These parame-

ters are usually not fixed but adjusted according to the characteristics

of each data set. This means that the parameters may be suitable for

one data set, but unsuitable for another. In this section, we propose a

method to find parameters using PSO technique [38]. This algorithm

has the advantage of simple installation and fast convergence, which is

suitable for large data sets.

As a starting point, it is important point to note that PSO algorithm is

the initialization of particles. Typically, in satellite image classification,

the number of clusters is determined by the user based on the number

of land covers on the image. The parameters of GSPFCM algorithm

need to be set at optimal values including centroid of clusters and the

parameters m,m1,m2, η, η1, η2, a, b. With satellite image data has M
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spectrum bands (d = 3 with RGB color image), the number of clusters

is c. Therefore, the total number of particles initialized is d ∗ c + 8 (see

3.57).

v11, v12, ...v1d
︸ ︷︷ ︸

V1

v21, v22, ...v2d
︸ ︷︷ ︸

V2

... vc1, vc2, ...vcd
︸ ︷︷ ︸

Vc

m,m1,m2, η, η1, η2, a, b
︸ ︷︷ ︸

parameters

(3.57)

Where vi = [vij] is cluster centroids (i = 1, ..., c; j = 1, ..., d) andm,m1,m2, η, η1, η2

are fuzzy and possibilistic parameters, and a, b are user-defined param-

eters.

Let P = (p1, p2, ..., pc∗d, pc∗d+1, ..., pc∗d+8) be the set of all particles po-

sition, p1, p2, ..., pc∗d represents cluster centroids, pc∗d+1, pc∗d+2, pc∗d+3 rep-

resent fuzzy parameters,pc∗d+4, pc∗d+5, pc∗d+6 represent posibilistic param-

eters, pc∗d+7, pc∗d+8 represent a, b parameters. With each particle, there

will be position and movement velocity. The position of a particle is usu-

ally randomly generated in the search space. Each particle will include

the following information: pi is the current position of ith particle; veli

is the current velocity of ith particle; pBesti is the personal best position

of ith particle.

With the objective function F , the personal best position of a particle

at the time t is updated as:

pBest
(t+1)
i =







pBest
(t)
i if F (p

(t+1)
i ) ≥ F (pBest

(t)
i )

p
(t+1)
i if F (p

(t+1)
i ) < F (pBest

(t)
i )

(3.58)

With the entire population, the best position of the population is denoted

by gBest:

gBest(t) = {pBest
(t)
i |F (pBest

(t)
i )

= min{F (pBest
(t)
1 ), F (pBest

(t)
2 ), ..., F (pBest

(t)
c∗d+4)}}

(3.59)
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For each iteration of PSO algorithm, pi and veli are updated as follows:

vel
(t+1)
i = ω ∗ vel(t)i + c1 ∗ r1 ∗ (pBest(t)i − p

(t)
i ) + c2 ∗ r2 ∗ (gBest(t) − p

(t)
i )

p
(t+1)
i = p

(t)
i + vel

(t+1)
i

(3.60)

An important issue in PSO algorithm is the selection of parameters. Pa-

rameters c1 and c2 represent the influence of the best particle solution

and the best global solution. These two parameters are normally set to

2.05 as suggested in the original paper [38]. Parameter ω is the inertia

parameter, which indicates the rate of change in velocity of the parti-

cle during moving, common values range from zero to one. And r1, r2

are the random number in the range (0, 1). In PSO algorithm loops,

every particle must always be in the search space under the conditions

pmin ≤ pi ≤ pmax, i = 1, ..., c ∗d, pc∗d+1, ..., pc∗d+6 > 1 and pc∗d+7, pc∗d+8 > 0.

If pi < pmin then pi = pmin , if pi > pmax then pi = pmax (i = 1, ..., c∗
d + 8). Same for the velocity of particles, set velmin ≤ veli ≤ velmax, ∀i
be the velocity limits of the particles, in which velmin, velmax are se-

lected according to the user’s experiences. A constraint is given, if

veli < velmin then veli = velmin and if veli > velmax then veli = velmax .

Similar to GIT2SPFCM algorithm, it is necessary to define an ob-

jective function for GIT2PFCM-PSO algorithm. The hybrid algorithm

between GIT2SPFCM and PSO is considered to be minimum the objec-

tive function following:

Fm1,η1,m2,η2(U, T, V,X, γ) =
Fm1,η1(U, T, V,X, γ) + Fm2,η2(U, T, V,X, γ)

min
i,j=1,...,c;i 6=j

‖vi − vj‖2

(3.61)

Steps to implement hybrid algorithm between GIT2SPFCM and PSO
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are as follows:

Algorithm 3.6 The hybrid algorithm between GIT2SPFCM and PSO (GIT2SPFCM-PSO)

Input: Dataset X = {xk,xk ∈ Rd, k = 1,..., n}, the labeled data set X∗ = {Pis,Pis ∈
Rd; s << n; i = 1,..., c}, the number of clusters c(1 < c < n), fuzzifier parameters ǫ, and Tmax, t = 0,
c1, c2, r1, r2, ω.
Output: The membership matrix U , T and the centroid matrix V .
Step 1: Compute the additional cluster centroids V ∗ = [v

∗

i ] by using Equation 3.40, the additional
fuzzy MF U∗ = [µ∗

ik] by using Equation 3.41, the additional possibilistic MF T ∗ = [τ∗ik] by using
Equations 1.7, 3.42.
Step 2: Initialization

2.1 Initialize the centroid matrix V (0) = [v
(0)
i ], V (0) ∈ Rdxc by using FCM algorithm.

2.2 Initialize the location particles P (0) = (p
(0)
1 , p

(0)
2 , ..., p

(0)
c∗d, p

(0)
c∗d+1, ..., p

(0)
c∗d+8) by using V (0) = [v

(0)
i ]

and the random values m,m1,m2, η, η1, η2, a, b within limits of the search space.

2.3 Create the random velocity of particles: vel
(0)
1 , vel

(0)
2 , ..., vel

(0)
c∗d, vel

(0)
c∗d+1, ..., vel

(0)
c∗d+8 within limits

of the velocity.
2.4 Compute U (0) by using Equations 3.48, 3.49, 3.50, 1.21, 1.22, 1.23.
2.5 Compute T (0) by using Equations 1.7, 3.51, 3.52, 3.53, 3.54.

2.6 Compute F
(0)
m1,η1,m2,η2

by using Equation 3.61.

2.7 Let pBest
(0)
i = p

(0)
i , gBest(0) by using Equation 3.59.

Step 3: Hybrid algorithm of GIT2SPFCM and PSO
3.1 t = t+ 1
3.2 For each particle i.

+ Compute the velocity of particles: vel
(t+1)
i = ω∗vel(t)i +c1∗r1∗(pBest

(t)
i −p

(t)
i )+c2∗r2∗(gBest(t)−

p
(t)
i )

+ Compute the location of particles p
(t+1)
i = p

(t)
i + vel

(t+1)
i .

+ Compute the objective function F
(t)
m1,η1,m2,η2

by Equation 3.61.

+ Update pBest
(t)
i by using Equation 3.58.

+ Update the cluster centroids V (t) = [v
(t)
i ] and the parameters m,m1,m2, η, η1, η2, a, b (if change).

3.3 Find the global best solution gBest(t) by using Equation 3.59.
3.4 Update U (t) by using Equations 3.48, 3.49, 3.50, 1.21, 1.22, 1.23.
3.5 Update T (t) by using Equations 1.7, 3.51, 3.52, 3.53, 3.54.
3.6 Check if t > Tmax then go to Output else go to step 3.1.
Output: V (t), U (t), T (t), m,m1,m2, η, η1, η2, a, b.
Defuzzification: Assign data xk to the ith cluster if uik ≥ ujk, j = 1, ..., C; j 6= C.

Computational complexity : The computational complexity of the pro-

posed algorithm is mainly in step 3. Each iteration will include: step

3.2, the computational complexity will be calculated by the equation

3.61 O(ndc(dc + 8)). Step 3.3 is O(dc + 8), step 3.4 and step 3.5 the

computational complexity by the equations 3.48, 3.49, 3.50, 1.21, 1.22,

1.23, 1.7, 3.51, 3.52, 3.53, 3.54 is O(11ndc). So, in each loop in step 3

there is the computational complexity O(nd2c2).

When n is large and the number of iterations of is Tmax, the com-
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putational complexity of GIT2SPFCM-PSO algorithm is O(nd2c2Tmax).

The computational complexity analysis of algorithms PFCM, IT2FCM,

GIT2SPFCM, and GIT2SPFCM-PSO shows that the computational com-

plexity of the IT2FCM and GIT2SPFCM is similar and is the largest

compared to other algorithms. When n is large, it can be stated that the

computational complexity of algorithms PFCM and GIT2SPFCM-PSO

is similar and is smaller than the computational complexity of algorithms

IT2FCM and GIT2SPFCM.

3.4.4 Experiments

A. Initialize parameters and evaluation methods

We selected some datasets at different locations including (city, delta

and mountain forest) for testing. Multi-spectral satellite images have

been used, including Landsat-5 TM, Landsat-7 ETM+, Landsat-8, and

Sentinel-2A. The image data is clustered to six classes as follows: Class

1: Surface water ; Class 2: Bare land ; Class 3: Grass, shrubs

; Class 4: Planted forests, low woods ; Class 5: Perennial tree

crops ; Class 6: Dense vegetation (see Algorithm 1.6).

For a multi-spectral image with d bands, each pixel will be character-

ized by d components on d gray bands which are described as follows

X = [x1,x2,...xn] with xi = (bi1, bi2, ..., bid).

Experimental algorithms include SFCM [51], GSPFCM, SPFCM-W,

SPFCM-SS, SMKFCM, SIIT2FCM [68], SFCM-PSO, GIT2SPFCM, and

GIT2SPFCM-PSO. Additional information in semi-supervised algorithms

is calculated from the labeled data. The algorithms are executed for

a maximum 1000 iterations, ε = 10−6. For all algorithms, we first
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run FCM algorithm (m = 2) to determine the initial centroids. With

the algorithms GSPFCM, SPFCM-W, SPFCM-SS, GIT2SPFCM and

GIT2SPFCM-PSO, select K = 1 to calculate the value γi by using the

equation 1.7.

The parameters of algorithms SFCM, SPFCM-W, SPFCM-SS, GSPFCM,

SMKFCM and SIIT2FCM are selected according to the original papers.

The parameters of GIT2SPFCM algorithm are selected as follows:

m = η = 2, m1 = η1 = 1.5, m2 = η2 = 3.5, a = b = δ = 1.

The parameters of GIT2SPFCM-PSO algorithm are selected as fol-

lows: m = 2, (pmin; pmax) = (0; 255) for 8 bits gray image or (pmin; pmax) =

(0; 65536) for 16 bits gray image with particles generated from clus-

ter centroids information, (pmin; pmax) = (1; 5) for other parameters.

(velmin; velmax) = (−pmax−pmin

2
; pmax−pmin

2
) for cluster centroids and (velmin; velmax) =

(−2.5; 2.5) for other parameters. The parameters c1 = c1 = 2.05 are sug-

gested in the original paper [38]. Let ω = 0.9 and decrease to 0.1 when

the maximum number of loops (the generation number) is reached.

The classification results are compared with the statistical data of the

Vietnam National RS Center (VNRSC). The labeled data is taken di-

rectly from the satellite image data according to 6 land-cover classes.

Besides, the clustering results have been evaluated by some validity in-

dexes, including PC-I, D-I, CE-I, XB-I, τ−I, CS-I, IQI, and MSE, which

are introduced to assess the degree of characteristic separation between

pixels and cluster centroids. Semi-supervised algorithms use the distance

Dik, otherwise the distance dik is used.

B. Land cover classification
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Experiment 1: Landsat-7 ETM+ image

Experimental data include images of central area of Hanoi capital,

Vietnam on 30September2012 (105026′47.1714”E, 21010′15.7519”N , and

106012′38.5927”E, 20052′33.2849”N) with 7 spectral bands and spatial

resolution of 30m (see Figure 3.9).

Figure 3.9: RGB color image: Hanoi capital central area

Table 3.13: Parameters achieved when implementing GIT2SPFCM-PSO algorithm
for Hanoi central area

Algorithm m m1 m2 η η1 η2 a b
GIT2SPFCM-PSO 2.21364 1.36534 3.26513 2.19874 1.47635 3.07366 0.52752 0.52463

Figure 3.10 shows the classification results according to six land-covers

by algorithms a) SFCM; b) SFCM-PSO; c) SPFCM-W; d) SPFCM-SS; e)

GSPFCM; f) SMKFCM; g) SIIT2FCM; h) GIT2SPFCM; i) GIT2SPFCM-

PSO. In table 3.13, the parameter values are achieved by the GIT2SPFCM-
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Figure 3.10: Land cover classification results of Hanoi central area: a) SFCM; b)
SFCM-PSO; c) SPFCM-W; d) SPFCM-SS; e) GSPFCM; f) SMKFCM;
g) SIIT2FCM; h) GIT2SPFCM; i) GIT2SPFCM-PSO

PSO algorithm implementation.

Table 3.14 shows the correct classification rate (%) according to each

land cover based on the number of labeled pixels. GIT2SPFCM-PSO al-

gorithm gives the best classification results with the correct classification

rate reaching over 99% for labeled pixels, while the lowest rate is 87.77%
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Table 3.14: Correct classification rate for Hanoi central area by labeled data (%)

Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total
SFCM 93.21 91.23 88.65 87.37 91.25 86.28 89.67

SFCM-PSO 95.16 93.67 92.46 89.89 92.23 94.32 92.96
SPFCM-W 95.34 93.76 93.22 91.26 92.65 91.89 93.02
SPFCM-SS 94.46 94.10 93.71 91.76 93.13 92.46 93.27
GSPFCM 99.23 96.36 98.32 96.32 94.33 95.48 96.67
SMKFCM 98.45 97.18 93.23 95.55 95.99 92.65 95.51
SIIT2FCM 98.43 97.09 95.88 93.23 96.28 94.33 95.87

GIT2SPFCM 99.11 98.33 98.37 97.42 98.48 97.56 98.21
GIT2SPFCM-PSO 100 98.11 99.15 99.08 98.43 99.32 99.02

by PFCM algorithm. This correct classification rate significantly in-

creases when using the semi-supervised method. GIT2SPFCM algorithm

has the correct classification rate of 98.21%, lower than GIT2SPFCM-

PSO algorithm, while the computational complexity is higher than that

of GIT2SPFCM-PSO algorithm.

Table 3.15: Land-cover classification results and VNRSC data (km2) for Hanoi cen-
tral area

Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
VNRSC 43.84 124.68 174.70 250.57 219.96 129.97
SFCM 57.27 133.06 131.19 252.31 217.08 152.81

SFCM=PSO 42.36 124.18 196.22 268.52 202.27 110.18
SPFCM-W 42.18 125.80 194.24 268.34 202.45 110.63
SPFCM-SS 42.72 124.90 186.14 278.20 227.27 102.50
GSPFCM 42.27 125.98 193.61 251.47 219.59 110.09
SMKFCM 51.30 128.40 163.70 230.43 217.35 152.54
SIIT2FCM 47.26 121.26 174.70 230.61 228.53 141.36

GIT2SPFCM 42.72 125.80 194.24 231.04 220.05 129.88
GIT2SPFCM-PSO 44.99 123.53 174.61 250.48 208.66 141.45

Table 3.15 and Table 3.16 show the area of six land-covers and VNRSC

statistics data. It shows that GIT2SPFCM-PSO algorithm gives the

classification results with the lowest deviation of 2.676% compared to

VNRSC statistics data, or in other words, the classification accuracy

produced by GIT2SPFCM-PSO is 97.324%. While deviation is 4.401%

with GIT2SPFCM algorithm and 4.954% with SIIT2FCM algorithm,
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the largest value comes from SFCM algorithm with 9.831%. This is an

unsupervised algorithm in algorithms used for testing.

Table 3.16: Land-cover classification results and VNRSC data (%) for Hanoi central
area

Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Differrence
VNRSC 4.646 13.211 18.512 26.552 23.308 13.772 0.000
SFCM 6.068 14.100 13.901 26.736 23.003 16.192 9.831

SFCM-PSO 4.488 13.159 20.792 28.454 21.433 11.675 8.364
SPFCM-W 4.488 13.159 20.792 28.454 21.433 11.675 8.364
SPFCM-SS 4.526 13.235 19.724 29.479 24.082 10.861 7.968
GSPFCM 4.479 13.350 20.515 26.646 23.269 11.665 4.549
SMKFCM 5.436 13.606 17.346 24.418 23.031 16.163 7.153
SIIT2FCM 5.008 12.849 18.512 24.437 24.216 14.979 4.954

GIT2SPFCM 4.526 13.331 20.582 24.481 23.318 13.762 4.401
GIT2SPFCM-PSO 4.767 13.089 18.502 26.542 22.111 14.988 2.676

In the above algorithms, using labeled data can produce an accuracy

of over 90%. Moreover, when interval type-2 fuzzy sets are used, the

accuracy can further increase to over 95%. The hybrid algorithms with

PSO can help find the appropriate parameters resulting in a significant

increase in efficiency compared to the same algorithm without using PSO

technique.

Table 3.17: The various validity indexes for Hanoi central area

Algorithm PC-I CE-I D-I XB-I τ − I MSE CS-I IQI
SFCM 0.5821 0.5973 0.2654 2.1734 NaN 17.3674 1.1672 0.6199

SFCM-PSO 0.7424 0.3684 0.3652 1.1945 NaN 12.8769 0.8942 0.7099
SPFCM-W 0.6873 0.4742 0.2985 1.0986 0.1438 16.9823 0.7832 0.7519
SPFCM-SS 0.7084 0.3587 0.3492 0.8764 0.1499 13.8751 0.6381 0.7645
GSPFCM 0.8967 0.2279 0.5767 0.1789 0.0928 10.8692 0.6268 0.7647
SMKFCM 0.8776 0.4098 0.4798 0.6912 NaN 14.7862 0.5767 0.8276
SIIT2FCM 0.8893 0.2317 0.4938 0.1986 NaN 14.1893 0.5798 0.7988

GIT2SPFCM 0.9165 0.2985 0.5981 0.1783 0.1078 10.1621 0.2948 0.8052
GIT2SPFCM-PSO 0.9243 0.2279 0.5979 0.1697 0.0921 9.8276 0.2764 0.8276

In Table 3.17, GIT2SPFCM-PSO algorithm gives the best results in

most indicators, followed by GIT2SPFCM algorithm. However, in a few

cases, algorithms GSPFCM and SMKFCM gives better results. Specif-
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ically, the CE-I index by algorithms GSPFCM and GIT2SPFCM-PSO

is 0.2279 better than the rest of the algorithms, the IQI index by algo-

rithms SMKFCM and GIT2SPFCM-PSO is 0.8276 better than the rest

of the algorithms.

Experiment 2: Landsat-8 image

In this experiment, Landsat-8 multispectral image with the spatial res-

olution of 30m (bands 2, 3, 4, 5, 6, and 7) acquired from 2016 in Nghe An

province, Vietnam was used (104044′11.4162”E, 19029′1.3803”N , 105034′33.0556”E

19009′32.1210”N).

Figure 3.11: RGB color image: Quy Hop district, Nghe An province in Vietnam

Table 3.18: Parameters achieved when implementing GIT2SPFCM-PSO algorithm
for Quy Hop area

Algorithm m m1 m2 η η1 η2 a b
GIT2SPFCM-PSO 2.2876 1.4764 3.4565 2.1876 1.3768 3.3764 0.3764 0.3798

In Table 3.18, the parameters achieved by GIT2SPFCM-PSO algo-
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Figure 3.12: Land cover classification results of Quy Hop area: a) SFCM; b) SFCM-
PSO; c) SPFCM-W; d) SPFCM-SS; e) GSPFCM; f) SMKFCM; g)
SIIT2FCM; h) GIT2SPFCM; i) GIT2SPFCM-PSO

rithm show that there are small differences between the parameters m, η

and a, b. Figure 3.12 is the result of land cover classification by using

algorithms a) SFCM; b) SFCM-PSO; c) SPFCM-W; d) SPFCM-SS; e)

GSPFCM; f) SMKFCM; g) SIIT2FCM; h) GIT2SPFCM; i) GIT2SPFCM-

PSO.

Table 3.19 shows the correct classification rate according labeled pix-

els. GIT2SPFCM-PSO algorithm gives the best classification results
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Table 3.19: Correct classification rate for Quy Hop area by labeled data (%)

Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total
SFCM 92.14 89.49 86.32 89.34 85.38 86.28 88.16

SFCM-PSO 93.35 93.27 91.21 92.26 89.48 87.91 91.25
SPFCM-W 92.48 92.34 91.77 90.33 89.99 86.76 90.61
SPFCM-SS 93.89 92.11 89.46 90.89 90.45 88.69 90.92
GSPFCM 99.31 98.56 97.49 98.87 95.92 94.11 97.38
SMKFCM 98.54 96.82 94.22 92.88 94.56 93.65 95.11
SIIT2FCM 98.28 95.89 96.46 94.82 96.32 91.33 95.52

GIT2SPFCM 99.23 97.39 95.87 96.65 98.79 98.07 97.67
GIT2SPFCM-PSO 99.84 99.12 98.87 97.64 98.79 98.93 98.87

with the correct classification rate reaching 98.87%, while the lowest

rate is 88.16% by the SFCM algorithm. GIT2SPFCM algorithm has

a correct classification rate of 97.67%, while the figures for GSPFCM,

SIIT2FCM, and SMKFCM algorithms are 97.38%, 95.52%, and 95.11%,

respectively.

Table 3.20: Land-cover classification results and VNRSC data (km2) for Quy Hop
area

Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
VNRSC 2.65 174.01 137.81 196.58 228.58 203.41
SFCM 6.18 191.25 166.95 155.67 204.23 218.77

SFCM-PSO 5.10 206.74 141.73 184.46 207.79 197.19
SPFCM-W 5.28 191.25 148.95 165.57 219.52 212.46
SPFCM-SS 5.19 188.64 161.19 173.66 216.79 197.56
GSPFCM 3.48 181.55 133.97 183.03 249.60 191.39
SMKFCM 4.92 198.43 142.04 182.05 221.20 194.41
SIIT2FCM 4.38 199.19 138.96 192.10 228.72 179.69

GIT2SPFCM 3.19 195.52 140.13 190.03 229.62 185.63
GIT2SPFCM-PSO 2.74 183.61 144.36 189.34 228.90 194.09

Table 3.20 and Table 3.21 show the classification result according to

the area (km2) of the land covers and VNRSC data. In this experiment,

only GIT2SPFCM-PSO algorithm produces an the accuracy of over 95%,

followed by the interval type-2 fuzzy clustering algorithms GIT2SPFCM

and SIIT2FCM with the deviations of 5.274% and 5.980% respectively.

Meanwhile, SFCM algorithm achieves an accuracy of less than 90%.
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Table 3.21: Land-cover classification results and VNRSC data (%) for Quy Hop area

Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Differrence
VNRSC 0.281 18.452 14.613 20.845 24.239 21.570 0.000
SFCM 0.655 20.280 17.703 16.507 21.656 23.198 13.841

SFCM-PSO 0.541 21.923 15.030 19.561 22.035 20.911 8.295
SPFCM-W 0.560 20.280 15.795 17.557 23.278 22.530 8.498
SPFCM-SS 0.550 20.004 17.092 18.415 22.989 20.949 8.601
GSPFCM 0.369 19.252 14.207 19.409 26.468 20.295 6.234
SMKFCM 0.522 21.042 15.061 19.304 23.456 20.615 6.558
SIIT2FCM 0.465 21.122 14.735 20.370 24.253 19.055 5.980

GIT2SPFCM 0.338 20.733 14.860 20.151 24.348 19.684 5.274
GIT2SPFCM-PSO 0.290 19.470 15.308 20.077 24.273 20.581 3.513

Table 3.22 shows some indicators, as can be seen, GIT2SPFCM-PSO

algorithm gives the best clustering results in many indicators, except

the τ − I index. SIIT2FCM algorithm achieves the best results with the

PC-I index along with GIT2SPFCM-PSO algorithm.

Table 3.22: The various validity indexes for Quy Hop area

Algorithm PC-I CE-I D-I XB-I τ − I MSE CS-I IQI
SFCM 0.4986 0.8753 0.3652 1.7824 NaN 12.9876 0.7632 0.5641

SFCM-PSO 0.5589 0.8378 0.4092 1.0914 NaN 10.3871 0.7049 0.6365
SPFCM-W 0.5437 0.8593 0.3968 1.2874 0.1322 11.7842 0.6254 0.6806
SPFCM-SS 0.5519 0.8468 0.3981 0.1789 0.1299 10.9682 0.5680 0.6898
GSPFCM 0.6537 0.6754 0.5078 0.1427 0.0567 8.9827 0.3442 0.6799
SMKFCM 0.6173 0.7863 0.4762 0.3278 NaN 9.5737 0.3267 0.8753
SIIT2FCM 0.8763 0.7382 0.4918 0.3148 NaN 8.5642 0.2986 0.8878

GIT2SPFCM 0.8651 0.6529 0.5289 0.1328 0.0899 8.5601 0.4152 0.8759
GIT2SPFCM-PSO 0.8763 0.6281 0.5473 0.1147 0.0668 7.3654 0.2531 0.9073

Experiment 3: Sentinel-2A image

In this experiment, four bands of Sentinel 2A image (bands 2, 3, 4,

and 8) with the spatial resolution of 10m, acquired in the mountainous

area of Vinh Phuc province on 20December2017 were used.

Table 3.23: Parameters achieved when implementing GIT2SPFCM-PSO algorithm
for Vinh Phuc area

Algorithm m m1 m2 η η1 η2 a b
GIT2SPFCM-PSO 2.2653 1.4762 3.0984 2.1987 1.6872 2.9875 0.7653 0.7759
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Figure 3.13: RGB color image: the mountainous area of Vinh Phuc province

Table 3.24: Correct classification rate for Vinh Phuc area by labeled data (%)

Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total
SFCM 94.65 92.42 89.31 88.08 90.27 89.46 90.70

SFCM-PSO 96.19 93.21 91.43 89.88 90.90 91.73 92.22
SPFCM-W 96.65 94.22 90.56 91.95 89.81 92.95 92.69
SPFCM-SS 96.73 95.29 93.64 89.81 90.18 91.87 92.92
GSPFCM 97.56 96.40 94.62 95.78 92.34 93.48 95.03
SMKFCM 98.39 95.37 96.37 93.44 92.54 94.36 95.08
SIIT2FCM 98.22 97.28 95.99 96.43 94.77 93.10 95.97

GIT2SPFCM 99.28 99.34 98.26 98.49 98.21 99.43 98.84
GIT2SPFCM-PSO 100.00 99.67 99.11 99.24 99.55 98.78 99.39

Figure 3.14 is the result of classification by six land-covers by al-

gorithms a) SFCM; b) SFCM-PSO; c) SPFCM-W; d) SPFCM-SS; e)

GSPFCM; f) SMKFCM; g) SIIT2FCM; h) GIT2SPFCM; i) GIT2SPFCM-

PSO. Table 3.23 shows the parameters that were achieved when GIT2SPFCM-

PSO algorithm was completed. Table 3.24 shows the correct classifica-

tion rate for each land cover based on labeled data. GIT2SPFCM-PSO
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Figure 3.14: Land cover classification results of Vinh Phuc area: a) SFCM; b) SFCM-
PSO; c) SPFCM-W; d) SPFCM-SS; e) GSPFCM; f) SMKFCM; g)
SIIT2FCM; h) GIT2SPFCM; i) GIT2SPFCM-PSO

algorithm gives the best classification results, with the correct classifi-

cation rate of the labeled pixels reaching 99.39%, while the lowest rate

is 90.70% by SFCM algorithm. It can be seen that all algorithms give

an accuracy of over 90%, while the algorithms GSPFCM, SMKFCM,

SIIT2FCM, GIT2SPFCM, and GIT2SPFCM-PSO achieve an accuracy
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of over 95%.

Table 3.25: Land-cover classification results and VNRSC data (km2) for Vinh Phuc
area

Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
VNRSC 13.38 198.56 162.12 146.29 274.38 94.89
SFCM 16.17 218.49 150.10 135.23 261.69 107.94

SFCM-PSO 14.28 205.18 161.22 139.66 263.94 105.33
SPFCM-W 15.18 218.33 151.52 135.32 260.80 108.47
SPFCM-SS 10.68 222.23 159.76 134.87 256.98 105.09
GSPFCM 11.58 221.33 161.56 133.07 258.78 103.29
SMKFCM 14.01 215.57 160.30 134.83 268.08 99.44
SIIT2FCM 12.48 204.28 167.81 139.37 262.14 103.53

GIT2SPFCM 13.74 198.20 166.13 142.27 270.78 90.39
GIT2SPFCM-PSO 12.75 198.65 168.83 139.57 275.28 93.99

Table 3.26: Land-cover classification results and VNRSC data (%) for Vinh Phuc
area

Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Differrence
VNRSC 1.504 22.319 18.223 16.444 30.842 10.667 0.000
SFCM 1.818 24.560 16.872 15.200 29.416 12.133 8.042

SFCM-PSO 1.606 23.064 18.122 15.699 29.669 11.840 4.039
SPFCM-W 1.707 24.542 17.032 15.211 29.316 12.193 7.902
SPFCM-SS 1.201 24.980 17.959 15.161 28.886 11.813 7.613
GSPFCM 1.302 24.879 18.161 14.958 29.089 11.611 7.007
SMKFCM 1.585 24.232 18.019 15.156 30.134 11.177 4.704
SIIT2FCM 1.403 22.963 18.863 15.667 29.467 11.637 4.507

GIT2SPFCM 1.545 22.279 18.675 15.993 30.437 10.161 1.895
GIT2SPFCM-PSO 1.434 22.329 18.978 15.689 30.943 10.566 1.792

Table 3.25 and Table 3.26 are areas (km2) and percentages (%) of land

covers compared to VNRSC statistics data. The classification results by

GIT2SPFCM-PSO algorithm have the highest accuracy with the dif-

ference of 1.792; followed by GIT2SPFCM algorithm with 1.895. Mean-

while, the three algorithms SFCM-PSO, SMKFCM and SIIT2FCM, have

differences of 4.039, 4.704 and 4.507, respectively. The remaining algo-

rithms all have a differences of over 7%. The largest is 8.042 by SFCM

algorithm.

Table 3.27 shows the various validity indexes. It can be seen that the
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Table 3.27: The various validity indexes for Vinh Phuc area

Algorithm PC-I CE-I D-I XB-I τ − I MSE CS-I IQI
SFCM 0.6986 0.3167 0.3269 0.4389 NaN 7.7836 0.6549 0.8134

SFCM-PSO 0.7826 0.5172 0.4019 2.6731 NaN 7.2389 0.5087 0.8102
SPFCM-W 0.7659 0.1687 0.2098 0.2587 0.1689 7.3519 0.5143 0.8358
SPFCM-SS 0.7981 0.1631 0.2911 0.2684 0.1573 7.1673 0.4907 0.8571
GSPFCM 0.8872 0.2789 0.6762 1.2874 0.0783 5.1738 0.4873 0.8619
SMKFCM 0.8276 0.1388 0.5781 0.2517 NaN 6.8937 0.4396 0.8885
SIIT2FCM 0.8457 0.1287 0.5987 0.2074 NaN 5.4872 0.3869 0.9167

GIT2SPFCM 0.8635 0.0938 0.8524 0.1983 0.0653 5.0982 0.4188 0.9078
GIT2SPFCM-PSO 0.8902 0.0842 0.8524 0.1729 0.0376 4.8278 0.3869 0.9166

proposed algorithms produce better results than previous algorithms.

GIT2SPFCM-PSO algorithm provides the classification results with the

highest accuracy, while the computational complexity is lower than that

of GIT2SPFCM algorithm. Tables 3.13, 3.18, 3.23 show that the values

of the parameters are different from the above experiment. The exper-

iment on the Sentinel-2A image is for the highest accuracy, due to the

fact that Sentinel-2A image has a higher resolution (10m) than those of

Landsat-7 ETM+ and Landsat-8 images (30m).

Figure 3.15: The graph of the objective function value change of the GIT2SPFCM-
PSO algorithm

Figure 3.15 shows the change in the objective function’s value accord-

ing to the number of loops by GIT2SPFCM-PSO algorithm. Specifi-
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cally, the figures 3.15.a, 3.15.b, and 3.15.c show the value of F function

for Hanoi capital central area, Quy Hop district, and Vinh Phuc area,

respectively. The process of finding the optimal parameter is also the

process of minimizing the objective function F . It can be seen that the

F function value decreases very quickly in the first 300 iterations. Then

the rate decreases and reaches the smallest value when the maximum

number of iterations is reached.

Table 3.28: The accuracy of the proposed algorithms on three experimental areas

Dataset Hanoi area Quy Hop area Vinh Phuc area
Algorithm TPR FPR ACC TPR FPR ACC TPR FPR ACC
Erdas 89.52% 1.36% 89.18% 91.61% 1.09% 90.99% 88.76% 0.87% 89.14%
DFCM 92.67% 1.21% 92.67% 91.18% 0.87% 91.13% 92.09% 1.02% 92.01%
IFCM 93.71% 1.09% 93.39% 93.26% 1.12% 93.25% 94.64% 0.68% 94.32%

SMKFCM 98.23% 0.87% 98.11% 97.58% 0.98% 97.54% 98.45% 0.75% 98.42%
SFCM-PSO 95.48% 0.99% 95.21% 96.83% 0.79% 96.84% 95.83% 0.89% 95.78%

GIT2SPFCM-PSO 99.08% 0.58% 99.02% 98.97% 0.52% 98.77% 99.15% 0.69% 99.13%

Table 3.28 shows the accuracy of the proposed algorithms calculated

by the TPR, FPR, and ACC indicators compared with Erdas software

on three experimental datasets. Overall, it can be observed that the ac-

curacy of the landcover classification using Erdas software is lower than

using five proposed algorithms on all data sets. The accuracy of two

unsupervised algorithms (DFCM and IFCM) is lower than that of three

semi-supervised algorithms (SMKFCM, SFCM-PSO, and GIT2SPFCM-

PSO). On all three datasets, GIT2SPFCM-PSO algorithm has the high-

est accuracy with TPR, ACC higher than 98.77%, and FPR less than

0.69%. Next, the SMKFCM algorithm, with TPR, ACC is higher than

97.54% and FPR is less than 0.98%. As can be seen, GIT2SPFCM-PSO

algorithm gives the highest accuracy, followed by SMKFCM, SFCM-
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PSO, IFCM, and DFCM algorithms, respectively.

Table 3.29: Implementation time (s) of the proposed algorithms on three datasets

Algorithm Hanoi area Quy Hop area Vinh Phuc area
DFCM 235.465 196.254 188.264
IFCM 623.982 558.785 719.482

SMKFCM 285.522 209.095 276.541
SFCM-PSO 115.981 147.472 132.753

GIT2SPFCM-PSO 398.164 318.498 387.907

Table 3.29 provides the average values produced by ten running times

of the five proposed algorithms on three datasets. SFCM-PSO algo-

rithm has the lowest computation time, followed by DFCM, SMKFCM,

GIT2SPFCM-PSO, and IFCM algorithms, respectively. Although GIT2SPFCM-

PSO algorithm has the highest accuracy, the calculation time is only

about half that of IFCM algorithm.

From the above experiments, the proposed method not only has re-

duced computational complexity but also gives higher accuracy than

other algorithms. The results also show that the choice of parameters

and the use of labeled data can significantly improve the accuracy of the

classification algorithm.

3.5 Application in landcover change detection

In this section, RS image in Bac Binh district, Binh Thuan province

from 1988 to 2017 is used to assess the land cover change including

Landsat-5 TM, Landsat-7 ETM+ and Landsat-8 (107039′22.5529”E, 11033′10.9214”

and 109003′54.7794”E, 10058′25.7780”N). This is one of the two districts

most severely affected by drought and desertification in the south-central

coast region of Vietnam. Figure 3.16 shows RGB color image of Bac Binh

district at six different times, and the detailed information on satellite
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image data by years is described in Table 3.30.

Figure 3.16: RGB color images: Bac Binh district, Binh Thuan province, Vietnam

Table 3.30: Satellite image data of Bac Binh district, Binh Thuan province, Vietnam

No. Image data Date Number Number of Spatial Number of
of bands bands used resolution bits per pixel

1 Landsat-5 TM 07 Jan 1988 7 6 30m 8 bits
2 Landsat-5 TM 23 Jan 1994 7 6 30m 8 bits
3 Landsat-7 ETM+ 05 Jan 2002 8 6 30m 8 bits
4 Landsat-7 ETM+ 16 Jan 2009 8 6 30m 8 bits
5 Landsat-8 30 Jan 2014 11 6 30m 16 bits
6 Landsat-8 23 Feb 2017 11 6 30m 16 bits

Figure 3.17 shows the classification results according to six land-covers

by years; a significant change in the land cover distribution can be rec-

ognized. The difference of the land cover area here is mainly the loss of

forest cover to give way to agricultural land, residential land, and de-

sertification from 1988 to 2017 shown in the soil, rock, and construction

land.

Legend: Class 1: Surface water ; Class 2: Bare land ; Class
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Figure 3.17: Classification results: Bac Binh district, Binh Thuan province, Vietnam

3: Grass, shrubs ; Class 4: Planted forests, low woods ; Class

5: Perennial tree crops ; Class 6: Dense vegetation .

The land cover classification result using GIT2SPFCM-PSO algorithm

into six classes by percentage (%) is shown in Table 3.31 and Figure 3.18.

In general, while the area of most land cover is reduced or unchanged,

the area of soil, rock, and construction land class (Class 2) increase

dramatically from 1988 to 2017.

Firstly, with the rivers, ponds, lakes class occupying the smallest area

has increased from 0.06% to 0.325%, this is due to the appearance of a

lake near the district centre. Meanwhile, the area of soil, rock, and con-

struction land class area shows the most robust increase from 23.943% in

1988 to 37.518% in 2017. The process of urbanization is almost constant
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over the years and is extended to the north of Bac Binh district.

Table 3.31: Land cover classification results using GIT2SPFCM-PSO

Class/Year 1988 1994 2002 2009 2014 2017
Class 1 0.06(%) 0.09(%) 0.336(%) 0.428(%) 0.383(%) 0.325(%)
Class 2 23.943(%) 24.697(%) 28.531(%) 28.227(%) 32.19(%) 37.518(%)
Class 3 14.000(%) 13.217(%) 14.348(%) 14.024(%) 16.003(%) 14.106(%)
Class 4 17.150(%) 15.422(%) 14.236(%) 13.729(%) 16.252(%) 14.806(%)
Class 5 28.402(%) 26.981(%) 21.605(%) 24.406(%) 21.926(%) 17.628(%)
Class 6 16.444(%) 19.593(%) 20.944(%) 19.186(%) 13.806(%) 15.616(%)

Secondly, the field and grass class show almost no change in the area,

although there is a change in distribution, this happens because local

people here still live mainly on agriculture. Similarly, the area of dense

vegetation class also changed very little from 16.444% in 1988 to 15.616%

in 2017, and it can be seen that the area of dense vegetation in the North

is well preserved.

Thirdly, two classes of plant forests, low woods, and perennial forest

were all significantly reduced in the area, especially perennial forest class

decreased significantly from 28.402% in 1988 to 17.628% in 2017, while

planted forests, low woods class which decreased from 17.150% in 1988

to 14.806% in 2017. The area of the planted forests, low woods, and

perennial forest classes decreased due to urbanization and the extraction

of forest products by the people.

Analysis of the results showed that the general trend of land cover

changes in Bac Binh district (Binh Thuan province) is an increase in

the area of rocks, bare soil, construction land and a decline in forest

area, including plantation forest, perennial forest, and dense vegetation.

Meanwhile, types of cover such as surface water, fields and grass have

not changed significantly during the period 1988− 2017.
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Figure 3.18: The diagram shows the land cover change by years from 1988 to 2017

The class of ”rocks, bare soil, construction land” shows the most sig-

nificant increase, from 23.943% of the total area of the district in 1988 to

37.518% in 2017, equivalent to 0.468% of the total area of the district per

year, in which the growth rate in the period from 2009 to 2017 (1.161%

per year) is much higher than the period 1988−2009 (0.204% per year).

The increase in the area of ”rocks, bare soil, construction land” in Bac

Binh district can be explained by the expansion of residential areas as

well as the impact of desertification here.

In the opposite direction, the strongest decline was recorded in the

”perennial forest” class, with a decline rate of about 0.513% per year.

The rate of decline of the ”perennial forest” was also low during the

period 1988 − 2009 (0.190% per year) and gained momentum in the

period of 2009− 2017 (0.753% of the total area of the district per year).

The results of land-cover classification from the proposed methods are
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compared with the classification results from the Erdas software (Version

2014).

Table 3.32: Land-cover classification results by the Erdas software, DFCM, IFCM,
SMKFCM, SFCM-PSO, and GIT2SPFCM-PSO

Class Erdas DFCM IFCM SMKFCM SFCM-PSO GIT2SPFCM-PSO
Class 1 94.32(%) 98.08(%) 98.11(%) 99.19(%) 98.45(%) 99.43(%)
Class 2 94.25(%) 97.35(%) 96.42(%) 98.88(%) 97.65(%) 98.63(%)
Class 3 92.33(%) 95.76(%) 97.29(%) 97.60(%) 99.32(%) 99.45(%)
Class 4 96.16(%) 96.88(%) 96.34(%) 97.98(%) 97.78(%) 99.25(%)
Class 5 93.91(%) 97.21(%) 95.81(%) 99.14(%) 98.49(%) 98.76(%)
Class 6 91.79(%) 94.29(%) 97.89(%) 98.47(%) 96.23(%) 99.05(%)
Total 93.55(%) 95.83(%) 96.66(%) 98.64(%) 97.71(%) 99.13(%)

Table 3.32 shows the accuracy of the proposed algorithms based on

the labeled data. It can be observed that, GIT2SPFCM-PSO algorithm

gives the highest accuracy of over 99%, followed by algorithms SMK-

FCM and SFCM-PSO. The unsupervised algorithms IFCM and DFCM

gave worse results than the semi-supervised algorithms. However, they

still give classification results with higher accuracy than those produced

by Erdas software. The GIT2SPFCM-PSO algorithm produces the high-

est accuracy of four per six land-covers, while the SMKFCM algorithm

achieves the highest accuracy of two per six remaining classes.

In summary, from the classification results, it is possible to show the

land cover change over the years. The proposed method also achieves

the highest accuracy when compared to labeled data, while the compu-

tational complexity of GIT2SPFCM-PSO algorithm is lower than that

of GIT2SPFCM algorithm.

Experiments also show that higher resolution image data leads to

higher accuracy on the same algorithm. Moreover, the semi-supervised

method used in the proposed algorithm can improve efficiency, stability
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and reduce the risk of falling into local optimization.

The accuracy of the classification results by GIT2SPFCM-PSO algo-

rithm is above 95% for all experiments, which indicates that the appro-

priateness of the parameters in clustering algorithms is very important.

According to the classification results, when using some indicators to as-

sess cluster quality, GIT2SPFCM-PSO algorithm gives the best results

in most cases.

3.6 Chapter summary

This chapter presents three semi-supervised fuzzy clustering algo-

rithms including SMKFCM, SFCM-PSO and GIT2SPFCM-PSO:

+ SMKFCM algorithm describes an new approach based on semi-

supervised method for satellite images classification using kernel tech-

nique with initial centroid information retrieved from the labeled data

part. The proposed methods improve the clustering results and overcome

the drawbacks of the conventional clustering algorithms.

+ SFCM-PSO is a hybrid algorithm between semi-supervised method

and PSO optimization technique. The PSO technique is used to find the

optimal parameter for the FCM algorithm. Furthermore, the labeled

data can help improve the accuracy of the proposed algorithm.

+ Meanwhile, PSO optimization technique is used in GIT2SPFCM-

PSO to optimize the centroid of clusters and fuzzy parameters. The

semi-supervised method is also used by adding labeled data information

to the clustering process.

The classification results on some satellite images (Landsat-5 TM,

Landsat-7 ETM+, Landsat-8, and Sentinel-2A) show that it is possi-

130



ble for the proposed method to produce higher accuracy than several

previous algorithms do.

The proposed methods in this chapter were published in the Jour-

nal of Science and Technology (2018) [Pub2], Engineering Applications

of Artificial Intelligence journal (2018, SCIE, Q1, IF=4.2) [Pub8],

and some international conferences NICS (2018) [Pub4], SMC (2018)

[Pub5], KSE (2019) [Pub6] and Information Sciences journal (2020,

SCI, Q1, IF=5.9) [Pub9].

The proposed methods can significantly improve accuracy compared

with some other methods. By using PSO techniques, we can achieve

lower or equivalent computational complexity than algorithms that do

not use them. However, they still have some limitations, such as the

knowledge gained from the labeled data is only used in the proposed

algorithm. The parameters of the algorithms after being found may not

be useful on other data sets. This happens because surface objects are

continually changing in shape, size, and color. The image data of the

same object at different times may be different.

Hybrid studies with other optimization techniques to evaluate the

advantages and disadvantages of each method for remote sensing image

analysis problem class will be studied in the next time.
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CONCLUSIONS

1. Conclusions

The dissertation has presented several robust classification models to

overcome the disadvantages of current methods and apply these models

to land cover classification of RS image data. The proposed method

can be applied to many types of RS images (radar, optics) and spatial

resolutions (10m, 30m). In this dissertation, some main contributions

can be summarized as follows:

The dissertation proposes two unsupervised fuzzy clustering algorithm

which extended from FCM including DFCM [Pub7] and IFCM [Pub1],

[Pub3]. DFCM algorithm proposes to use density information to select

initial centroids for FCM algorithm. IFCM algorithm proposed the use

of spectral clustering as a preprocessing step to map the original data

space to a new space based on the main components.

The dissertation also develops three semi-supervised fuzzy clustering

algorithms including SMKFCM [Pub8], SFCM-PSO [Pub2] and GIT2SPFCM-

PSO [Pub9] which integrate the semi-supervised fuzzy clustering method

[Pub4], [Pub5], [Pub6] and PSO technique. SMKFCM algorithm pro-

poses the multiple-kernel technique to improve data separation. More-

over, the proposed method uses labeled data to adjust the focus during

clustering; so the algorithm to run with greater stability. For algorithms

SFCM-PSO and GIT2SPFCM-PSO, PSO technique is used for finding

the optimal parameters.

The proposed algorithms all produce higher accuracy than the original

algorithms. From the experimental results of the algorithms proposed
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in Chapter 2 and Chapter 3, some recommendations are provided as

follows:

- When all data is unlabeled, DFCM and IFCM algorithms should

be used. The land-cover classification results by IFCM algorithm pro-

vide better accuracy than DFCM algorithm, while DFCM algorithm has

smaller computational complexity than IFCM algorithm.

- When very little data is labeled, SMKFCM, SFCM-PSO, and GIT2SPFCM-

PSO algorithms should be used. GIT2SPFCM-PSO algorithms give

the highest accuracy, while SFCM-PSO is suitable for large data cases

because they have lower computational complexity than GIT2SPFCM-

PSO and SMKFCM algorithms. The GIT2SPFCM-PSO algorithm can

work well with highly uncertain data, while SMKFCM works well with

overlapping data.

Experiments in the dissertation have shown that the proposed meth-

ods can overcome some disadvantages and produce higher accuracy in

most cases than several other methods. They still have some limitations,

such as:

- In principle, the proposed methods can work with any dimensional

image data, but in fact, it has not been applied to hyperspectral im-

age data. Applications for hyperspectral image often requires a massive

amount of calculations, which is only feasible when a parallel comput-

ing model or high-performance computing based on graphics processing

units (GPUs) is employed.

- The parameters of the algorithms established in the above experi-

ments may not be useful on other data sets. This is due to the fact that
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surface objects are continually changing in shape, size, and color. Image

data of the same object in different periods may be different.

2. Future works

Although the proposed methods in the dissertation can overcome dis-

advantages and give better results than several previous approaches.

Most algorithms still face difficulty working with large data and mul-

tidimensional data. The author believes that further research in this

direction can succeed in speeding up calculations and optimizing param-

eters for algorithms, reducing data dimensions and learning based on

deep learning.

- Speed up the calculation: With the explosion of information and

data, most algorithms have difficulty facing ”big data”. Several ap-

proaches, including parallel processing, high-performance computing based

on GPU architecture, are suggested for this research direction.

- Dimensional reduction: RS image data is often characterized by

many dimensions and large capacity, especially hyperspectral RS image;

the number of dimensions can be up to hundreds or more. Therefore,

reducing the size to eliminate unnecessary attributes (features) will help

the algorithms work more effectively.

- Deep learning: For supervised classification problem, it requires a

large amount of labeled data for training. While traditional learning

algorithms are ineffective, deep learning can solve this problem well.

Therefore, this might be a good research direction for the remote sensing

image analysis problem for now and in the future.
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