BỘ GIÁO DỤC VÀ ĐÀO TẠO	BỘ QUỐC PHÒNG
HỌC VIỆN KỸ THU	TẬT QUÂN SỰ
Nguyễn Thị H	ồng
ΒΗΑ΄Ν ΤΙ΄CΗ ΒΟΝΟ Ι Π΄Ο ΠΟΟ	ς τάν οόνέτ νύτ
CHIU TẢI TRONG	, TAMICO VET NUT DI ĐÔNG
	T mu in
LUẠN AN TIÊN SI K	Y IHUĄI
UA NA: 000	
па №1 - 202	

BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ QUỐC PHÒNG **HỌC VIỆN KỸ THUẬT QUÂN SỰ**

Nguyễn Thị Hồng

PHÂN TÍCH ĐỘNG LỰC HỌC TẤM CÓ VẾT NỨT CHỊU TẢI TRỌNG DI ĐỘNG

Chuyên ngành: Cơ kỹ thuật Mã ngành: 9.52.01.01

LUẬN ÁN TIẾN SĨ KỸ THUẬT

Người hướng dẫn khoa học: GS.TS Nguyễn Thái Chung

Hà Nội - 2020

LỜI CAM ĐOAN

Tôi là Nguyễn Thị Hồng xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả trong luận án là trung thực và chưa từng được công bố trong bất kỳ công trình nào.

Tác giả

Nguyễn Thị Hồng

LỜI CẢM ƠN

Tác giả luận án xin bày tỏ lòng biết ơn chân thành đối với GS.TS Nguyễn Thái Chung đã tận tình hướng dẫn, giúp đỡ và cho nhiều chỉ dẫn khoa học có giá trị giúp cho tác giả hoàn thành luận án này. Đồng thời, tác giả trân trọng sự động viên, khuyến khích và những kiến thức khoa học cũng như chuyên môn mà Thầy hướng dẫn đã chia sẻ cho tác giả trong nhiều năm qua, giúp cho tác giả nâng cao năng lực khoa học, phương pháp nghiên cứu và lòng yêu nghề.

Tác giả trân trọng cảm ơn tập thể Bộ môn Cơ học vật rắn, Phòng thí nghiệm Cơ học máy, Khoa Cơ Khí, Phòng Sau đại học – Học viện Kỹ thuật Quân sự đã tạo mọi điều kiện thuận lợi cho tác giả học tập, nghiên cứu. Tác giả xin trân trọng cảm ơn GS.TSKH.NGND Đào Huy Bích – Đại học Quốc gia Hà Nội, GS.TS.NGND Hoàng Xuân Lượng – Học viện Kỹ thuật Quân sự, GS.TSKH Nguyễn Tiến Khiêm – Viện Cơ học đã cung cấp cho tác giả nhiều tài liệu quý báu, các kiến thức khoa học hiện đại và nhiều lời khuyên bổ ích, chỉ dẫn khoa học có giá trị để NCS hoàn thành luận án này.

Tác giả xin bày tỏ lòng biết ơn đối với những người thân trong gia đình, các đồng nghiệp ở trường Đại học Thủy Lợi đã thông cảm, động viên và chia sẻ những khó khăn với tác giả trong suốt thời gian nghiên cứu, hoàn thành luận án.

Tác giả

MỤC LỤC

1	[r	aı	ng
			_

Lời cam đoan	i
Mục lục	iii
Danh mục các ký hiệu, các chữ viết tắt	vii
Danh mục các bảng	X
Danh mục các hình vẽ, đồ thị	xii
MỞ ĐẦU	1
CHƯƠNG 1. TỔNG QUAN VẤN ĐỀ NGHIÊN CỨU	4
1.1. Tổng quan về tải trọng di động và phương pháp tính kết cấu chịu	
tải trọng di động	4
1.2. Tổng quan về tính toán kết cấu chịu tải trọng di động và kết cấu	có vết
nứt	7
1.2.1. Dầm chịu tác dụng của tải trọng di động và dầm có vết nứt	7
1.2.2. Tấm chịu tác dụng của tải trọng di động và tấm có vết nứt	11
1.3. Kết quả nghiên cứu đạt được từ các công trình đã công bố	15
1.4. Các vấn đề cần tiếp tục nghiên cứu	16
1.5. Kết luận chương 1	17
CHƯƠNG 2. THUẬT TOÁN PHẦN TỬ HỮU HẠN PHÂN TÍCH Đ	ÐÔNG
LỰC HỌC CỦA TÂM CÓ VẾT NỨT CHỊU TẢI TRỌNG DI ĐỘNG	19
2.1. Đặt vấn đề	19
2.2. Quan hệ ứng xử cơ học của tấm không có vết nứt	19
2.2.1. Quan hệ biến dạng - chuyển vị	19
2.2.2. Quan hệ ứng suất - biến dạng	21
2.2.3. Các thành phần nội lực	22
2.2.3.1. Mô men uốn và xoắn	22

2.2.3.2. Lực cắt	23
2.3. Giới thiệu bài toán tấm có vết nứt chịu tải trọng di động và ca	ác giả
thiết	23
2.4. Thiết lập các quan hệ ứng xử của phần tử tấm có vết nứt chịu tải	trọng
di động	24
2.4.1. Phần tử tấm có vết nứt chịu tải trọng động	24
2.4.2. Phần tử tấm có vết nứt chịu tải trọng di động	38
2.4.2.1. Phần tử tấm có vết nứt chịu tác dụng của khối lượng di động	39
2.4.2.2. Phần tử tấm có vết nứt chịu tác dụng của hệ dao động di động	44
2.5. Phương trình mô tả dao động của tấm có vết nứt chịu tải trọng di	động
và thuật giải	46
2.5.1. Phương trình mô tả dao động của tấm có vết nứt chịu tải trọ	ong di
động	46
2.5.1.1. Ghép nối các ma trận phần tử vào ma trận chung của toàn hệ	46
2.5.1.2. Phương trình mô tả dao động của hệ	47
2.5.2. Điều kiện biên	48
2.5.2.1. Liên kết tựa bản lề	48
2.5.2.2. Liên kết ngàm	48
2.5.3. Thuật toán giải phương trình tổng thể mô tả dao động của hệ	49
2.6. Chương trình tính và kiểm tra độ tin cậy của chương trình tính	54
2.6.1. Giới thiệu chương trình tính	54
2.6.2. Kiểm tra độ tin cậy của chương trình tính	54
2.6.2.1. Tấm với vết nứt chính giữa chịu lực phân bố đều	54
2.6.2.2 Tấm chịu tác dụng của hệ dao động di động	55
2.7. Kết luận chương 2	57

CHƯƠNG 3. ẢNH HƯỞNG CỦA MỘT SỐ YẾU TỐ ĐẾN ĐÁP ỨNG Đ	ÔNG
LỰC HỌC CỦA TÂM CÓ VẾT NỨT CHỊU TÁC DỤNG CỦA	ΤÅΙ
TRỌNG DI ĐỘNG	58
3.1. Đặt vấn đề	58
3.2. Tấm có vết nứt chịu tác dụng của khối lượng di động	58
3.2.1. Bài toán xuất phát	58
3.2.2. Ảnh hưởng của một số yếu tố đến sự làm việc của hệ	64
3.2.2.1. Ånh hưởng của chiều dài vết nứt	64
3.2.2.2. Ånh hưởng của số lượng vết nứt	66
3.2.2.3. Ånh hưởng của vận tốc tải trọng	69
3.2.2.4. Ảnh hưởng của gia tốc khối lượng di chuyển	71
3.2.2.5. Ånh hưởng của liên kết	73
3.2.2.6. Ảnh hưởng của chiều dày tấm	76
3. 3. Tấm có vết nứt chịu tác dụng của hệ dao động di động	78
3.3.1. Ånh hưởng của số lượng vết nứt	81
3.3.2. Ảnh hưởng độ cứng lò xo của hệ dao động	83
3.3.3. Ảnh hưởng vận tốc của hệ dao động	86
3.3.4. Ånh hưởng của phương vết nứt	88
3.4. Kết luận chương 3	90
CHƯƠNG 4. XÁC ĐỊNH PHẢN ỨNG ĐỘNG CỦA TẦM CÓ	VÉT
NỨT CHỊU TÁC DỤNG CỦA TẢI TRỌNG DI ĐỘNG BẰNG T	HỰC
NGHIỆM	92
4.1. Mục đích thí nghiệm	92
4.2. Mô hình và thiết bị thí nghiệm	92
4.2.1. Mô hình thí nghiệm	92
4.2.2. Thiết bị thí nghiệm	95

4.2.2.1. Các thiết bị tạo tải	95
4.2.2.2. Cảm biến gia tốc và cảm biến biến dạng	96
4.2.2.3. Thiết bị đo dao động	96
4.3. Phương pháp xác định đáp ứng gia tốc, biến dạng của kết cấu	97
4.4. Phân tích và xử lý kết quả thí nghiệm	99
4.5. Thí nghiệm và kết quả thí nghiệm	100
4.6. Kết luận chương 4	107
KẾT LUẬN VÀ KIẾN NGHỊ	108
DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ	111
TÀI LIỆU THAM KHẢO	112
PHỤ LỤC	123
Phụ lục 1. Một số biểu thức	124
Phụ lục 2. Mã nguồn chương trình CPM_2019	127
Phụ lục 3. Kết quả đo thí nghiệm	134

DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT

1. Danh mục các ký hiệu

1.1. Các ký hiệu bằng chữ La tinh

A – diện tích vết nứt

Ae – diện tích của phần tử tấm

[B] – ma trận biến đổi hệ lực nút

 $[B]_1, [B]_2$ – các ma trận đạo hàm riêng

 $[C^0]$ – ma trận độ mềm của phần tử tấm không có vết nứt

[C1] – ma trận độ mềm bổ sung của phần tử tấm có vết nứt

 $\left[C \right]_{e}^{p}$ – ma trận cản phần tử bổ sung

[D] – ma trận các hệ số đàn hồi

E – mô đun đàn hồi vật liệu tấm

 $f(\overline{a}_c)$ – hàm hiệu chỉnh có xét đến kích thước hữu hạn của tấm

 ${\left\{f\right\}}_{e}^{b}, {\left\{f\right\}}_{e}^{c}, {\left\{f\right\}}_{e}^{s}$ – các véc tơ lực khối, véc tơ lực tập trung, véc tơ bề mặt phần tử

lực bề mặt phần tử

 $\left\{f\right\}_{e}$ – véc tơ lực nút của phần tử

 $\{F\}$ – véc tơ lực nút độc lập của phần tử

[G] – ma trận phụ thuộc vào hình dạng, kích thước của phần tử

He - hàm tác dụng Hamilton

[I] – ma trận đơn vị cấp 3

 $\{\kappa\}$ – véc tơ độ cong uốn và xoắn

 $K_{\rm I},\,K_{\rm II}$ – hệ số cường độ ứng suất ứng với hai trường hợp của vết nứt

 $K^{\rm f}_{\rm ir}$ – các hệ số cường độ ứng suất theo lý thuyết Mindlin đối với tấm có kích thước hữu hạn

 $K^{}_i$ – hệ số cường độ ứng suất theo lý thuyết Kirchhoff - Love

 $\left[K \right]_{\!\!\!e} - ma$ trận độ cứng phần tử

 $\left[K_{1}\right]_{e}$ – ma trận độ cứng phần tử do cắt tấm

 $\begin{bmatrix} K_2 \end{bmatrix}_e$ – ma trận độ cứng phần tử do uốn tấm

 $\left[K\right]_{e}^{c}$ – ma trận độ cứng của phần tử có vết nứt

 $\left[K\right]_{e}^{p}$ – ma trận độ cứng phần tử bổ sung

 $M_{x\text{,}}\,M_{y\text{,}}\,M_{xy}\,-\,m\hat{o}$ men uốn quanh trục y, x và mô men xoắn

 $\left[M \right]_{e}$ – ma trận khối lượng phần tử

 $\left[M\right]_{e}^{p}$ – ma trận khối lượng phần tử bổ sung

[N] – ma trận hàm dạng

p(x,y,t) - lực phân bố quy đổi từ <math>R(x,y,t) thông qua hàm Delta-Dirac

 ${\left\{ P \right\}}_{e}$ – véc tơ tải trọng phần tử bổ sung

 $Q_{x,}Q_{y}$ - các thành phần lực cắt phân bố theo chiều dài

Q(t) - tải trọng tác dụng lên khối lượng di động

 $\left\{q\right\}_{e}$ – véc tơ chuyển vị nút của phần tử

 $\left\{\dot{q}\right\}_{e}$ – véc tơ vận tốc nút của phần tử

 $\left\{ \ddot{q} \right\}_{e}$ – véc tơ gia tốc nút của phần tử

R(x,y,t) - lực tác dụng của tải trọng di động lên phần tử tại vị trí <math>(x,y)

 $\{S\}$ – véc tơ lực nút phụ thuộc của phần tử

[T] – ma trận chuyển đổi hệ trục tọa độ

 $T_e - d \hat{\varrho} n g$ năng của phần tử

 V_e – thể tích của phần tử tấm

v - vận tốc của tải trọng

 $\{u\}$ – trường chuyển vị

 $U_e-th \acute{e}$ năng biến dạng đàn hồi của phần tử

 W_e – công gây ra bởi ngoại lực

W_P – chiều rộng của tấm

u, v và w tương ứng là chuyển vị dài dọc theo các trục x, y và z

(x, y, z) - ký hiệu tên các trục toạ độ trong hệ toạ độ chung

1.2. Các ký hiệu bằng chữ Hy Lạp

 α_R , β_R – hệ số cản Rayleigh

 ω_1, ω_2 – các tần số dao động riêng của hệ

 $\delta(\cdot)$ – hàm Delta-Dirac

 ε_x , ε_y – các thành phần biến dạng

 $\{ \epsilon \}$ – véc tơ biến dạng

 ξ,η – hoành độ và tung độ trong hệ toạ độ tự nhiên

 $\{\gamma^0\}$ – véc tơ biến dạng cắt

 $\gamma_{xy}, \gamma_{xz}, \gamma_{yz}$ – các thành phần biến dạng

 $\theta_x,\,\theta_y-l \grave{a} n$ lượt là góc xoay của pháp tuyến tấm quanh các trục x và y

v - hệ số Poátxông

ρ – khối lượng riêng vật liệu tấm

 $\tau_{xy}, \tau_{xz}, \tau_{yz}$ – các thành phần ứng suất tiếp

 $\lambda - hệ số hiệu chỉnh cắt$

 $\{\sigma\}$ – vécto ứng suất tại một điểm

 Φ_j – hàm hiệu chỉnh, phụ thuộc chiều dày tấm và kích thước vết nứt

 Δt – bước thời gian

2. Danh mục các chữ viết tắt

CRACKED_PLATE_MOVING_2019 (CPM_2019) – chương trình phân tích động hệ tấm có vết nứt chịu tác dụng của tải trọng di động;

PTHH – phần tử hữu hạn.

DANH MỤC CÁC BẢNG

Trang

Bång 3.11. Biến thiên các giá trị lớn nhất theo vận tốc	88
CHƯƠNG 4. XÁC ĐỊNH PHẢN ỨNG ĐỘNG CỦA TÂM CÓ VẾT NỨT C	CHĮU
TÁC DỤNG CỦA KHỐI LƯỢNG DI ĐỘNG BẰNG THỰC NGHIỆM	92
Bảng 4.1. Tần số riêng đầu tiên của tấm	.106

DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ

Trang

CHƯƠNG 1. TỔNG QUAN VẤN ĐỀ NGHIÊN CỨU4
Hình 1.1. Một số phương pháp tính kết cấu chịu tải trọng di động5
Hình 1.2. Lắp ghép các tấm bản mặt cầu6
Hình 1.3. Thi công lắp ghép các tấm lát mặt đường7
CHƯƠNG 2. THUẬT TOÁN PHẦN TỬ HỮU HẠN PHÂN TÍCH ĐỘNG
LỰC HỌC CỦA TÂM CÓ VẾT NỨT CHỊU TẢI TRỌNG DI ĐỘNG19
Hình 2.1. Tấm có vết nứt chịu khối lượng di động23
Hình 2.2. Ánh xạ tọa độ giữa hệ tọa độ cục bộ và hệ tọa độ tự nhiên24
Hình 2.3. Cách chia phần tử đối với tấm có vết nứt với phương bất kỳ30
Hình 2.4. Phần tử tấm có vết nứt và hệ lực nút phụ thuộc30
Hình 2.5. Phần tử tấm có vết nứt song song với các trục ox, oy34
Hình 2.6. Phần tử tấm chịu tác dụng của khối lượng di động
Hình 2.7. Phần tử tấm chịu tác dụng của hệ dao động di động
Hình 2.8. Sơ đồ thuật toán giải bài toán tấm có vết nứt chịu tải trọng di
động53
Hình 2.9. Mô hình của bài toán [15]55
Hình 2.10. Mô hình của bài toán [17]56
CHƯƠNG 3. ẢNH HƯỞNG CỦA MỘT SỐ YẾU TỐ ĐẾN ĐÁP ỨNG
ĐỘNG LỰC HỌC CỦA TẦM CÓ VẾT NỨT CHỊU TÁC DỤNG CỦA
TẢI TRỌNG DI ĐỘNG58
Hình 3.1. Mô hình bài toán59
Hình 3.2. Mô hình PTHH của bài toán59
Hình 3.3. Bốn dạng dao động riêng đầu tiên của hệ61
Hình 3.4. Đáp ứng chuyển vị W tại điểm A theo thời gian62

Hình 3.5. Đáp ứng gia tốc ÿ tại điểm A theo thời gian6	52
Hình 3.6. Đáp ứng ứng suất σ_y tại điểm A và σ_x tại B theo thời gian6	53
Hình 3.7. Quan hệ W_{max} tại điểm A và chiều dài $2a_c$ của vết nứt6	54
Hình 3.8. Quan hệ \ddot{W}_{max} tại điểm A và chiều dài $2a_c$ của vết nứt6	55
Hình 3.9. Quan hệ σ_y^{max} , σ_x^{max} tương ứng tại A, B và chiều dài $2a_c$ của v	ŕết
nứt6	5
Hình 3.10. Đáp ứng độ võng W tại điểm A theo thời gian6	57
Hình 3.11. Đáp ứng gia tốc ÿ tại điểm A theo thời gian6	57
Hình 3.12. Đáp ứng ứng suất σ_x tại điểm B theo thời gian	8
Hình 3.13. Quan hệ W ^A _{max} tại điểm A và vận tốc v của khối lượng6	59
Hình 3.14. Quan hệ W ^A _{max} tại điểm A và vận tốc v của khối lượng7	0'
Hình 3.15. Quan hệ σ_{max}^{A} , σ_{max}^{B} tại A và B và vận tốc v của khối lượng7	70
Hình 3.16. Biến thiên độ võng W tại điểm A theo thời gian	
(v = 6m/s, 8m/s, 10m/s, 12m/s, 14m/s)	71
Hình 3.17. Biến thiên độ võng W tại A theo thời gian với các gia tốc kha	ác
nhau7	'2
Hình 3.18. Đáp ứng độ võng W tại điểm A theo thời gian	
(Với các trường hợp liên kết khác nhau)7	3
Hình 3.19. Đáp ứng gia tốc ÿ tại điểm A theo thời gian	
(Với các trường hợp liên kết khác nhau)7	4
Hình 3.20. Đáp ứng ứng suất σ_y tại điểm A theo thời gian	
(Với các trường hợp liên kết khác nhau)7	4
Hình 3.21. Đáp ứng ứng suất σ_x tại điểm B theo thời gian	
(Với các trường hợp liên kết khác nhau)7	5
Hình 3.22. Quan hệ W _{max} tại điểm A và chiều dày của tấm7	6

Hình 3.23. Quan hệ \ddot{W}_{max} tại điểm A và chiều dày của tấm
Hình 3.24. Quan hệ σ_y^{max} , σ_x^{max} tại điểm A, B và chiều dày của tấm77
Hình 3.25. Đáp ứng độ võng tại điểm A theo thời gian với các chiều dày khác nhau ($h = [0,005; 0,010; 0,015; 0,020; 0,025; 0,030]m$)
Hình 3.26. Đáp ứng độ võng tại điểm A theo thời gian
(Hệ dao động và khối lượng di động tác dụng)
Hình 3.27. Đáp ứng gia tốc tại điểm A theo thời gian
(Hệ dao động và khối lượng di động tác dụng)80
Hình 3.28. Đáp ứng ứng suất σ_y tại A và σ_x tại B theo thời gian
(Hệ dao động và khối lượng di động tác dụng)80
Hình 3.29. Đáp ứng độ võng tại điểm A theo thời gian
(Với các trường hợp số lượng vết nứt khác nhau)81
Hình 3.30. Đáp ứng gia tốc tại điểm A theo thời gian
(Với các trường hợp số lượng vết nứt khác nhau)82
Hình 3.31. Đáp ứng ứng suất σ_x tại B theo thời gian
(Với các trường hợp số lượng vết nứt khác nhau)82
Hình 3.32. Đáp ứng độ võng tại điểm A theo thời gian
(Với các trường hợp độ cứng lò xo khác nhau)83
Hình 3.33. Đáp ứng ứng suất σ_x tại B theo thời gian
(Với các trường hợp độ cứng lò xo khác nhau)84
Hình 3.34. Quan hệ độ võng lớn nhất W_{max} tại điểm A và độ cứng lò xo84
Hình 3.35. Quan hệ gia tốc lớn nhất \ddot{W}_{max} tại điểm A và độ cứng lò xo85
Hình 3.36. Quan hệ ứng suất lớn nhất tại A, B và độ cứng lò xo85
Hình 3.37. Đáp ứng độ võng tại điểm A theo thời gian
(Với các trường hợp vận tốc di chuyển của hệ dao động khác nhau)87
Hình 3.38. Đáp ứng ứng suất σ_y tại A theo thời gian

(Với các trường hợp vận tốc di chuyển của hệ dao động khác nhau)87 Hình 3.39. Đáp ứng độ võng tại điểm A theo thời gian
$(\alpha = 0^{0}, 30^{0}, 60^{0}, 90^{0})$
Hình 3.40. Đáp ứng gia tốc tại điểm A theo thời gian
$(\alpha = 0^0, 30^0, 60^0, 90^0)89$
Hình 3.41. Đáp ứng ứng suất σ_x tại B theo thời gian
$(\alpha = 0^0, 30^0, 60^0, 90^0)$
CHƯỜNG 4. XÁC ĐỊNH PHẢN ỨNG ĐỘNG CỦA TÂM CÓ VẾT NỨT
CHỊU TÁC DỤNG CỦA KHỐI LƯỢNG DI ĐỘNG BẰNG THỰC
NGHIỆM92
Hình 4.1. Sơ đồ kết cấu tấm – khung dùng cho thí nghiệm93
Hình 4.2. Mô hình tấm với các trường hợp vết nứt và vị trí đo thí nghiệm
Hình 4.3. Mẫu thí nghiệm94
Hình 4.4. Cảm biến gia tốc, cảm biến biến dạng96
Hình 4.5. Hệ thống đo rung, ồn, biến dạng LMS97
Hình 4.6. Gắn cảm biến lên tấm98
Hình 4.7. Một số hình ảnh thí nghiệm103
Hình 4.8. Đáp ứng độ võng theo thời gian tại điểm giữa tấm104
Hình 4.9. Đáp ứng biên độ - tần số của tấm không có vết nứt105
Hình 4.10. Đáp ứng biên độ - tần số của tấm có 3 vết nứt105
РНЏ LỤС123
Hình 1.1 PL. Lực nút phần tử tấm chữ nhật chịu uốn124
Hình 1.2 PL. Lực tĩnh tương đương trong phần tử tấm chữ nhật chịu uốn
Hình 1.3 PL. Quan hệ hàm kiểm tra với kích thước phần tử [47]125

MỞ ĐẦU

Kết cấu dang tấm chiu tác dung của tải trong di đông thường gặp trong các lĩnh vực giao thông vận tải, xây dựng, công nghiệp, công nghiệp quốc phòng, trong đó có thể kể đến các tấm mặt cầu, đường chịu tác dung của xe, các dải vệt chống lây trang bị cho ngành công binh, mặt câu phao chịu tác dụng của xe bánh lốp hoặc xe bánh xích di chuyển, mặt đường băng chịu tác dụng của máy bay khi cất, hạ cánh, vv. Thực tế cho thấy, dưới tác dụng của các loại tải trọng khai thác, trên các tấm thường xuất hiện các vết nứt, gãy ở mức độ khác nhau, làm giảm sức chịu lực đáng kể của tấm, do đó chúng là những đối tượng cần được xem xét với mục tiêu khuyến cáo kỹ thuật, duy trì sự làm việc của hệ và xa hơn nữa là đề xuất các giải pháp gia cường, khắc phục để nâng cao hiệu quả làm việc cho kết cấu. Đối với các kết cấu tấm không có vết nứt chịu tác dụng của tải trọng di động như: khối lượng di động, hệ dao động di động đến nay đã có khá nhiều công trình của các tác giả trong nước và nước ngoài công bố, trong đó ngoài kết quả nghiên cứu lý thuyết còn có một số kết quả đạt được từ nghiên cứu thực nghiêm. Còn đối với kết cấu tấm có vết nứt chiu tác dung tải trong đông, đặc biệt là tải trọng di động đến nay là vấn đề còn ít công trình công bố, chẳng hạn khi xét đầy đủ quá trình và tính chất tác dụng của tải trọng di đông lên kết cấu. Vì vây, tác giả luân án chon vấn đề "Phân tích đông lực hoc tấm có vết nứt chiu tải trong di đông" làm nôi dung nghiên cứu, với mong muốn góp phần làm phong phú thêm kết quả nghiên cứu trong lĩnh vực này.

Nội dung của luận án:

- Xây dựng thuật toán phần tử hữu hạn (PTHH) và chương trình máy tính phân tích động lực học tấm có vết nứt, chịu tác dụng của tải trọng đi động với hai mô hình: khối lượng đi động và hệ dao động một bậc tự do đi động, trong đó vận tốc và quỹ đạo chuyển động của tải trọng là bất kỳ. - Khảo sát số, xem xét ảnh hưởng của một số thông số về kết cấu, vết nứt, tải trọng di động, vật liệu, điều kiện liên kết đến các đặc trưng động lực học của tấm nhằm đưa ra các khuyến cáo kỹ thuật định hướng nghiên cứu và ứng dụng trong thực tiễn.

- Nghiên cứu thực nghiệm trên mô hình tấm có vết nứt chịu tác dụng của khối lượng di động, xem xét trực quan phản ứng động của tấm và góp phần kiểm tra độ tin cậy của chương trình tính được thiết lập theo nội dung nghiên cứu lý thuyết của luận án.

Đối tượng nghiên cứu của luận án:

Về kết cấu: Tấm có vết nứt thủng, không lan truyền, chịu uốn với các liên kết cứng tuyệt đối;

Về tải trọng: Khối lượng di động và hệ dao động một bậc tự do di chuyển với vận tốc không đổi hoặc thay đổi, quỹ đạo di chuyển bất kỳ.

Phương pháp nghiên cứu:

Nghiên cứu bằng lý thuyết kết hợp với thực nghiệm trên mô hình. Về lý thuyết, áp dụng phương pháp PTHH để thiết lập thuật toán, chương trình tính; về thực nghiệm, tiến hành thí nghiệm trực tiếp trên mô hình trong phòng thí nghiệm với các thiết bị thí nghiệm hiện đại.

Cấu trúc của luận án: Luận án bao gồm 146 trang thuyết minh, trong đó có 14 bảng, 67 đồ thị, hình vẽ, 79 tài liệu tham khảo, 24 trang phụ lục, được cấu trúc bởi phần mở đầu, 4 chương, phần kết luận và kiến nghị, tài liệu tham khảo và phần phụ lục.

Mở đầu: Trình bày tính cấp thiết của đề tài luận án và bố cục luận án Chương 1: Tổng quan vấn đề nghiên cứu

Trình bày các kết quả của các công trình nghiên cứu trong nước và nước ngoài về tải trọng di động, tính toán kết cấu dầm, tấm chịu tải trọng di động để có được bức tranh về tính toán kết cấu chịu tải trọng di động – là vấn đề gần với nội dung luận án. Trên cơ sở những vấn đề cần tiếp tục nghiên cứu, đề xuất mục tiêu, nội dung và phương pháp nghiên cứu cho luận án.

Chương 2: Thuật toán phần tử hữu hạn phân tích động lực học của tấm có vết nứt chịu tác dụng của tải trọng di động

Xây dựng thuật toán phần tử hữu hạn (PTHH) và chương trình máy tính nhằm phân tích phản ứng động của tấm có vết nứt chịu tác dụng của tải trọng di động dạng khối lượng di động và hệ dao động di động. Nội dung chính được thể hiện trong các công trình khoa học đã được tác giả công bố [1], [2], [3].

Chương 3: Ảnh hưởng của một số yếu tố đến đáp ứng động lực học của tấm có vết nứt chịu tác dụng của tải trọng di động

Trên cơ sở giải nhiều lớp bài toán với các thông số tải trọng, hình học, vết nứt, vật liệu, liên kết, xem xét ảnh hưởng của chúng đến các đặc trưng động lực học của tấm có vết nứt và đưa ra các nhận xét, khuyến cáo kỹ thuật định hướng nghiên cứu và ứng dụng thực tiễn. Nội dung chính được thể hiện trong các công trình khoa học [2], [3] do tác giả đã công bố.

Chương 4: Xác định phản ứng động của tấm có vết nứt chịu tác dụng của khối lượng di động bằng thực nghiệm

Sử dụng lý thuyết thực nghiệm, thiết kế, chế tạo mô hình thí nghiệm, với các thiết bị, hệ thống đo động đa kênh hiện đại, tác giả tiến hành nghiên cứu thực nghiệm với tấm chữ nhật không có vết nứt và có các vết nứt ở các vị trí khác nhau, chịu tác dụng của khối lượng di động. Nội dung chính của phần này được thể hiện trong công trình [4] đã được tác giả công bố.

Kết luận chung: Trình bày các kết quả chính, những đóng góp mới của luận án và các kiến nghị.

Tài liệu tham khảo Phụ lục

CHƯƠNG 1

TỔNG QUAN VẤN ĐỀ NGHIÊN CỨU

1.1. Tổng quan về tải trọng di động và phương pháp tính kết cấu chịu tải trọng di động

Từ lâu tải trọng di động đã được quan tâm khi tính toán, thiết kế các công trình giao thông, xây dựng, vv. Do tính phức tạp của nó về mặt ứng xử cơ học và tính toán, nên tải trọng di động trong các mô hình tính thường được mô tả là dạng tải trọng động có chu kỳ, với điểm đặt không đối, đây là mô hình tải trọng khá đơn giản cho tính toán, phản ánh không sát sự làm việc của hệ thực, ngày nay mô hình này vẫn được sử dụng trong một số trường hợp vân tốc di chuyển của tải trong rất châm. Thực tế đã cho thấy, ảnh hưởng do sự di chuyển của tải trọng tới phản ứng động của kết cấu là rất đáng kể, có thể phát sinh những hiện tượng không mong muốn, như làm tăng các giá tri chuyển vi, nôi lực và có thể làm kết cấu bi phá huỷ. Do ý nghĩa thực tiễn quan trọng nên đã từ lâu, cách đây khoảng 150 năm vấn để nghiên cứu dao động của kết cấu chịu tải trọng di động đã thu hút được sự chú ý của nhiều nhà khoa học trên thế giới. Ngày nay, với sự phát triển của phương pháp và công cu tính, các nhà khoa học trong nước và nước ngoài đã và đang nghiên cứu các kết cấu chịu tải trọng di động với việc xét đến cả quá trình và tính chất di chuyển của tải trong, điều đó đã tiếp cân dần sát hơn với sự làm việc thực tế của hệ. Theo hướng này, tải trọng di động được xét có thể là một trong ba dạng như sau [30]:

Dạng thứ nhất: Lực có điểm đặt di chuyển trên kết cấu;

Dạng thứ hai: Vật mang khối lượng cùng với lực tác dụng vào nó di chuyển trên kết cấu;

Dạng thứ ba: Hệ dao động di chuyển trên kết cấu, giữa hệ di động và kết cấu có các liên kết đàn hồi hoặc liên kết đàn hồi và cản nhớt.

Để phù hợp với các mô hình tính thì phương pháp tính kết cấu chịu tải trọng di động cũng được thay đổi. Trên hình 1.1 là các phương pháp tính kết cấu chịu tải trọng di động thường được sử dụng phổ biến đến nay.

Hình 1.1. Một số phương pháp tính kết cấu chịu tải trọng di động

Trong một số trường hợp, để đơn giản và thuận tiện cho việc tính toán, hiệu ứng quán tính do tải trọng động gây ra được tính toán thông qua hệ số động, thông thường bằng tỷ số giữa phản ứng động với phản ứng tĩnh của kết cấu. Trong trường hợp tải trọng di chuyển với tốc độ nhỏ thì có thể tính toán tương tự như trường hợp tải tĩnh ở các vị trí liên tiếp nhau. Khi tải trọng di chuyển với tốc độ cao, kết cấu sẽ dao động và lúc này hiệu ứng động không thể bỏ qua và phương pháp tính tương đương tải tĩnh như trên là không phù hợp. Qua nghiên cứu cho thấy các yếu tố chính ảnh hưởng đến phản ứng động của kết cấu gồm:

- Thông số hình học, khối lượng, độ cứng, cản của bản thân kết cấu;

 Đặc tính của bản thân hệ di động, như: khối lượng, hệ dao động di động, số lượng và sự phân bố các tải trọng di động, v.v;

- Thông số của hệ di động, sự di chuyển của tải trọng: tốc độ của tải trọng di động (nhanh dần, chậm dần, đều hay thay đổi đột ngột), quỹ đạo di chuyển của tải trọng (thẳng hoặc cong).

 Điều kiện tiếp xúc giữa tải trọng và kết cấu: bề mặt mà trên đó tải trọng di động là phẳng hoặc gồ ghề (biên độ đều, ngẫu nhiên), tiếp xúc giữa tải trọng và kết cấu là liên tục hay không liên tục;

Điều kiện ban đầu khi tải trọng bắt đầu tiếp xúc với kết cấu: có gia tốc hay không có gia tốc.

Đối với kết cấu tấm chịu tải trọng di động nói chung đến nay có khá nhiều ứng dụng trong kỹ thuật, đặc biệt trong ngành cầu, đường, ví dụ: các tấm dải vệt chống lầy trang bị trong lực lượng công binh, mặt đường giao thông, tấm ghi sân bay, mặt đường băng trên tàu sân bay, các tấm bản mặt cầu, v.v (Hình 1.2, Hình 1.3).

Hình 1.2. Lắp ghép các tấm bản mặt cầu

Hình 1.3. Thi công lắp ghép các tấm lát mặt đường 1.2. Tổng quan về tính toán kết cấu chịu tải trọng di động và kết cấu có vết nứt

Vết nứt là một trong những nguyên nhân làm giảm yếu kết cấu, trong những điều kiện cụ thể, vết nứt sẽ gây ra những sự cố nguy hiểm đối với chi tiết máy hoặc công trình. Đối với vết nứt tế vi, khả năng phá hủy công trình diễn ra chậm hơn là những vết nứt nhìn thấy, có kích thước tương đối lớn. Trong phạm vi của luận án chỉ đề cập đến vết nứt nhìn thấy, do đó phần này cũng chỉ đề cập một cách tổng quan các kết cấu dầm, tấm không có và có vết nứt chịu tác dụng của tải trọng tĩnh, động và di động để làm cơ sở cho việc giải quyết bài toán luận án đặt ra.

1.2.1. Dầm chịu tác dụng của tải trọng di động và dầm có vết nứt

Do nhu cầu của thực tiễn, kết cấu dầm chịu tải trọng di động được nghiên cứu khá sớm, trong đó có thể kể đến công trình nghiên cứu từ những năm 1849 của Stokes và Willis. Năm 2011, Javid F. [41] đã tính toán đáp ứng chuyển vị của dầm thẳng và dầm cong chịu tác dụng của lực di chuyển. Gbadeyan J.A. và các cộng sự [32] đã nghiên cứu phản ứng động của hệ dầm đôi với các liên kết giảm chấn Rayleigh theo phương thẳng đứng nối giữa dầm trên và dầm dưới, chịu tác dụng của lực tập trung di động. Phát triển các nghiên cứu trước đó, Nguyen Xuan Toan, Van Duc Tran [60] đã phân tích đáp ứng động lực học của dầm trên nền đàn hồi chiu tải trong di đông là lực hoặc khối lượng di chuyển, trong đó phương pháp PTHH đã được sử dụng. Trong các nghiên cứu này, ảnh hưởng của tính chất tải trọng, kích thước hình học của kết cấu và điều kiện liên kết cũng như tính phi tuyến hình học đã được đề cập. Sử dụng phương pháp số, chủ yếu là phương pháp PTHH để nghiên cứu phản ứng động của kết cấu cầu và cầu dây văng như là hệ liên hợp dầm - dây - cột chịu tải trọng di động đã được Nguyễn Thị Cấm Nhung [8], Chen Tsung - Chien [26], Liu M.F. và các cộng sự [52], Nguyễn Thái Chung, Lê Phạm Bình [59] tập trung giải quyết, bước đầu đã đat được những kết quả đáng kể thể hiện đáp ứng động lực học của hệ. Khiêm N.T. và các cộng sự [45] đã ứng dụng cách tiếp cận phổ để nghiên cứu bài toán dầm chịu tải trọng di động.

Đối với dầm có vết nứt, đây là những kết cấu hoặc chi tiết phổ biến trong thực tế, việc tính toán tĩnh và động đối với các đối tượng này đến nay đã có khá nhiều công bố. Theo đó, Dundar C., Kara I.F. [29] áp dụng phương pháp PTHH với loại phần tử thanh 3D mô phỏng ứng xử của khung có vết nứt chịu tải trọng tĩnh, một số kết quả về quan hệ chuyển vị - tải trọng của khung đã được chỉ ra. Nguyen Thai Chung và các cộng sự [58] sử dụng phương pháp PTHH để tính toán số, xem xét ảnh hưởng của các yếu tố hình học, vật liệu, vết nứt và tải trọng đến đáp ứng động lực học của nhà cao tầng được mô hình hóa bởi hệ khung không gian - tấm - nền làm

việc đồng thời, trong đó có các vết nứt tại các cột chịu tác dụng của động đất. Phí Thị Hằng [6] đã áp dụng cách tiếp cận này để nghiên cứu đáp ứng tần số của dầm có vết nứt chịu tải trọng di động. Khiem N.T., Hang P.T. [43], [44] đã giải bài toán chẩn đoán vết nứt bằng đáp ứng tần số của dầm chịu tải trọng di động. Ngô Trọng Đức và các cộng sự [5] sử dụng phương pháp phân tích Wavelet dừng của dạng dao động riêng có kể đến ảnh hưởng của nhiễu trắng Gausian để phân tích dao đông riêng và xác đinh vi trí của các vết nứt trong dầm làm bằng vật liệu FGM, trong đó các dạng dao động riêng được các tác giả xác định từ mô hình phân tử dâm FGM chịu kéo, nén và uốn có nhiều vết nứt mô phỏng bởi các lò xo theo phương pháp độ cứng động lực (DSM). Abhijit N., Pawan S. [12], Ashish S.A., Nitin N.M. [18] và Prabhakar M.S. [63] đã sử dụng phương pháp PTHH phân tích dao động của dầm có vết nứt làm bằng vật liệu đẳng hướng và vật liệu composite, trong đó các tác giả đã đề cập ảnh hưởng của vết nứt như đô sâu, vi trí đến tần số và biên đô dao đông của dầm. Maurya S.K. và các cộng sự [55] giới thiệu phương pháp phân tích dao động của dâm công xôn có vết nứt và đã chỉ ra những tiện ích của phần mềm ANSYS sử dụng tính toán bài toán dạng này. Mazaheri H. và các cộng sự [56], Ramachandran C., Ponnudurai R. [66] sử dụng phương pháp PTHH phân tích tĩnh và dao động riêng kết cấu dầm bê tông và dầm composite liên kết tựa đơn, kết quả tính toán số được so sánh với kết quả nghiên cứu thực nghiệm do chính các tác giả thực hiện. Long H. và các cộng sự [54] mô hình hóa dầm có vết nứt chịu tác dụng của tải trọng động, trong đó phương pháp PTHH đã được các tác giả sử dụng, kết quả khảo sát số cho thấy ảnh hưởng của độ sâu vết nứt đến tần số riêng của dầm là đáng kể. Bên cạnh

đó, các tác giả đã thực hiện thí nghiệm trực tiếp trên mô hình dầm công xôn có vết nứt để so sánh tần số riêng với tính toán lý thuyết.

Lal G., Johny A. [49] sử dụng các tấm PZT để điều khiển dao động tự do của dầm có nhiều vết nứt, ảnh hưởng của độ sâu, vị trí, số lượng vết nứt và ảnh hưởng của các tấm PZT đến đặc trưng dao động riêng của dầm đã được các tác giả đề cập. Shirazizadeh M.R. và các cộng sự [71] sử dụng phương pháp giải tích để phân tích dao động riêng và ổn định tĩnh của dầm có vết nứt, trong đó vết nứt được mô phỏng bằng lò xo chống uốn.

Nghiên cứu với đối tượng dầm có vết nứt chịu tác dụng của tải trọng di động là vấn đề phức tạp hơn so với tác dụng của các loại tải trọng tĩnh và động có điểm đặt không đổi, nhưng là mô hình tính phản ánh sát với sự làm việc của các công trình thực tế như cầu, đường, vũ khí, khí tài quân sự khi chịu tải trọng khai thác. Theo hướng này, đến nay cũng có khá nhiều công bố của các tác giả trong nước và quốc tế. Kurt P. và các cộng sự [48] sử dụng phương pháp PTHH để phân tích độ võng của dầm tựa đơn chịu tác dụng của lực di động. Ozturk H. và các cộng sự [61] đã có một số kết quả xem xét quan hê đô võng của dầm - thời gian - vi trí vết nứt khi phân tích bài toán dầm có vết nứt đặt trên các liên kết đàn hồi chịu lực di động với các tốc độ khác nhau. Nguyen Thai Chung, Le Pham Binh [59] đã phân tích phi tuyến hình học đối với dầm có vết nứt đặt trên nền đàn hồi chịu tác dụng của khối lượng di động, trong đó mô hình nên Winkler và phương pháp PTHH với phần tử dầm chứa vết nứt được các tác giả sử dụng. Alebrahim R. và các cộng sự [16] mô hình vết nứt trên dầm chịu uốn bằng tổ hợp lò xo chống uốn và chống cắt mắc song song để phân tích dao động của dầm nhiều vết nứt bằng phương pháp giải tích, kết quả có được đáp

ứng độ võng của dầm theo thời gian. Chouiyakh H. và các cộng sự [28] áp dụng phương pháp giải tích đã thiết lập phương trình mô tả dao động phi tuyến của dầm có nhiều vết nứt, chịu uốn phẳng dưới tác dụng của lực điều hòa di động.

1.2.2. Tấm chịu tác dụng của tải trọng di động và tấm có vết nứt

Do tính chất hình học, cấu tạo (bài toán 2D hay 3D), nên đối với tấm có hay không có vết nứt, việc phân tích ứng xử cơ học của chúng khó hơn so với kết cấu dầm kể cả trường hợp chịu tải trọng cố định hay tải trọng di động. Asghari M. và các cộng sự [17] đã phân tích dao động của tâm chữ nhật không có vết nứt chịu tác dụng của tải trọng di động dạng hệ dao động di động đơn giản là khối lượng tập trung liên kết với lò xo đàn hồi. Idowu A.S, Xu W.T và các cộng sự [39], [77] đã sử dụng phương pháp PTHH phân tích, xem xét ảnh hưởng của phổ mặt đường đến dao động của tấm không có vết nứt trên nền đàn hồi chịu tác dụng của tải trọng do xe di động. Cũng bằng phương pháp PTHH, Ahmad M. và các cộng sự [13] phân tích đáp ứng phi tuyến động lực học tấm chữ nhật không có vết nứt chịu tác dụng của khối lượng di động với các vận tốc khác nhau. Kim T., Lee U. [46] phân tích dao đông cưỡng bức của tấm không có vết nứt chiu tác dung của lực di đông bằng phương pháp phổ tần số. Nguyễn Thái Chung, Lê Ngọc Lý [3], [7] đã sử dụng phương pháp PTHH phân tích tuyến tính và phi tuyến động lực học của tấm không có vết nứt chịu tác dụng của các dạng tải trọng di động, như: khối lượng di động, hệ dao động mô phỏng thân xe 4 bậc tự do di động. Nghiên cứu mới chỉ tập trung vào đối tượng là tấm chữ nhật, song kết quả nghiên cứu cho thấy ảnh hưởng của tải trọng di động, tính chất liên kết, thông số hình học đến đáp ứng đông lực học của tấm, làm cơ sở cho việc nghiên cứu đối với các tấm có hình dạng bất kỳ. Các tác giả Đỗ Kiến Quốc,

Không Trọng Toàn [9] đã sử dụng phương pháp PTHH phân tích dao động của tấm không có vết nứt trên nền đàn hồi chịu tải trọng di động dạng đơn giản.

Amraei A., Fallah N. [15] sử dụng lý thuyết Mindlin-Reissner phân tích uốn tĩnh của tấm chữ nhật có vết nứt chính giữa, song song với cạnh tấm. Gawande P.R., Bharule A. [31] giới thiệu một số kết quả nghiên cứu ứng suất trong tấm có vết nứt, chịu kéo. Song C.M. và các cộng sự [73] sử dụng phương pháp phần tử biên để thiết lập phương trình giải bài toán tấm dị hướng có vết nứt, chịu tác dụng của lực trong mặt phẳng trung bình tấm. Bằng phương pháp phần tử biên cải tiến, Li C. và các cộng sự [50] nghiên cứu biến thiên ứng suất và điện tích trong tấm composite có vết nứt chịu lực trong mặt phẳng trung bình của tấm, trong đó có sự tham gia của vật liệu áp điện. Huang C.S. và các cộng sự [36] phân tích bài toán dao động riêng của tấm FGM có vết nứt và một số kết quả xem xét ảnh hưởng của vết nứt, kích thước hình học đến tần số riêng của tấm đã được trình bày trong công trình công bố. Wang Hai-Tao và các cộng sự [76] sử dụng phương pháp giải tích để tính toán tấm thép với 2 vết nứt đối xứng, có gia cường bởi 2 tấm vật liệu polime đối xứng với mặt trung bình tấm, chiu lực kéo tĩnh tác dung vào tấm thép, kết quả tính toán số có được còn hạn chế. Ahn J.S. và các cộng sự [14], Krawczuk M., Ostachowicz W.M. [47] sử dụng phương pháp PTHH thiết lập phương trình mô tả dao động riêng của tấm chữ nhật có vết nứt. Huang C.S. và các cộng sự [37] sử dụng phương pháp Ritz để phân tích tần số riêng của tấm chữ nhật có vết nứt theo phương bất kỳ, trong đó lý thuyết tấm Mindlin-Reissner đã được các tác giả sử dụng. Kết quả khảo sát số có được khi các tác giả tập trung vào việc xem xét ảnh hưởng của kích thước, phương của vết nứt đến tần số riêng của tấm. Loc V. Tran và các cộng sự

[53] sử dung lý thuyết biến dang cắt bậc cao phân tích dao đông riêng của tấm chữ nhật và tấm hình vành khăn có vết nứt. Kago E., Lellep J. [42] thiết lập phương trình dao động riêng đối với tấm có vết nứt, chiều dày thay đổi nhảy bậc, đặt trên nền đàn hồi theo mô hình nền Winkler. Kết quả khảo sát số đã chỉ ra ảnh hưởng của kích thước vết nứt đến tần số dao động riêng của tấm với các hệ số nền khác nhau. Brighenti R. [24], Sadek S.C. [69] sử dụng phương pháp giải tích nghiên cứu ổn đinh tĩnh của tấm mỏng có vết nứt, chịu tác dụng của lực nén trong mặt phẳng tấm. Nghiên cứu mới chỉ đưa ra được phương trình xác định ứng suất tới hạn của tấm, chưa có được kết quả tính toán số cụ thể. Gần đây, một số phương pháp phổ biến như phần tử hữu hạn (FEM), phần tử hữu hạn lưới min (XFEM) [34], [35], đẳng hình học (IGA) và mô hình Phase field đã được phát triển để nghiên cứu kết cấu có vết nứt. Cũng sử dụng sự kết hợp này, Phục Pham Minh và các cộng sự [62] xem xét ổn định của tấm chữ nhật, các kết quả số cho thấy chiều dài vết nứt ảnh hưởng đáng kể đến đô ổn đinh của tấm, trong khi đó tác đông của góc nghiêng là ít hơn. Vu Hoai Nam và các cộng sự [75] tính toán ổn định tấm FGM có vết nứt sử dụng lý thuyết cắt bậc nhất kết hợp với mô hình Phase field. Yao W.A., Hu X.F. [78] đã phát triển phương pháp PTHH để tính toán tấm có vết nứt giao thoa và đưa ra các ví dụ minh họa để chứng minh tính đúng đắn của phương pháp. Israr A., Zulfiqar S. [40] sử dụng phương pháp nhiễu loạn bậc cao để giải phương trình dao động phi tuyến của tấm chữ nhật đẳng hướng có vết nứt ở chính giữa, song song với cạnh của tấm. Chen C.H., Wang C.L. [25], Saleh N.A.H. [70] nghiên cứu hệ số cường độ ứng suất thứ hai của tấm có vết nứt, trong đó phương vết nứt là bất kỳ, tấm chiu kéo hoặc nén, một số kết quả ảnh hưởng của phương vết nứt đến hệ số cường độ ứng suất đã được các tác giả chỉ ra trong công trình nghiên cứu

của mình. Liu C.Y. và các công sư [51] sử dung lý thuyết tấm của Mindlin-Reissner thiết lập các quan hệ ứng xử dao động riêng của tấm chữ nhật có vết nứt chính giữa và song song với cạnh của tấm, trong đó một số kết quả tấn số và dạng dao động riêng đã được các tác giả chỉ ra. Baiz P.M. và các cộng sự [20] sử dụng phương pháp PTHH lưới min và mở rộng phân tích bài toán ổn định tĩnh tuyến tính của tấm đẳng hướng, hình chữ nhật có vết nứt chính giữa, song song canh tấm chiu lực nén phân bố, kết quả có được các giá trị lực tới hạn và tương ứng là các mode mất ổn định tĩnh của tấm. Cheung M.M.S., Song Z.B. [27] sử dụng phương pháp dải phần tử để xây dựng mô hình và thuật toán phân tích bài toán tấm có vết nứt thủng, kích thước lớn để định hướng ứng dụng tính toán các tấm lát mặt cầu. Behzad V.F. và các cộng sự [22] sử dụng phương pháp giải tích, thực nghiệm trên mô hình và mô phỏng số nghiên cứu, xác định trường phân bố ứng suất quanh vết nứt khi tấm chữ nhật, có vết nứt, chịu tác dụng kéo trong mặt phẳng trung bình và đã đưa ra khái niêm về vùng ứng suất chết quanh mũi vết nứt. Moradi S., Makvandi H. [57] đã phân tích dao động riêng và ổn định phi tuyến của tấm có vết nứt bằng phương pháp giải tích, tiến hành thực nghiêm và đưa ra được ảnh hưởng của kích thước vết nứt đến dao động riêng của tấm. Azam M.S. và các cộng sự [19] tính toán dao động riêng của tấm hình thoi với vết nứt chính giữa bằng phương pháp PTHH dựa trên lý thuyết tấm Mindlin-Reissner với phương vết nứt và điều kiện biên khác nhau. Tinh Quoc Bui [74] phát triển phương pháp IGA để khảo sát tĩnh và động tấm composite áp điện có vết nứt, tác giả cũng trình bày một số kết quả của sự lan truyền vết nứt trong vật liệu áp điện. Rwayda K.S. và các công sư [68] sử dung phương pháp XFEM để xem xét tấm bê tông có vết nứt, các kết quả số làm cơ sở cho chẩn đoán vết nứt và trong

thiết kế kết cấu bê tông. Ghaffari D. và các cộng sự [33] nghiên cứu trường ứng suất, biến dạng của tấm thủy tinh có vết nứt bằng cách sử dụng phương pháp XFEM, các tác giả cũng tiến hành thực nghiệm để kiểm chứng độ tin cậy của thuật toán và chương trình tính.

1.3. Kết quả nghiên cứu đạt được từ các công trình đã công bố

Từ tổng quan tình hình nghiên cứu trong nước và trên thế giới về vấn đề luận án nghiên cứu, có thể thấy rằng các kết quả chính được thể hiện thông qua các công trình nghiên cứu đã công bố đến thời điểm này chủ yếu là:

- Xây dựng mô hình, thiết lập các phương trình và đề xuất phương pháp tính toán các dạng kết cấu dầm, khung có hoặc không có vết nứt chịu tác dụng của tải trọng cố định hoặc tải trọng di động là khối lượng di động hoặc hệ dao động di động. Nhìn chung các kết quả đạt được phong phú, đầy đủ.

- Dao động của tấm không có vết nứt, chịu tác dụng của tải trọng di động đã được tập trung nghiên cứu, có nhiều kết quả được công bố, song cả tải trọng, hình dạng kết cấu, liên kết còn đơn giản. Một số nghiên cứu đã đề cập đến bài toán tấm chịu tác dụng của hệ dao động di động 4 bậc tự do mô phỏng thân xe di động, bước đầu đã tiếp cận được mô hình thực của phương tiện di động tác dụng lên hệ. Nghiên cứu thực nghiệm xác định phản ứng động của tấm chịu tác dụng của tải trọng di động, mặc dù đã có một số công bố, song các nghiên cứu mới chỉ dừng lại với mục đích kiểm chứng cho nghiên cứu lý thuyết, vì vậy mô hình và tải trọng tác dụng còn đơn giản.

- Tấm có vết nứt là đối tượng được quan tâm, đặc biệt trong vòng khoảng 10 năm trở lại đây. Các nghiên cứu chủ yếu mới tập trung xem

xét ứng xử uốn, kéo (nén) tĩnh và động của tấm, trong đó tải trọng có điểm đặt không đổi. Qua các công bố nhận thấy còn nhiều vấn đề cần tiếp tục nghiên cứu cho đối tượng này, đặc biệt tấm có vết nứt chịu tác dụng của tải trọng di động, hệ tải trọng di động, ... Thực tế cũng cho thấy, đối với trường hợp tấm có vết nứt chịu tác dụng của tải trọng di động đến nay còn ít kết quả được công bố.

1.4. Các vấn đề cần tiếp tục nghiên cứu

- Nghiên cứu, thiết lập thuật giải và chương trình máy tính để phân tích tĩnh, động và ổn định đối với kết cấu tấm có vết nứt chịu tác dụng của lực có điểm đặt không đổi, trong đó dạng tải trọng và liên kết phức tạp và sát thực tế làm việc của hệ hơn.

- Nghiên cứu xây dựng mô hình, phương pháp và chương trình tính nhằm phân tích động lực học kết cấu tấm có vết nứt chịu tác dụng của tải trọng di động như khối lượng di động, hệ dao động di động, đoàn tải trọng di động, trong đó vận tốc di chuyển của tải trọng không đổi hoặc thay đổi; quỹ đạo của tải trọng phức tạp; liên kết của kết cấu bất kỳ hoặc trên nền đàn hồi, đàn nhớt.

 Tiếp tục nghiên cứu, áp dụng các vật liệu mới (composite cường độ cao, vật liệu áp điện, FGM, ...) gia cường các tấm có vết nứt, nâng cao khả năng chịu lực cho kết cấu, trong đó đối tượng tải trọng là cố định hoặc di động.

- Nghiên cứu thực nghiệm trên các kết cấu tấm, tấm gia cường, tấm làm bằng vật liệu có cơ tính biến thiên có vết nứt, với các liên kết khác nhau chịu tác dụng của tải trọng di động: khối lượng, hệ dao động, xung lực, ...

1.5. Kết luận chương 1

Tính toán kết cấu dầm, dầm liên hợp có và không có vết nứt chịu tác dụng của tải trọng di động, tác dụng đồng thời của tải trọng di động và động đất, của tải trọng di động và lực khí động được các tác giả trong nước và ngoài nước dày công nghiên cứu, kết quả đạt được là phong phú, trong đó chủ yếu sử dụng phương pháp giải tích và phương pháp số để giải quyết vấn đề.

• Phân tích động lực dầm, tấm trên nền đàn hồi, đàn nhớt chịu tác dụng của tải trọng di động đã được các các tác giả trong nước và ngoài nước quan tâm nghiên cứu, trong đó cả bài toán tuyến tính và phi tuyến đã được đề cập. Một số nghiên cứu gần đây đã giải quyết khá trọn vẹn bài toán dầm có vết nứt đặt trên nền đàn hồi chịu tác dụng của lực hoặc khối lượng di động.

Tính toán kết cấu tấm không có vết nứt chịu tác dụng của tải trọng di động cũng được tập trung giải quyết, trong đó tải trọng là khối lượng, hệ dao động di động và đối tượng kết cấu chủ yếu là tấm chữ nhật. Đồng thời một số kết quả nghiên cứu thực nghiệm đối với dạng kết cấu và tải trọng này cũng đã được công bố.

Đối với tấm có vết nứt, đến nay hầu hết các nghiên cứu mới tập trung phân tích tĩnh, dao động và ổn định, trong đó tải trọng có điểm đặt không đổi. Còn với tấm có vết nứt, chịu tác dụng của tải trọng di động đến nay có ít công trình được công bố, có chăng chỉ mới tập trung nghiên cứu với loại tải trọng đơn giản như lực di động.

Vì vậy, vấn đề "*Phân tích động lực học tấm có vết nứt chịu tải trọng di động*" được tác giả lựa chọn làm nội dung nghiên cứu của luận án và sẽ tập trung giải quyết các nội dung chính sau: Nghiên cứu tổng quan về tải trọng di động và tính toán kết cấu chịu tải trọng di động làm cơ sở cho việc lựa chọn nội dung, phương pháp giải quyết vấn đề của luận án.

 Xây dựng thuật toán PTHH và chương trình máy tính phân tích động lực học kết cấu tấm có vết nứt trên các liên kết cứng tuyệt đối chịu tác dụng của hai mô hình tải trọng di động: khối lượng di động và hệ dao động một bậc tự do di động.

- Khảo sát, xem xét ảnh hưởng của một số yếu tố đến đáp ứng động lực học của tấm và đưa ra các nhận xét, khuyến cáo kỹ thuật, trong đó tập trung xem xét ảnh hưởng của: vật liệu kết cấu, vết nứt, tính chất của tải trọng, thông số hình học của kết cấu, vv.

- Nghiên cứu thực nghiệm xác định đáp ứng động của tấm không có vết nứt và có vết nứt chịu tác dụng của khối lượng di động. So sánh, đánh giá sự tương thích kết quả nghiên cứu giữa lý thuyết và thực nghiệm.

CHƯƠNG 2 THUẬT TOÁN PHẦN TỬ HỮU HẠN PHÂN TÍCH ĐỘNG LỰC HỌC CỦA TẤM CÓ VẾT NỨT CHỊU TẢI TRỌNG DI ĐỘNG

2.1. Đặt vấn đề

Tải trọng di động tác dụng lên kết cấu tấm nói chung và tấm có vết nứt nói riêng thường gặp trong thực tế gồm 2 dạng chủ yếu, đó là: khối lượng di động (mô phỏng các phương tiện di động, trong đó mức độ dao động của phương tiện là nhỏ, gây ra hiệu ứng không đáng kể đối với kết cấu, điển hình với dạng này là máy bay chạy trên đường băng, máy bay hoạt động trên các tàu sân bay, xe bánh xích chạy trên đường, trên cầu, v.v) và hệ dao động di động (mô phỏng các phương tiện di động, trong đó mức độ dao động của phương tiện đến hiệu ứng động của tấm là đáng kể, điển hình với dạng này là xe bánh lốp chạy trên các bản mặt cầu, trên đường, v.v). Vì vậy trong chương này tác giả thiết lập thuật toán PTHH và chương trình tính để phân tích 2 lớp bài toán:

Lớp bài toán thứ nhất: Động lực học của tấm có vết nứt chịu tác dụng của khối lượng xem như chất điểm di động;

Lớp bài toán thứ hai: Động lực học của tấm có vết nứt chịu tác dụng của hệ dao động di động.

2.2. Quan hệ ứng xử cơ học của tấm không có vết nứt

2.2.1. Quan hệ biến dạng - chuyển vị

Do đối tượng tải trọng tác dụng lên kết cấu trong luận án là tải trọng di động, có phương vuông góc với bề mặt tấm, thực tế cho thấy lúc này lực tác dụng trong mặt phẳng tấm là bé, do vậy có thể bỏ qua biến dạng trong mặt phẳng trung bình tấm ($u_0 = 0$, $v_0 = 0$). Lúc này, sử dụng lý thuyết tấm có kể đến biến dạng trượt bậc nhất của Mindlin, chuyển vị tại một điểm thuộc tấm không phải vị trí vết nứt, có tọa độ (x,y,z) như sau [67]:
$$\begin{cases} u(x, y, z, t) = z\theta_{y}(x, y, t), \\ v(x, y, z, t) = -z\theta_{x}(x, y, t), \\ w(x, y, z, t) = w_{0}(x, y, t), \end{cases}$$
(2.1)

trong đó: u, v và w tương ứng là chuyển vị dài dọc theo các trục x, y và z tại điểm thuộc tấm có tọa độ (x,y,z); θ_x , θ_y lần lượt là góc xoay của pháp tuyến tấm quanh các trục x và y.

Viết lại trường chuyển vị (2.1) dưới dạng ma trận như sau:

$$\begin{cases} u \\ v \\ w \end{cases} = \begin{bmatrix} 0 & 0 & z \\ 0 & -z & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{cases} w_0 \\ \theta_x \\ \theta_y \end{cases}.$$
 (2.2)

Hay:
$$\{u\} = [L]\{\hat{u}\}$$
 (2.3)

trong đó: $\{u\} = \{u \ v \ w\}^{T}, [L] = \begin{bmatrix} 0 & 0 & z \\ 0 & -z & 0 \\ 1 & 0 & 0 \end{bmatrix}, \{\widehat{u}\} = \{w_{0} \ \theta_{x} \ \theta_{y}\}^{T}.$

Các thành phần của véc tơ biến dạng quan hệ với trường chuyển vị (2.1) theo công thức:

$$\begin{aligned} \varepsilon_{x} &= \frac{\partial u}{\partial x} = z \frac{\partial \theta_{y}}{\partial x} = z \kappa_{x}, \\ \varepsilon_{y} &= \frac{\partial v}{\partial y} = -z \frac{\partial \theta_{x}}{\partial y} = z \kappa_{y}, \\ \gamma_{xy} &= \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) = z \left(\frac{\partial \theta_{y}}{\partial y} - \frac{\partial \theta_{x}}{\partial x}\right) = z \kappa_{xy}, \end{aligned}$$

$$(2.4)$$

$$\gamma_{xz} &= \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = \frac{\partial w_{0}}{\partial x} + \theta_{y}, \quad \gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = \frac{\partial w_{0}}{\partial y} - \theta_{x}, \end{aligned}$$

Hoặc viết dưới dạng véc tơ:

$$\{\epsilon\} = \begin{cases} \epsilon_{x} \\ \epsilon_{y} \\ \gamma_{xy} \\ \gamma_{yz} \end{cases} = \begin{cases} 0 \\ 0 \\ 0 \\ \frac{\partial w_{0}}{\partial x} + \theta_{y} \\ \frac{\partial w_{0}}{\partial x} + \theta_{y} \\ \frac{\partial w_{0}}{\partial y} - \theta_{x} \end{cases} + z \begin{cases} \frac{\partial \theta_{y}}{\partial x} \\ -\frac{\partial \theta_{x}}{\partial y} \\ \frac{\partial \theta_{y}}{\partial y} \\ \frac{\partial \theta_{y}}{$$

trong đó:

 $\{\kappa\} = \left\{\kappa_{x} \quad \kappa_{y} \quad \kappa_{xy}\right\}^{T} = \left\{\frac{\partial\theta_{y}}{\partial x} - \frac{\partial\theta_{x}}{\partial y} - \frac{\partial\theta_{x}}{\partial y} + \frac{\partial\theta_{y}}{\partial x}\right\}^{T} \text{ là véc tơ độ cong uốn và xoắn, } \{\gamma^{0}\} = \left\{\gamma_{xz}^{o} - \gamma_{yz}^{0}\right\}^{T} = \left\{\frac{\partial w_{0}}{\partial x} + \theta_{y} - \frac{\partial w_{0}}{\partial y} - \theta_{x}\right\}^{T} - \text{ véc tơ biến dạng cắt.}$

2.2.2. Quan hệ ứng suất - biến dạng

Sử dụng định luật Hooke, ứng suất tại điểm thuộc tấm được xác định:

$$\{\sigma\} = \begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \\ \tau_{xz} \\ \tau_{yz} \end{cases} = \frac{E}{1 - v^{2}} \begin{vmatrix} 1 & v & 0 & 0 & 0 \\ v & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1 - v}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1 - v}{2} & 0 \\ 0 & 0 & 0 & \frac{1 - v}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1 - v}{2} \end{vmatrix} \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{cases},$$
(2.6)

Hay:

$$\{\sigma\} = [D]\{\varepsilon\}, \tag{2.7}$$

trong đó:

$$\begin{bmatrix} \mathbf{D} \end{bmatrix} = \frac{\mathbf{E}}{1 - \mathbf{v}^2} \begin{bmatrix} 1 & \mathbf{v} & 0 & 0 & 0 \\ \mathbf{v} & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1 - \mathbf{v}}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1 - \mathbf{v}}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1 - \mathbf{v}}{2} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf{D} \end{bmatrix}_b & \begin{bmatrix} 0 \end{bmatrix} \\ \begin{bmatrix} 0 \end{bmatrix} & \begin{bmatrix} \mathbf{D} \end{bmatrix}_s \end{bmatrix}$$

là ma trận các hệ số đàn hồi:

$$\begin{bmatrix} \mathbf{D} \end{bmatrix}_{b} = \frac{E}{1 - v^{2}} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1 - v}{2} \end{bmatrix},$$

$$\begin{bmatrix} \mathbf{D} \end{bmatrix}_{s} = \frac{E}{2(1 + v)} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$
(2.8)
(2.9)

Thay (2.5) vào (2.7) dẫn đến:
$$\{\sigma\} = [D] \left\{ \frac{\{0\}}{\{\gamma^o\}} \right\} + z[D] \left\{ \frac{\{\kappa\}}{\{0\}} \right\}.$$
 (2.10)

2.2.3. Các thành phần nội lực

Dưới tác dụng của tải trọng, trong tấm xuất hiện lực màng, mômen uốn, mômen xoắn và các thành phần lực cắt, chúng được xác định như sau [10], [79]:

2.2.3.1. Mô men uốn và xoắn:

$$\left\{ \mathbf{M}(\mathbf{x},\mathbf{y},\mathbf{t})\right\} = \begin{cases} \mathbf{M}_{\mathbf{x}} \\ \mathbf{M}_{\mathbf{y}} \\ \mathbf{M}_{\mathbf{xy}} \end{cases} = \int_{-h/2}^{h/2} z \begin{cases} \boldsymbol{\sigma}_{\mathbf{x}} \\ \boldsymbol{\sigma}_{\mathbf{y}} \\ \boldsymbol{\tau}_{\mathbf{xy}} \end{cases} dz = \frac{h^{3} \left[\mathbf{D}\right]_{b}}{12} \{\kappa\}, \qquad (2.11)$$

với: M_x , M_y và M_{xy} tương ứng là mô men uốn và mô men xoắn phân bố theo chiều dài.

2.2.3.2. Lực cắt:

$$\left\{Q(x,y,t)\right\} = \begin{cases} Q_x \\ Q_y \end{cases} = \int_{-h/2}^{h/2} \begin{cases} \tau_{xz} \\ \tau_{yz} \end{cases} dz = \frac{Eh}{2(1+\nu)} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{cases} \gamma_{xz} \\ \gamma_{yz} \end{cases} = h \begin{bmatrix} D \end{bmatrix}_s \left\{\gamma^o\right\}, (2.12)$$

trong đó Q_x, Q_y là các thành phần lực cắt phân bố theo chiều dài.

Mindlin đã đề xuất bổ sung hệ số hiệu chỉnh cắt λ để kể đến sự phân bố bậc 2 của biến dạng trượt, lúc này biểu thức lực cắt (2.12) trở thành:

$$\left\{Q(x, y, t)\right\} = \frac{Eh\lambda}{2(1+\nu)} \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{cases} \gamma_{xz}\\ \gamma_{yz} \end{cases} = \lambda h \left[D\right]_{s} \left\{\gamma^{o}\right\}.$$
(2.13)

Thông thường chọn $\lambda = 5/6$ và luận án cũng lấy giá trị này để tính toán.

2.3. Giới thiệu bài toán tấm có vết nứt chịu tải trọng di động và các giả thiết

Xét tấm chữ nhật có vết nứt, liên kết bất kỳ, chịu tác dụng của tải trọng di động (khối lượng hoặc hệ dao động di động) theo một quỹ đạo cho trước (thẳng hoặc cong) với vận tốc \vec{v} . Mô hình bài toán như trên hình 2.1.

Phương trình mô tả ứng xử cơ học và thuật toán được xây dựng dựa trên các giả thiết sau:

- Vật liệu tấm đẳng hướng, quan hệ ứng suất - biến dạng là tuyến tính;

- Biến dạng và chuyển vị của tấm là bé;

- Vết nứt thủng, hở và không lan truyền trong quá trình tấm chịu lực;

- Trong quá trình hệ làm việc, tải trọng không tách khỏi bề mặt tấm. Kích thước bề rộng của vết nứt xem là rất bé so với kích thước tấm nên có thể xem là không ảnh hưởng đến sự di chuyển của tải trọng.

2.4. Thiết lập các quan hệ ứng xử của phần tử tấm có vết nứt chịu tải trọng di động

2.4.1. Phần tử tấm có vết nứt chịu tải trọng động

Úng xử của phần tử tấm có vết nứt được thiết lập trên cơ sở phần tử tấm không có vết nứt, trong đó ảnh hưởng của vết nứt sẽ được xem xét. Theo đó, xét phần tử tứ giác 4 điểm nút đẳng tham số, mỗi nút có 3 bậc tự do w_i, θ_{ix} , θ_{iy} , với $i = 1 \div 4$ là thứ tự các nút phần tử (Hình 2.2).

a, Hệ tọa độ cục bộ b, Hệ tọa độ tự nhiên

Tọa độ (x,y) của điểm thuộc phần tử được nội suy từ tọa độ (x_i,y_i) của các nút và các hàm dạng N_i [4], [10], [21]:

$$x = \sum_{i=1}^{4} N_i x_i, \qquad y = \sum_{i=1}^{4} N_i y_i,$$
 (2.14)

trong đó: $N_i = \frac{1}{4} (1 + \xi \xi_i) (1 + \eta \eta_i)$, với i = 1, 2, 3, 4 và (ξ_i, η_i) là tọa độ của nút i trong hệ tọa độ tự nhiên (o $\xi\eta$), cụ thể $(\xi_1, \eta_1) = (-1, -1)$, $(\xi_2, \eta_2) = (1, -1)$, $(\xi_3, \eta_3) = (1, 1)$ và $(\xi_4, \eta_4) = (-1, 1)$.

Các đại lượng chuyển vị độc lập của phần tử được nội suy theo các chuyển vị nút như sau:

$$w_{0} = \sum_{i=1}^{4} N_{i} w_{i},$$

$$\theta_{x} = \sum_{i=1}^{4} N_{i} \theta_{ix},$$

$$\theta_{y} = \sum_{i=1}^{4} N_{i} \theta_{iy}.$$

$$W_{y} = \sum_{i=1}^{4} N_{i} \theta_{iy}.$$

$$W_{y} = \sum_{i=1}^{4} N_{i} \theta_{iy}.$$

$$W_{y} = \sum_{i=1}^{4} N_{i} \theta_{iy}.$$

Hay viêt dưới dạng ma trận:

$$\underbrace{\left\{\widehat{\mathbf{u}}(\mathbf{x},\mathbf{y})\right\}_{\mathbf{e}}}_{3\times\mathbf{l}} = \underbrace{\left[\mathbf{N}\right]}_{3\times\mathbf{l}2}\underbrace{\left\{\mathbf{q}\right\}_{\mathbf{e}}}_{12\times\mathbf{l}},$$
(2.16)

Từ (2.3) và (2.16), trường chuyển vị của tấm được biểu diễn theo hàm dạng và chuyển vị nút của phần tử như sau:

$$\{u\}_{e} = [L]\{\widehat{u}\}_{e} = [L][N]\{q\}_{e},$$
 (2.17)

trong đó, véc tơ chuyển vị nút $\{q\}_e$ của phần tử gồm 12 thành phần:

$$\left\{q\right\}_{e} = \left\{w_{1} \quad \theta_{1x} \quad \theta_{1y} \quad \dots \quad w_{4} \quad \theta_{4x} \quad \theta_{4y}\right\}^{\mathrm{T}}.$$
(2.18)

[N] là ma trận hàm dạng, được xác định bởi [1], [10]:

$$\begin{bmatrix} \mathbf{N} \\ \mathbf{N} \end{bmatrix} = \begin{bmatrix} \mathbf{N}_1 \begin{bmatrix} \mathbf{I} \\ \mathbf{J} \end{bmatrix} & \mathbf{N}_2 \begin{bmatrix} \mathbf{I} \\ \mathbf{J} \end{bmatrix} & \mathbf{N}_3 \begin{bmatrix} \mathbf{I} \\ \mathbf{J} \end{bmatrix} & \mathbf{N}_4 \begin{bmatrix} \mathbf{I} \\ \mathbf{J} \end{bmatrix} \end{bmatrix},$$
(2.19)

với [I] là ma trận đơn vị cấp 3.

$$\{\gamma^{0}\} = \begin{cases} \frac{\partial w_{0}}{\partial x} + \theta_{y} \\ \frac{\partial w_{0}}{\partial y} - \theta_{x} \end{cases} = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & 1 \\ \frac{\partial}{\partial y} & -1 & 0 \end{bmatrix} \begin{cases} w_{0} \\ \theta_{x} \\ \theta_{y} \end{cases} = \begin{bmatrix} B \end{bmatrix}_{1} \begin{bmatrix} N \end{bmatrix} \{q\}_{e}, \qquad (2.20)$$

$$\{\kappa\} = \begin{cases} \frac{\partial \theta_{y}}{\partial x} \\ -\frac{\partial \theta_{x}}{\partial y} \\ -\frac{\partial \theta_{x}}{\partial y} + \frac{\partial \theta_{y}}{\partial x} \end{cases} = \begin{bmatrix} 0 & 0 & \frac{\partial}{\partial x} \\ 0 & -\frac{\partial}{\partial y} & 0 \\ 0 & -\frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix} \begin{cases} w_{0} \\ \theta_{x} \\ \theta_{y} \end{cases} = \begin{bmatrix} B \end{bmatrix}_{2} \begin{bmatrix} N \end{bmatrix} \{q\}_{e}, \qquad (2.21)$$

trong đó:

$$\begin{bmatrix} \mathbf{B} \end{bmatrix}_{1} = \begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} & 0 & 1 \\ \frac{\partial}{\partial \mathbf{y}} & -1 & 0 \end{bmatrix}, \quad \begin{bmatrix} \mathbf{B} \end{bmatrix}_{2} = \begin{bmatrix} 0 & 0 & \frac{\partial}{\partial \mathbf{x}} \\ 0 & -\frac{\partial}{\partial \mathbf{y}} & 0 \\ 0 & -\frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{x}} \end{bmatrix}$$

là các ma trận đạo hàm riêng.

Từ (2.5), ta có:

Véc tơ biến dạng tại một điểm thuộc phần tử được biểu diễn qua chuyển vị nút:

$$\underbrace{\{\varepsilon\}}_{5\times 1} = \left\{ \frac{\{0\}}{\{\gamma^{\circ}\}} \right\} + z \left\{ \frac{\{\kappa\}}{\{0\}} \right\} = \begin{bmatrix} 0 & 0 \\ 0 & [B]_1[N] \end{bmatrix} \left\{ \frac{\{0\}}{\{q\}_e} \right\} + z \begin{bmatrix} 0 & [B]_2[N] \\ 0 & 0 \end{bmatrix} \left\{ \frac{\{0\}}{\{q\}_e} \right\}.$$
(2.22)

Lúc này, thay (2.22) vào (2.7) dẫn đến:

$$\underbrace{\{\sigma\}}_{5\times I} = \begin{bmatrix} D \end{bmatrix} \{\varepsilon\} = \begin{bmatrix} 0 & 0 \\ 0 & \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} B \end{bmatrix}_{I} \begin{bmatrix} N \end{bmatrix} \end{bmatrix} \begin{cases} \{0\} \\ \{q\}_{e} \end{cases} + z \begin{bmatrix} 0 & \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} B \end{bmatrix}_{2} \begin{bmatrix} N \end{bmatrix} \\ \{q\}_{e} \end{cases} \begin{bmatrix} \{0\} \\ \{q\}_{e} \end{cases}.$$
 (2.23)

Dưới tác dụng của tải trọng động, phương trình mô tả dao động của phần tử được thiết lập trên cơ sở nguyên lý Hamilton [30], [38]:

$$\delta H_{e} = \delta \int_{t_{0}}^{t_{1}} (T_{e} - U_{e} + W_{e}) dt = 0, \qquad (2.24)$$

trong đó: $H_e = T_e - U_e + W_e = H_e(\{q\}_e, \{\dot{q}\}_e, t)$ là hàm tác dụng Hamilton, T_e là động năng của phần tử, U_e là thế năng biến dạng đàn hồi của phần tử, W_e là công gây ra bởi ngoại lực.

Trường hợp không kể đến lực cản, từ (2.24) dẫn đến phương trình:

$$\frac{\mathrm{d}}{\mathrm{dt}} \left\{ \frac{\partial \mathrm{H}_{\mathrm{e}}}{\partial \left\{ \dot{\mathrm{q}} \right\}_{\mathrm{e}}} \right\} - \frac{\partial \mathrm{H}_{\mathrm{e}}}{\partial \left\{ \mathrm{q} \right\}_{\mathrm{e}}} = \left\{ 0 \right\}.$$
(2.25)

Động năng Te của phần tử được xác định bởi:

$$T_{e} = \frac{1}{2} \int_{V_{e}} \rho \{\dot{u}\}_{e}^{T} \{\dot{u}\}_{e} dV = \frac{1}{2} \{\dot{q}\}_{e}^{T} \left(\int_{V_{e}} \rho [N]^{T} [L]^{T} [L]^{T} [L][N] dV \right) \{\dot{q}\}_{e},$$

$$T_{e} = \frac{1}{2} \{\dot{q}\}_{e}^{T} \left(\int_{V_{e}} \rho [N]^{T} h[N] dV \right) \{\dot{q}\}_{e} = \frac{1}{2} \{\dot{q}\}_{e}^{T} [M]_{e} \{\dot{q}\}_{e}$$
(2.26)

trong đó: $[h] = [L]^T[L]$.

Thế năng biến dạng đàn hồi của phần tử được xác định bởi:

$$U_{e} = \frac{1}{2} \int_{V_{e}} \{\epsilon\}^{T} \{\sigma\} dV = \frac{1}{2} \{q\}_{e}^{T} \left(\int_{V_{e}} [B]_{1}^{T} [N]^{T} [D] [B]_{1} [N] dV \right) \{q\}_{e} + \frac{1}{2} \{q\}_{e}^{T} \left(\int_{A_{e}} \frac{h^{3}}{12} [B]_{2}^{T} [N]^{T} [D] [B]_{2} [N] dV \right) \{q\}_{e},$$
(2.27)

$$U_{e} = \frac{1}{2} \{q\}_{e}^{T} ([K_{1}]_{e} + [K_{2}]_{e}) \{q\}_{e}, \qquad (2.28)$$

Công gây ra bởi ngoại lực được xác định theo công thức sau:

$$W_{e} = \{q\}_{e}^{T} \left(\int_{V_{e}} [N]^{T} \{f\}_{e}^{b} dV + \int_{A_{e}} [N]^{T} \{f\}_{e}^{s} dS + \{f\}_{e}^{c} \right), \qquad (2.29)$$

với ρ là khối lượng riêng của vật liệu phần tử, V_e, A_e tương ứng là thể tích và diện tích phần tử, $\{f\}_e^b$, $\{f\}_e^s$ tương ứng là véc tơ lực khối và véc tơ lực bề mặt phần tử, $\{f\}_e^c$ là véc tơ lực tập trung của phần tử.

Thay (2.26), (2.28) và (2.29) vào biểu thức hàm tác dụng Haminton, ta có: $H_{e} = \frac{1}{2} \{\dot{q}\}_{e}^{T} [M]_{e} \{\dot{q}\}_{e} - \frac{1}{2} \{q\}_{e}^{T} ([K_{1}]_{e} + [K_{2}]_{e}) \{q\}_{e} + \{q\}_{e}^{T} \{f\}_{e}, \quad (2.30)$ Do đó:

$$-\frac{\mathrm{d}}{\mathrm{dt}}\left\{\frac{\partial \mathrm{H}_{\mathrm{e}}}{\partial\left\{\dot{\mathrm{q}}\right\}_{\mathrm{e}}}\right\} = -\left[\mathrm{M}\right]_{\mathrm{e}}\left\{\ddot{\mathrm{q}}\right\}_{\mathrm{e}},\qquad(2.31)$$

$$\frac{\partial \mathbf{H}_{\mathbf{e}}}{\partial \{\mathbf{q}\}_{\mathbf{e}}} = -\left(\left[\mathbf{K}_{1}\right]_{\mathbf{e}} + \left[\mathbf{K}_{2}\right]_{\mathbf{e}}\right) \{\mathbf{q}\}_{\mathbf{e}} + \{f\}_{e}.$$
(2.32)

trong đó:

- Ma trận khối lượng phần tử:
$$[M]_e = \int_{V_e} \rho[N]^T [h] [N] dV,$$
 (2.33)

- Ma trận độ cứng phần tử: $[K]_e = [K_1]_e + [K_2]_e$, (2.34)

với $[K_1]_e = \int_{V_e} [B]_1^T [N]^T [D] [B]_1 [N] dV$ là ma trận độ cứng phần tử do cắt tấm, $[K_2]_e = \int_{A_e} \frac{h^3}{12} [B]_2^T [N]^T [D] [B]_2 [N] dV$ là ma trận độ cứng phần tử do

uốn tấm.

- Véc tơ lực nút phần tử:

$$\{f\}_{e} = \int_{V_{e}} [N]^{T} \{f\}_{e}^{b} dV + \int_{A_{e}} [N]^{T} \{f\}_{e}^{s} dS + \{f\}_{e}^{c}.$$
 (2.35)

Thay (2.31), (2.32) vào (2.25), ta có phương trình mô tả dao động không cản của phần tử tấm chịu tải trọng động:

$$[M]_{e} \{ \ddot{q} \}_{e} + [K]_{e} \{ q \}_{e} = \{ f \}_{e}, \qquad (2.36)$$

Trường hợp tấm có vết nứt, phương trình mô tả dao động của phần tử chứa vết nứt chịu tải trọng động được xuất phát từ phương trình (2.36), trong đó về nguyên tắc có sự khác biệt giữa ma trận độ cứng và ma trận khối lượng của phần tử do ảnh hưởng của vết nứt, song do thể tích vết nứt rất bé so với thể tích phần tử tấm nên ở đây chỉ xem xét sự khác biệt về ma trận độ cứng của phần tử, còn ma trận khối lượng coi như không đổi. Chính vì vậy, tác giả sẽ tập trung mô tả việc xây dựng ma trận độ cứng của phần tử này sẽ có được nhờ phương trình (2.36) ở trên.

Có nhiều phương pháp để mô tả vết nứt, từ đó xây dựng ma trận độ cứng cho phần tử tấm có vết nứt. Luận án chỉ tập trung tính toán đối với vết nứt xuyên thủng tấm, trong đó ma trận độ cứng của phần tử tấm có vết nứt sẽ được bổ sung một thành phần do ảnh hưởng của vết nứt, theo nguyên lý năng lượng của Castigliano và sẽ được trình bày cụ thể như ở phần dưới. Đây là mô hình đơn giản, công thức tính trực tiếp cho phần tử có vết nứt, không cần bổ sung lưới chia xung quanh đầu vết nứt, vì vậy sẽ giảm thời gian tính toán rất nhiều so với các mô hình vết nứt khác. Theo đó, xét phần tử tấm chữ nhật 4 điểm nút có các cạnh song song với các trục tọa độ cục bộ trong mặt phẳng tấm, vết nứt nằm giữa phần tử và song song với 2 cạnh đối diện của phần tử. Điều này hoàn toàn thực hiện được khi sử dụng phần tử chữ nhật 4 điểm nút kết hợp với phần tử tứ giác 4 điểm nút đẳng tham số như trên cho dù phương của vết nứt là bất kỳ, trong đó chỉ cần lưu ý kỹ thuật chia lưới : lưới được phát sinh từ phần tử chứa vết nứt. Hình 2.3 mô tả ví dụ lưới PTHH cho tấm có vết nứt với phương bất kỳ.

Và lúc này, không mất tính tổng quát, xét phần tử tấm chữ nhật (a×b) 4 điểm nút, có vết nứt dài $2a_c$ song song với cạnh phần tử và nằm chính giữa phần tử ($2a_c < b$ - với vết nứt song song oy và $2a_c < a$ - với vết nứt song song ox). Mỗi nút của phần tử có 3 lực nút phụ thuộc thể hiện như trên hình 2.4.

Hình 2.4. Phần tử tấm có vết nứt và hệ lực nút phụ thuộc

Do có vết nứt, nên phần tử mất đi một lượng độ cứng, hay tương đương việc được bổ sung một lượng độ mềm. Theo đó, ma trận độ cứng $[K]_{e}^{c}$ của phần tử có vết nứt được xác định [47], [72]:

$$\left[\mathbf{K}\right]_{e}^{c} = \left[\mathbf{B}\right]^{T} \left(\left[\mathbf{C}^{0}\right] + \left[\mathbf{C}^{1}\right]\right)^{-1} \left[\mathbf{B}\right], \qquad (2.37)$$

trong đó: [B] là ma trận biến đổi hệ lực nút phụ thuộc $S_1 \div S_{12}$ sang hệ lực nút độc lập gồm 9 thành phần $F_1 \div F_9$, [C⁰] là ma trận biểu thị độ mềm của

phần tử tấm không có vết nứt, [C¹] là ma trận biểu thị độ mềm bổ sung của phần tử tấm do vết nứt gây ra. Các ma trận này được xác định cụ thể như sau:

- Ma trận biến đổi hệ lực nút [B]:

Đối với tấm phẳng chịu uốn, biến dạng bé, các thành phần biến dạng uốn thuần túy và uốn trong mặt phẳng tấm được xem là độc lập với nhau, do đó các thành phần lực gây ra tương ứng cũng được xem là độc lập. Theo đó, với phần tử tấm chịu uốn 4 nút, có 12 lực nút phần tử phụ thuộc là S₁, S₂, ..., S₁₁, S₁₂ (Hình 2.4). Mười hai lực nút này quan hệ tuyến tính với 9 lực nút độc lập F₁, F₂, ..., F₉, hệ lực nút độc lập và phân bố ứng suất trên mặt trung bình của phần tử được chỉ ra như trong Phụ lục 1. Lúc này phương trình quan hệ giữa hệ lực nút phụ thuộc và hệ lực nút độc lập như sau [64]:

Và được viết gọn dưới dạng:

$$\underbrace{\{\mathbf{S}\}}_{12\times 1} = \underbrace{[\mathbf{B}]}_{12\times 9} \underbrace{{}^{\mathrm{T}}_{9\times 1}}_{9\times 1}, \qquad (2.39)$$

trong đó: a, b tương ứng là chiều dài và chiều rộng của phần tử; $\{S\}$ là véc tơ lực nút phụ thuộc và $\{F\}$ là véc tơ lực nút độc lập của phần tử; [B] là ma trận biến đổi hệ lực, cụ thể như sau:

- Ma trận biểu thị độ mềm và độ mềm bổ sung của phần tử tấm:

Các phần tử c_{ij} của ma trận biểu thị độ mềm [C⁰] của phần tử tấm không có vết nứt và ma trận biểu thị độ mềm bổ sung [C¹] của phần tử tấm do vết nứt gây ra được xác định theo nguyên lý Castigliano [23], [64]:

$$\mathbf{c}_{ij}^{n} = \frac{\partial^{2} \mathbf{U}^{n}}{\partial \mathbf{F}_{i} \partial \mathbf{F}_{j}}, \quad \mathbf{i} = \overline{\mathbf{1}, \mathbf{9}}, \quad \mathbf{j} = \overline{\mathbf{1}, \mathbf{9}}, \quad \mathbf{n} = 0, 1,$$
(2.43)

trong đó: F_i , F_j là các lực nút độc lập của phần tử, U^n là thế năng biến dạng đàn hồi của phần tử, n = 0 ứng với trường hợp phần tử tấm không có vết

nứt và n = 1 ứng với trường hợp phần tử tấm có vết nứt. Về bản chất, thế năng biến dạng đàn hồi trong (2.43) và trong (2.27) là như nhau, chỉ khác nhau ở cách tính theo hệ lực nút độc lập hay phụ thuộc của phần tử.

Và do đó, với n = 0:

$$U^{0} = \frac{6}{Eh^{3}} \int_{0}^{a} \int_{0}^{b} \left(M_{x}^{2} + M_{y}^{2} - 2\nu M_{x} M_{y} + 2(1+\nu) M_{xy} \right) dxdy, \qquad (2.44)$$

Quan hệ giữa các thành phần mô men M_x , M_y và M_{xy} với các đại lượng hình học và lực nút độc lập của phần tử như sau [64]:

$$\begin{split} M_{x} &= \frac{2}{b} \begin{bmatrix} F_{3} \left(-1 + \frac{3y}{b} \right) + F_{4} \left(-1 + \frac{3y}{b} \right) \left(1 - \frac{2x}{a} \right) + F_{7} \left(2 - \frac{3y}{b} \right) + \\ &+ F_{8} \left(2 - \frac{3y}{b} \right) \left(-1 + \frac{2x}{a} \right) \\ M_{y} &= \frac{2}{a} \begin{bmatrix} F_{1} \left(2 - \frac{3x}{a} \right) + F_{2} \left(2 - \frac{3x}{a} \right) \left(1 - \frac{2y}{b} \right) + F_{5} \left(-1 + \frac{3x}{a} \right) + \\ &+ F_{6} \left(-1 + \frac{3x}{a} \right) \left(-1 + \frac{2y}{b} \right) \\ M_{xy} &= F_{9}. \end{split}$$
(2.45)

Thay (2.45) vào (2.44), kết quả đưa vào tính toán theo biểu thức (2.43), ta có ma trận biểu thị độ mềm $[C^0]$:

$$\begin{bmatrix} C^{0} \end{bmatrix} = \frac{12}{Eh^{3}} \begin{bmatrix} 4b/a & & & \\ 0 & 4b/3a & & \\ -\nu & \nu & 4a/b & & sym \\ -\nu & \nu & 0 & 4a/3b & & \\ -2b/a & 0 & -\nu & \nu & 4b/a & & \\ 0 & 2b/3a & -\nu & \nu & 0 & 4b/3a & & \\ -\nu & -\nu & -2a/b & 0 & -\nu & \nu & 4a/b & & \\ \nu & \nu & 0 & 2a/3b & -\nu & \nu & 0 & 4a/3b & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2(1+\nu)ab \end{bmatrix}$$
(2.46)

Với n = 1, giả thiết rằng thế năng biến dạng đàn hồi chỉ do ứng suất phẳng gây nên, ta có [47], [72]:

$$U^{1} = \frac{1}{E} \int_{A} \left(K_{I}^{2} + K_{II}^{2} \right) dA, \qquad (2.47)$$

trong đó: $A = 2a_c \times z$ ($0 < z \le h$) là diện tích vết nứt, với trường hợp vết nứt thủng ta có $A = 2a_c \times h$; K_I và K_{II} là hệ số cường độ ứng suất ứng với hai trường hợp của vết nứt.

Đối với tấm có kích thước vô hạn, hệ số cường độ ứng suất được xác định như sau [65], [72]:

- Trường hợp vết nứt song song với trục ox của phần tử (Hình 2.5a):

$$K_{I} = \frac{1}{\sqrt{\pi a_{c}}} \int_{-a_{c}}^{a_{c}} \sigma_{y} \left(x, \frac{b}{2} \right) \left(\frac{a_{c} + x}{a_{c} - x} \right)^{\frac{1}{2}} dx,$$

$$K_{II} = \frac{-1}{\sqrt{\pi a_{c}}} \int_{-a_{c}}^{a_{c}} \tau_{xy} \left(x, \frac{b}{2} \right) \left(\frac{a_{c} + x}{a_{c} - x} \right)^{\frac{1}{2}} dx,$$
(2.48)

- Trường hợp vết nứt song song với trục oy của phần tử (Hình 2.5b):

$$K_{I} = \frac{1}{\sqrt{\pi a_{c}}} \int_{-a_{c}}^{a_{c}} \sigma_{x} \left(y, \frac{a}{2}\right) \left(\frac{a_{c} + y}{a_{c} - y}\right)^{\frac{1}{2}} dy, \qquad (2.49)$$

$$K_{II} = \frac{-1}{\sqrt{\pi a_{c}}} \int_{-a_{c}}^{a_{c}} \tau_{xy} \left(y, \frac{a}{2}\right) \left(\frac{a_{c} + y}{a_{c} - y}\right)^{\frac{1}{2}} dy, \qquad (2.49)$$

$$\int_{a_{c}}^{y} \int_{-a_{c}}^{y} \int_{a_{c}}^{y} \int_{a_{c}}^{y$$

Các thành phần ứng suất trong các biểu thức (2.48), (2.49) được biểu diễn qua các lực nút độc lập của phần tử và các đại lượng hình học khác [64]:

$$\sigma_{y}\left(x,\frac{b}{2}\right) = \frac{24z}{ah^{3}} \left[F_{1}\left(2-\frac{3x}{a}\right) + F_{5}\left(-1+\frac{3x}{a}\right)\right], \ \tau_{xy}\left(x,\frac{b}{2}\right) = \frac{12z}{h^{3}}F_{9}, \ (2.50)$$
$$\sigma_{x}\left(y,\frac{a}{2}\right) = \frac{24z}{bh^{3}} \left[F_{3}\left(-1+\frac{3y}{b}\right) + F_{7}\left(2-\frac{3y}{b}\right)\right], \ \tau_{xy}\left(y,\frac{a}{2}\right) = \frac{12z}{h^{3}}F_{9}. \ (2.51)$$

Thay (2.50) vào (2.48) và (2.51) vào (2.49), dẫn đến:

- Trường hợp vết nứt song song với trục ox:

$$K_{I} = \frac{24z}{ah^{3}} \left[F_{I} \left(2 - \frac{3a_{c}}{2a} \right) - F_{5} \left(1 - \frac{3a_{c}}{2a} \right) \right] \sqrt{\pi a_{c}},$$

$$K_{II} = -\frac{12z}{h^{3}} F_{9} \sqrt{\pi a_{c}},$$
(2.52)

- Trường hợp vết nứt song song với trục oy:

$$K_{I} = \frac{24z}{bh^{3}} \left[F_{3} \left(-1 + \frac{3a_{c}}{2b} \right) + F_{7} \left(2 - \frac{3a_{c}}{2b} \right) \right] \sqrt{\pi a_{c}},$$

$$K_{II} = -\frac{12z}{h^{3}} F_{9} \sqrt{\pi a_{c}}.$$
(2.53)

Các quan hệ (2.52) và (2.53) được thiết lập trên cơ sở lý thuyết Kirchhoff - Love, còn để phù hợp với lý thuyết Mindlin người ta đưa vào các hàm hiệu chỉnh Φ_j , chúng được xác định [47], [72]:

$$K_{ir} = \Phi_{j}K_{i}, \quad i = I, II, \ j = 1, 2,$$
 (2.54)

với K_{ir} là hệ số cường độ ứng suất theo lý thuyết Mindlin, K_i là hệ số cường độ ứng suất theo lý thuyết Kirchhoff - Love; Φ_j là các hàm hiệu chỉnh, phụ thuộc vào chiều dày tấm và kích thước vết nứt (Phụ lục 1).

Với tấm thỏa mãn lý thuyết Mindlin và có kích thước hữu hạn, cần phải bổ sung thêm hàm hiệu chỉnh, lúc này cường độ ứng suất (2.54) được xác định theo biểu thức:

$$\mathbf{K}_{ir}^{f} = \mathbf{K}_{ir} f\left(\overline{a}_{c}\right), \quad i = I, II,$$
(2.55)

trong đó: K_{ir}^{f} là các hệ số cường độ ứng suất đối với tấm thỏa mãn lý thuyết Mindlin và có kích thước hữu hạn, $f(\overline{a}_{c})$ là hàm hiệu chỉnh có xét đến kích thước hữu hạn của tấm, cụ thể như sau [72]:

$$f(\overline{a}_{c}) = 1,0+0,01876\overline{a}_{c}+0,1825\overline{a}_{c}^{2}+2,024\overline{a}_{c}^{3}-2,4316\overline{a}_{c}^{4}, \qquad (2.56)$$

với: $\overline{a}_{c} = 2a_{c}/a$ khi vết nứt song song với trục ox và $\overline{a}_{c} = 2a_{c}/b$ khi vết nứt song song với trục oy của phần tử.

Sử dụng các biểu thức (2.47), (2.52), (2.53), (2.54) và (2.55) thay vào (2.43), ta có các phần tử trong ma trận biểu thị độ mềm bổ sung $[C^1]$ ứng với các trường hợp:

- Vết nứt song song với trục ox:

$$c_{11}^{1} = \frac{\partial^{2} U^{1}}{\partial F_{1}^{2}} = \frac{288\pi\Phi_{1}^{2}}{Eh^{6}} \int_{-\frac{h}{2}}^{\frac{h}{2}} z^{2} dz \int_{-\overline{a}_{c}}^{\overline{a}_{c}} \overline{a}_{c} (2-0,75\overline{a}_{c})^{2} f^{2} (\overline{a}_{c}) d\overline{a}_{c} =$$
$$= \frac{24\pi\Phi_{1}^{2}}{Eh^{3}} \int_{-\overline{a}_{c}}^{\overline{a}_{c}} \overline{a}_{c} (2-0,75\overline{a}_{c})^{2} f^{2} (\overline{a}_{c}) d\overline{a}_{c},$$

$$c_{15}^{1} = c_{51}^{1} = \frac{\partial^{2} U^{1}}{\partial F_{1} \partial F_{5}} = \frac{144\pi \Phi_{1}^{2}}{Eh^{6}} \int_{-\frac{h}{2}}^{\frac{h}{2}} z^{2} dz \int_{-\overline{a}_{c}}^{\overline{a}_{c}} \overline{a}_{c} (2 - 0,75\overline{a}_{c}) (-1 + 0,75\overline{a}_{c}) f^{2} (\overline{a}_{c}) d\overline{a}_{c} = \\ = \frac{12\pi \Phi_{1}^{2}}{Eh^{3}} \int_{-\overline{a}_{c}}^{\overline{a}_{c}} \overline{a}_{c} (2 - 0,75\overline{a}_{c}) (-1 + 0,75\overline{a}_{c}) f^{2} (\overline{a}_{c}) d\overline{a}_{c}, \\ c_{55}^{1} = \frac{\partial^{2} U^{1}}{\partial F_{5}^{2}} = \frac{288\pi \Phi_{1}^{2}}{Eh^{6}} \int_{-\frac{h}{2}}^{\frac{h}{2}} z^{2} dz \int_{-\overline{a}_{c}}^{\overline{a}_{c}} \overline{a}_{c} (-1 + 0,75\overline{a}_{c})^{2} f^{2} (\overline{a}_{c}) d\overline{a}_{c} = \\ = \frac{24\pi \Phi_{1}^{2}}{Eh^{3}} \int_{-\overline{a}_{c}}^{\overline{a}_{c}} \overline{a}_{c} (-1 + 0,75\overline{a}_{c})^{2} f^{2} (\overline{a}_{c}) d\overline{a}_{c}, \end{cases}$$

$$c_{99}^{1} = \frac{\partial^{2} U^{1}}{\partial F_{9}^{2}} = \frac{72\pi\Phi_{2}^{2}a^{2}}{Eh^{6}} \int_{-\frac{h}{2}}^{\frac{h}{2}} z^{2} dz \int_{-\overline{a}_{c}}^{\overline{a}_{c}} \overline{a}_{c} f^{2} (\overline{a}_{c}) d\overline{a}_{c} = \frac{6\pi\Phi_{2}^{2}a^{2}}{Eh^{3}} \int_{-\overline{a}_{c}}^{\overline{a}_{c}} \overline{a}_{c} f^{2} (\overline{a}_{c}) d\overline{a}_{c}.$$

$$c_{12}^{1} = c_{21}^{1} = 0, c_{13}^{1} = c_{31}^{1} = 0, c_{14}^{1} = c_{41}^{1} = 0, c_{16}^{1} = c_{61}^{1} = 0, c_{17}^{1} = c_{71}^{1} = 0,$$

$$c_{18}^{1} = c_{81}^{1} = 0, c_{19}^{1} = c_{91}^{1} = 0, c_{22}^{1} = 0, c_{33}^{1} = 0, c_{44}^{1} = 0, c_{66}^{1} = 0, c_{77}^{1} = 0, c_{88}^{1} = 0.$$
Do vậy:

trong đó:

$$c_{11} = 4\pi \Phi_1^2 \int_{-\overline{a_c}}^{\overline{a_c}} \overline{a_c} (2 - 0.75\overline{a_c})^2 f^2(\overline{a_c}) d\overline{a_c},$$

$$c_{51} = 2\pi \Phi_1^2 \int_{-\overline{a_c}}^{-\overline{a_c}} \overline{a_c} (2 - 0.75\overline{a_c}) (-1 + 0.75\overline{a_c}) f^2(\overline{a_c}) d\overline{a_c},$$

$$c_{55} = 4\pi \Phi_1^2 \int_{-\overline{a_c}}^{-\overline{a_c}} \overline{a_c} (-1 + 0.75\overline{a_c})^2 f^2(\overline{a_c}) d\overline{a_c},$$

$$c_{99} = \pi \Phi_2^2 a^2 \int_{-\overline{a_c}}^{\overline{a_c}} \overline{a_c} f^2(\overline{a_c}) d\overline{a_c}.$$
(2.58)

- Vết nứt song song với trục oy, tính toán tương tự như trên, ta có:

trong đó:

$$c_{33} = 4\pi \Phi_{1}^{2} \int_{-\overline{a}_{c}}^{\overline{a}_{c}} \overline{a}_{c} \left(-1+0,75\overline{a}_{c}\right)^{2} f^{2}(\overline{a}_{c}) d\overline{a}_{c},$$

$$c_{73} = 2\pi \Phi_{1}^{2} \int_{-\overline{a}_{c}}^{-\overline{a}_{c}} \overline{a}_{c} \left(-1+0,75\overline{a}_{c}\right) \left(2-0,75\overline{a}_{c}\right) f^{2}(\overline{a}_{c}) d\overline{a}_{c},$$

$$c_{77} = 4\pi \Phi_{1}^{2} \int_{-\overline{a}_{c}}^{-\overline{a}_{c}} \overline{a}_{c} \left(2-0,75\overline{a}_{c}\right)^{2} f^{2}(\overline{a}_{c}) d\overline{a}_{c},$$

$$c_{99} = \pi b^{2} \Phi_{2}^{2} \int_{-\overline{a}_{c}}^{-\overline{a}_{c}} \overline{a}_{c} f^{2}(\overline{a}_{c}) d\overline{a}_{c}.$$
(2.60)

Thay (2.42), (2.46) và (2.57) hoặc (2.42), (2.46) và (2.59) vào (2.37) ta có được ma trận độ cứng của phần tử tấm có vết nứt song song với trục ox hoặc oy. Lúc này, xuất phát từ (2.36), phương trình mô tả dao động không cản của phần tử tấm có vết nứt như sau:

$$[M]_{e} \{ \ddot{q} \}_{e} + [K]_{e}^{c} \{ q \}_{e} = \{ f \}_{e}, \qquad (2.61)$$

2.4.2. Phần tử tấm có vết nứt chịu tải trọng di động

Phương trình mô tả dao động của phần tử tấm có vết nứt chịu tải trọng di động được thiết lập trên cơ sở phương trình dao động của phần tử tấm có vết nứt chịu tải trọng động được mô tả bởi phương trình (2.61), trong đó

véc tơ tải trọng $\{f\}_e$ là véc tơ tải trọng nút của phần tử tấm có vết nứt do tải trọng di động gây ra. Do đó, trong phần này tác giả tập trung xây dựng véc tơ tải trọng nút của phần tử do tải trọng di động gây nên.

2.4.2.1. Phần tử tấm có vết nứt chịu tác dụng của khối lượng di động:

Không mất tính tổng quát, xét tải trọng di động bao gồm: khối lượng m xem như chất điểm di chuyển trên phần tử tấm với quỹ đạo cho trước là hàm của thời gian: x = x(t), y = y(t), lực $\vec{Q}(t)$ phụ thuộc thời gian tác dụng lên khối lượng di động, theo phương vuông góc với mặt phẳng phần tử (Hình 2.6).

Hình 2.6. Phần tử tấm chịu tác dụng của khối lượng di động

Gọi w(x, y, t) là độ võng của phần tử dưới tác dụng của tải trọng di động, lúc này lực của tải trọng di động tác dụng lên phần tử tại vị trí $(x = \xi; y = \eta)$ là [30]:

$$R(x, y, t) = \left[Q(t) - m \frac{d^2 w(x, y, t)}{dt^2} - mg\right]_{\substack{x = \xi \\ y = \eta}}$$
(2.62)

với: g là gia tốc trọng trường, $\frac{d^2w(x,y,t)}{dt^2}$ là gia tốc tuyệt đối theo phương pháp tuyến với mặt phẳng của tấm tại vị trí tải trọng di động tác dụng:

$$\frac{d^{2}w}{dt^{2}} = \begin{pmatrix} \frac{\partial^{2}w}{\partial x^{2}} \dot{x}^{2} + \frac{\partial^{2}w}{\partial y^{2}} \dot{y}^{2} + \frac{\partial^{2}w}{\partial t^{2}} + 2\frac{\partial^{2}w}{\partial x\partial y} \dot{x}\dot{y} + 2\dot{x}\frac{\partial^{2}w}{\partial x\partial t} + 2\dot{y}\frac{\partial^{2}w}{\partial y\partial t} + \\ + \ddot{x}\frac{\partial w}{\partial x} + \ddot{y}\frac{\partial w}{\partial y} \end{pmatrix} (2.63)$$

Lực tập trung (2.62) được biểu diễn thành lực phân bố p(x,y,t) dưới dạng sau [21], [30]:

$$p(x,y,t) = \delta(x-\xi)\delta(y-\eta)R(x,y,t)$$
(2.64)

trong đó: ξ , η tương ứng là hoành độ và tung độ trong hệ toạ độ cục bộ của phần tử; $\delta(\cdot)$ là hàm Delta-Dirac.

Véc tơ lực nút của phần tử được xác định từ lực phân bố p(x,y,t) tác dụng lên phần tử [4], [10], [21]:

$$\{f\}_{e} = \int_{0}^{b} \int_{0}^{a} [N]^{T} p(x, y, t) dx dy =$$

$$= \int_{0}^{b} \int_{0}^{a} [N]^{T} \delta(x - \xi) \delta(y - \eta) R(x, y, t) dx dy$$
(2.65)

Độ võng của phần tử được biểu diễn thông qua véc tơ chuyển vị nút và hàm dạng:

$$w^{e}(x,y) = [N] \{q\}_{e} = [N] [G]^{-1} \{q\}_{e}, \qquad (2.66)$$

với: $[N] = \begin{bmatrix} 1 & x & y & x^2 & xy & y^2 & x^3 & x^2y & xy^2 & y^3 & x^3y & xy^3 \end{bmatrix}$ (2.67) và [G] là ma trận phụ thuộc vào hình dạng và kích thước của phần tử [21],

[38]. Với phần tử tấm chữ nhật chịu uốn như đã chọn ở trên, ma trận [G] xác định như trong Phụ lục 1.

Thay (2.66) vào (2.63), dẫn đến:

$$\frac{d^{2}w}{dt^{2}} = \begin{pmatrix} \frac{\partial^{2}[N]}{\partial x^{2}} [G]^{-1} \dot{x}^{2} \{q\}_{e} + \frac{\partial^{2}[N]}{\partial y^{2}} [G]^{-1} \dot{y}^{2} \{q\}_{e} + [N][G]^{-1} \{\ddot{q}\}_{e} + \\ + 2\dot{x}\dot{y}\frac{\partial^{2}[N]}{\partial x\partial y} [G]^{-1} \{q\}_{e} + 2\dot{x}\frac{\partial[N]}{\partial x} [G]^{-1} \{\dot{q}\}_{e} + \\ + 2\dot{y}\frac{\partial[N]}{\partial y} [G]^{-1} \{\dot{q}\}_{e} + \ddot{x}\frac{\partial[N]}{\partial x} [G]^{-1} \{q\}_{e} + \ddot{y}\frac{\partial[N]}{\partial y} [G]^{-1} \{q\}_{e} \end{pmatrix}, (2.68)$$

trong đó:

$$\frac{\partial}{\partial x} [N] = [N_x] = \begin{bmatrix} 0 & 1 & 0 & 2x & y & 0 & 3x^2 & 2xy & y^2 & 0 & 3x^2y & y^3 \end{bmatrix}$$
(2.69)

$$\frac{\partial^{2}}{\partial x^{2}} [N] = [N_{xx}] = [0 \ 0 \ 0 \ 2 \ 0 \ 0 \ 6x \ 2y \ 0 \ 0 \ 6xy \ 0](2.70)$$
$$\frac{\partial^{2}}{\partial x \partial y} [N] = [N_{xy}] = [0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 2x \ 2y \ 0 \ 3x^{2} \ 3y^{2}]$$
(2.71)

$$\frac{\partial}{\partial y} [N] = [N_y] = [0 \quad 0 \quad 1 \quad 0 \quad x \quad 2y \quad 0 \quad x^2 \quad 2xy \quad 3y^2 \quad x^3 \quad 3xy^2]$$

$$(2.72)$$

$$\frac{\partial^2}{\partial y^2} [N] = [N_{yy}] = [0 \ 0 \ 0 \ 0 \ 0 \ 2 \ 0 \ 0 \ 2x \ 6y \ 0 \ 6xy](2.73)$$

Thay các biểu thức (2.69) đến (2.73) vào (2.68), dẫn đến:

$$\frac{d^{2}w}{dt^{2}} = \begin{pmatrix} [N_{xx}][G]^{-1}\dot{x}^{2}\{q^{e}\} + [N_{yy}][G]^{-1}\dot{y}^{2}\{q^{e}\} + [N][G]^{-1}\{\ddot{q}^{e}\} + \\ +2\dot{x}\dot{y}[N_{xy}][G]^{-1}\{q^{e}\} + 2\dot{x}[N_{x}][G]^{-1}\{\dot{q}^{e}\} + \\ +2\dot{y}[N_{y}][G]^{-1}\{\dot{q}^{e}\} + \ddot{x}[N_{x}][G]^{-1}\{q^{e}\} + \ddot{y}[N_{y}][G]^{-1}\{q^{e}\} \end{pmatrix} (2.74)$$

Đặt:

$$\begin{bmatrix} N_{x}^{e} \end{bmatrix} = \begin{bmatrix} N_{x} \end{bmatrix} \begin{bmatrix} G \end{bmatrix}^{-1}, \begin{bmatrix} N_{xx}^{e} \end{bmatrix} = \begin{bmatrix} N_{xx} \end{bmatrix} \begin{bmatrix} G \end{bmatrix}^{-1}, \\ \begin{bmatrix} N_{y}^{e} \end{bmatrix} = \begin{bmatrix} N_{y} \end{bmatrix} \begin{bmatrix} G \end{bmatrix}^{-1}, \begin{bmatrix} N_{yy}^{e} \end{bmatrix} = \begin{bmatrix} N_{yy} \end{bmatrix} \begin{bmatrix} G \end{bmatrix}^{-1}, \\ \begin{bmatrix} N_{xy}^{e} \end{bmatrix} = \begin{bmatrix} N_{xy} \end{bmatrix} \begin{bmatrix} G \end{bmatrix}^{-1}, \begin{bmatrix} N^{e} \end{bmatrix} = \begin{bmatrix} N \end{bmatrix} \begin{bmatrix} G \end{bmatrix}^{-1}$$

$$\begin{bmatrix} N_{xy}^{e} \end{bmatrix} = \begin{bmatrix} N_{xy} \end{bmatrix} \begin{bmatrix} G \end{bmatrix}^{-1}, \begin{bmatrix} N^{e} \end{bmatrix} = \begin{bmatrix} N \end{bmatrix} \begin{bmatrix} G \end{bmatrix}^{-1}$$

$$\begin{bmatrix} N_{xy}^{e} \end{bmatrix} = \begin{bmatrix} N_{xy} \end{bmatrix} \begin{bmatrix} G \end{bmatrix}^{-1}, \begin{bmatrix} N^{e} \end{bmatrix} = \begin{bmatrix} N \end{bmatrix} \begin{bmatrix} G \end{bmatrix}^{-1}$$

Ta có:

$$\frac{d^{2}w(x,y,t)}{dt^{2}} = \left[N^{e}\right]\left\{\ddot{q}^{e}\right\} + 2\left(\dot{x}\left[N^{e}_{x}\right] + \dot{y}\left[N^{e}_{y}\right]\right)\left\{\dot{q}^{e}\right\} + \left(\dot{x}^{2}\left[N^{e}_{xx}\right] + \dot{y}^{2}\left[N^{e}_{yy}\right] + 2\dot{x}\dot{y}\left[N^{e}_{xy}\right] + \ddot{x}\left[N^{e}_{x}\right] + \ddot{y}\left[N^{e}_{y}\right]\right)\left\{q^{e}\right\}$$

$$(2.76)$$

Thay (2.76) vào (2.62), ta có:

$$R(x, y, t) = Q(t) - m \left[N^{e} \right] \left\{ \ddot{q}^{e} \right\} + 2m \left(\dot{x} \left[N^{e}_{x} \right] + \dot{y} \left[N^{e}_{y} \right] \right) \left\{ \dot{q}^{e} \right\} + m \left(\dot{x}^{2} \left[N^{e}_{xx} \right] + \dot{y}^{2} \left[N^{e}_{yy} \right] + 2\dot{x}\dot{y} \left[N^{e}_{xy} \right] + \ddot{x} \left[N^{e}_{x} \right] + \ddot{y} \left[N^{e}_{y} \right] \right) \left\{ q^{e} \right\}$$

$$(2.77)$$

Thay (2.77) vào (2.64), lực phân bố quy đôi được xác định:

$$p(x, y, t) = Q(t)\delta(x - \xi)\delta(y - \eta) - m\left[N^{e}\right]\delta(x - \xi)\delta(y - \eta)\left\{\ddot{q}^{e}\right\} + 2m\left(\dot{x}\left[N^{e}_{x}\right] + \dot{y}\left[N^{e}_{y}\right]\right)\delta(x - \xi)\delta(y - \eta)\left\{\dot{q}^{e}\right\} + m\left(\dot{x}^{2}\left[N^{e}_{xx}\right] + \dot{y}^{2}\left[N^{e}_{yy}\right] + 2\dot{x}\dot{y}\left[N^{e}_{xy}\right] + \ddot{x}\left[N^{e}_{x}\right] + \ddot{y}\left[N^{e}_{y}\right]\right)\delta(x - \xi)\delta(y - \eta)\left\{q^{e}\right\}$$

$$(2.78)$$

Từ đây ta có véc tơ lực nút của phần tử chịu tác dụng của khối lượng di động:

$$\{f\}_{e} = \int_{0}^{b} \int_{0}^{a} \delta(x-\xi)\delta(y-\eta) \left[N^{e}\right]^{T} Q(t)dxdy - -m \int_{0}^{b} \int_{0}^{a} \delta(x-\xi)\delta(y-\eta) \left[N^{e}\right]^{T} \left[N^{e}\right] \left\{\ddot{q}^{e}\right\}dxdy - -2m \int_{0}^{b} \int_{0}^{a} \delta(x-\xi)\delta(y-\eta) \left[N^{e}\right]^{T} \left(\dot{x} \left[N_{x}^{e}\right] + \dot{y} \left[N_{y}^{e}\right]\right) \left\{\dot{q}^{e}\right\}dxdy - -m \int_{0}^{b} \int_{0}^{a} \delta(x-\xi)\delta(y-\eta) \left[N^{e}\right]^{T} \left(\dot{x}^{2} \left[N_{xx}^{e}\right] + \dot{y}^{2} \left[N_{yy}^{e}\right] + +2\dot{x}\dot{y} \left[N_{xy}^{e}\right] + \ddot{x} \left[N_{x}^{e}\right] + \ddot{y} \left[N_{y}^{e}\right] \right\} \left\{q^{e}\right\}dxdy - (2.79)$$

$$\begin{array}{l} \tilde{P}_{e} = \int_{0}^{b} \int_{0}^{a} \delta(x - \xi) \delta(y - \eta) \left[N^{e} \right]^{T} Q(t) dx dy = \left[N^{e}(\xi, \eta) \right]^{T} Q(t), \quad (2.80) \end{array}$$

$$\left[M_{e}^{p}\right] = m \int_{0}^{b} \int_{0}^{a} \delta(x-\xi) \delta(y-\eta) \left[N^{e}\right]^{T} \left[N^{e}\right] dx dy, \qquad (2.81)$$

$$\left[C_{e}^{p}\right] = 2m \int_{0}^{b} \int_{0}^{a} \delta(x-\xi) \delta(y-\eta) \left[N^{e}\right]^{T} \left(\dot{x} \left[N_{x}^{e}\right] + \dot{y} \left[N_{y}^{e}\right]\right) dxdy, \quad (2.82)$$

$$\begin{bmatrix} K_{e}^{p} \end{bmatrix} = m \int_{0}^{b} \int_{0}^{a} \delta(x - \xi) \delta(y - \eta) \begin{bmatrix} N^{e} \end{bmatrix}^{T} \begin{pmatrix} \dot{x}^{2} \begin{bmatrix} N_{xx}^{e} \end{bmatrix} + \dot{y}^{2} \begin{bmatrix} N_{yy}^{e} \end{bmatrix} + \\ +2\dot{x}\dot{y} \begin{bmatrix} N_{xy}^{e} \end{bmatrix} + \ddot{x} \begin{bmatrix} N_{x}^{e} \end{bmatrix} + \ddot{y} \begin{bmatrix} N_{y}^{e} \end{bmatrix} \end{pmatrix} dxdy$$
(2.83)

Biểu thức (2.79) trở thành:

$$\{f\}_{e} = \{P\}_{e} - [M]_{e}^{p} \{\ddot{q}\}_{e} - [C]_{e}^{p} \{\dot{q}\}_{e} - [K]_{e}^{p} \{q\}_{e}, \qquad (2.84)$$

Sử dụng tính chất của hàm Delta-Dirac đối với các biểu thức (2.80) đến (2.83), các hệ số trong (2.84) trở thành:

$$\left\{ \mathbf{P} \right\}_{e} = \left[\mathbf{N}^{e} \left(\boldsymbol{\xi}, \boldsymbol{\eta} \right) \right]^{T} \mathbf{Q} (\mathbf{t}), \qquad (2.85)$$

$$\left[\mathbf{M}\right]_{e}^{p} = \mathbf{m}\left[\mathbf{N}^{e}(\boldsymbol{\xi},\boldsymbol{\eta})\right]^{\mathrm{T}}\left[\mathbf{N}^{e}(\boldsymbol{\xi},\boldsymbol{\eta})\right], \qquad (2.86)$$

$$\left[C\right]_{e}^{p} = 2m\left[N^{e}\left(\xi,\eta\right)\right]^{T}\left(\dot{x}\left[N_{x}^{e}\left(\xi,\eta\right)\right] + \dot{y}\left[N_{y}^{e}\left(\xi,\eta\right)\right]\right)$$
(2.87)

$$\begin{bmatrix} \mathbf{K} \end{bmatrix}_{e}^{p} = \mathbf{m} \begin{bmatrix} \mathbf{N}^{e}(\xi,\eta) \end{bmatrix}^{T} \begin{pmatrix} \dot{\mathbf{x}}^{2} \begin{bmatrix} \mathbf{N}_{xx}^{e}(\xi,\eta) \end{bmatrix} + \dot{\mathbf{y}}^{2} \begin{bmatrix} \mathbf{N}_{yy}^{e}(\xi,\eta) \end{bmatrix} + \\ +2\dot{\mathbf{x}} \dot{\mathbf{y}} \begin{bmatrix} \mathbf{N}_{xy}^{e}(\xi,\eta) \end{bmatrix} + \ddot{\mathbf{x}} \begin{bmatrix} \mathbf{N}_{x}^{e}(\xi,\eta) \end{bmatrix} + \ddot{\mathbf{y}} \begin{bmatrix} \mathbf{N}_{y}^{e}(\xi,\eta) \end{bmatrix} \end{pmatrix},$$
(2.88)

Thay (2.84) vào (2.61), ta nhận được phương trình mô tả dao động của phần tử tấm có vết nứt, chịu tác dụng của khối lượng di động như sau:

$$[M]_{e} \{\ddot{q}\}_{e} + [K]_{e}^{c} \{q\}_{e} = \{P\}_{e} - [M]_{e}^{p} \{\ddot{q}\}_{e} - [C]_{e}^{p} \{\dot{q}\}_{e} - [K]_{e}^{p} \{q\}_{e},$$
(2.89)

Hay:

$$\left(\left[M \right]_{e} + \left[M \right]_{e}^{p} \right) \left\{ \ddot{q} \right\}_{e} + \left[C \right]_{e}^{p} \left\{ \dot{q} \right\}_{e} + \left(\left[K \right]_{e}^{c} + \left[K \right]_{e}^{p} \right) \left\{ q \right\}_{e} = \left\{ P \right\}_{e}, \quad (2.90)$$

trong đó: $[M]_e^p$, $[C]_e^p$, $[K]_e^p$, $\{P\}_e$ tương ứng là ma trận khối lượng, ma trận cản, ma trận độ cứng và véc tơ tải trọng phần tử bổ sung do tải trọng di động gây nên, các thành phần trong các ma trận này là hàm phụ thuộc thời gian và vị trí của tải trọng di động trên phần tử tấm.

Đối với phần tử tấm không có vết nứt, hoàn toàn tương tự, thay (2.84) vào (2.36) ta có phương trình mô tả dao động của phần tử:

$$\left(\left[M \right]_{e} + \left[M \right]_{e}^{p} \right) \left\{ \ddot{q} \right\}_{e} + \left[C \right]_{e}^{p} \left\{ \dot{q} \right\}_{e} + \left(\left[K \right]_{e} + \left[K \right]_{e}^{p} \right) \left\{ q \right\}_{e} = \left\{ P \right\}_{e}.$$
 (2.91)

2.4.2.2. Phần tử tấm có vết nứt chịu tác dụng của hệ dao động di động:

Xét tấm chịu tác dụng của hệ dao động di động gồm khối lượng m tiếp xúc với tấm thông qua lò xo với độ cứng k mắc song song với phần tử cản có hệ số cản c. Xét phần tử i tại thời điểm chịu tác dụng của hệ dao động di động được mô tả như hình 2.7.

Hình 2.7. Phần tử tấm chịu tác dụng của hệ dao động di động Lực tác dụng lên phần tử tấm tại thời điểm t do hệ dao động gây ra:

$$R(t) = \left(-m_1 \frac{d^2 w(x, y, t)}{dt^2} - m_2 \ddot{u} - (m_1 + m_2)g + Q(t)\right)\Big|_{\substack{x=\xi\\y=\eta}},$$
 (2.92)

trong đó: m_1 là khối lượng tiếp xúc với tấm, m_2 là khối lượng tác dụng lên tấm thông qua lò xo và phần tử cản, ü là gia tốc chuyển dịch theo phương thẳng đứng của khối lượng m_2 .

Tương tự như mục 2.4.2.1, ta có véc tơ lực nút của phần tử do hệ dao động gây ra:

$$\{f\}_{e} = \{P\}_{e} - [M]_{e}^{pm_{1}}\{\ddot{q}\}_{e} - [M]_{e}^{pm_{2}}\ddot{u} - [C]_{e}^{p}\{\dot{q}\}_{e} - [K]_{e}^{p}\{q\}_{e}, \qquad (2.93)$$

trong đó:

$$\left\{ P(t) \right\}_{e} = \left[N^{e}(\xi, \eta) \right]^{T} \left(Q - \left(m_{1} + m_{2} \right) g \right), \qquad (2.94)$$

$$\left[\mathbf{M}\right]_{e}^{pm_{1}} = m_{1}\left[\mathbf{N}^{e}\left(\boldsymbol{\xi},\boldsymbol{\eta}\right)\right]^{T}\left[\mathbf{N}^{e}\left(\boldsymbol{\xi},\boldsymbol{\eta}\right)\right],\tag{2.95}$$

$$\left[\mathbf{M}\right]_{\mathbf{e}}^{\mathbf{p}\mathbf{m}_{2}} = \mathbf{m}_{2}\left[\mathbf{N}^{\mathbf{e}}(\boldsymbol{\xi},\boldsymbol{\eta})\right]^{\mathrm{T}},\tag{2.96}$$

$$\left[C\right]_{e}^{p} = 2m_{1}\left[N^{e}\left(\xi,\eta\right)\right]^{T}\left(\dot{x}\left[N_{x}^{e}\left(\xi,\eta\right)\right] + \dot{y}\left[N_{y}^{e}\left(\xi,\eta\right)\right]\right),$$
(2.97)

$$\begin{bmatrix} K \end{bmatrix}_{e}^{p} = m_{1} \begin{bmatrix} N^{e}(\xi,\eta) \end{bmatrix}^{T} \begin{pmatrix} \begin{bmatrix} N_{xx}^{e}(\xi,\eta) \end{bmatrix} \dot{x}^{2} + \begin{bmatrix} N_{yy}^{e}(\xi,\eta) \end{bmatrix} \dot{y}^{2} + \\ +2\dot{x}\dot{y} \begin{bmatrix} N_{xy}^{e}(\xi,\eta) \end{bmatrix} + \\ +\ddot{x} \begin{bmatrix} N_{x}^{e}(\xi,\eta) \end{bmatrix} + \ddot{y} \begin{bmatrix} N_{y}^{e}(\xi,\eta) \end{bmatrix} \end{pmatrix}, \qquad (2.98)$$

Thay (2.93) vào (2.61) ta có phương trình mô tả dao động của phần tử tấm có vết nứt, chịu tác dụng của hệ dao động di động:

$$\left(\left[M \right]_{e} + \left[M \right]_{e}^{pm_{1}} \right) \left\{ \ddot{q} \right\}_{e} + \left[M \right]_{e}^{pm_{2}} \ddot{u} + \left[C \right]_{e}^{p} \left\{ \dot{q} \right\}_{e} + \left(\left[K \right]_{e}^{c} + \left[K \right]_{e}^{p} \right) \left\{ q \right\}_{e} = \left\{ P \right\}_{e}.$$
(2.99)

Xét cân bằng động của hệ m_2 - k - c, ta có phương trình mô tả dao động của khối lượng m_2 như sau:

$$m_2 \ddot{u} + c\dot{u} + ku - c[N]{\dot{q}}_e - k[N]{q}_e = Q(t),$$
 (2.100)

Kết hợp (2.99) và (2.100), ta có hệ phương trình mô tả dao động của hệ phần tử tấm - hệ dao động:

$$([M]_{e} + [M]_{e}^{pm_{1}}) {\ddot{q}}_{e} + [M]_{e}^{pm_{2}} \ddot{u} + [C]_{e}^{p} {\dot{q}}_{e} + ([K]_{e}^{c} + [K]_{e}^{p}) {q}_{e} = {P}_{e},$$

$$m_{2}\ddot{u} + c\dot{u} + ku - c[N] {\dot{q}}_{e} - k[N] {q}_{e} = Q(t).$$

$$(2.101)$$

Viết dưới dạng ma trận:

$$\begin{bmatrix} [M]_{e} + [M]_{e}^{pm_{1}} & [M]_{e}^{pm_{2}} \\ [0] & m_{2} \end{bmatrix} \begin{cases} \{\ddot{q}\}_{e} \\ \ddot{u} \end{cases} + \begin{bmatrix} [C]_{e}^{p} & [0] \\ -c[N] & c \end{bmatrix} \begin{cases} \{\dot{q}\}_{e} \\ \dot{u} \end{cases} + \\ + \begin{bmatrix} [K]_{e}^{c} + [K]_{e}^{p} & [0] \\ -k[N] & k \end{bmatrix} \begin{cases} \{q\}_{e} \\ u \end{cases} = \begin{cases} \{P\}_{e} \\ Q(t) \end{cases}.$$
(2.102)

Đối với phần tử tấm không có vết nứt, phương trình dao động của phần tử cũng được thể hiện như (2.102), song ma trận độ cứng $[K]_e^c$ được thay bằng ma trận độ cứng $[K]_e$.

2.5. Phương trình mô tả dao động của tấm có vết nứt chịu tải trọng di động và thuật giải

2.5.1. *Phương trình mô tả dao động của tấm có vết nứt chịu tải trọng di động* 2.5.1.1. *Ghép nối các ma trận phần tử vào ma trận chung của toàn hệ:*

Sử dụng ma trận chuyển đổi hệ trục tọa độ cục bộ xyz sang hệ trục tọa độ tổng thể XYZ, các ma trận và véc tơ trong các phương trình mô tả dao động của phần tử được biểu diễn như sau [10], [11], [21]:

$$[M']_{e} = [T]_{e}^{T} [M]_{e} [T]_{e}, [M']_{e}^{p} = [T]_{e}^{T} [M]_{e}^{p} [T]_{e}, \qquad (2.103)$$

$$[M']_{e}^{pm_{1}} = [T]_{e}^{T} [M]_{e}^{pm_{1}} [T]_{e}, [M']_{e}^{pm_{2}} = [T]_{e}^{T} [M]_{e}^{pm_{2}} [T]_{e}, \qquad (2.104)$$

$$[C']_{e}^{p} = [T]_{e}^{T} [C]_{e}^{p} [T]_{e}, \{P'\}_{e} = [T]_{e}^{T} \{P\}_{e} [T]_{e},$$
(2.105)

$$[K']_{e} = [T]_{e}^{T} [K]_{e} [T]_{e}, [K']_{e}^{p} = [T]_{e}^{T} [K]_{e}^{p} [T]_{e}, \qquad (2.106)$$

trong đó: [T]e là ma trận chuyển đổi hệ trục tọa độ.

Việc lắp ghép các ma trận, véc tơ tải trọng phần tử để tạo thành ma trận, véc tơ tải trọng tổng thể của hệ được tác giả thực hiện bằng phương pháp độ cứng trực tiếp [1], [10], [21], trong đó mảng lưu trữ địa chỉ nút và sơ đồ Skyline được sử dụng.

2.5.1.2. Phương trình mô tả dao động của hệ:

Sử dụng phương pháp ghép nối các ma trận, véc tơ phần tử thành các ma trận và véc tơ tổng thể của hệ, ta có được phương trình mô tả dao động tổng thể của hệ trong hệ tọa độ tổng thể như sau:

a) Tấm có vết nứt chịu tác dụng của khối lượng di động:

Xuất phát từ phương trình (2.90) và (2.91), ta có phương trình dao động của tấm trong hệ tọa độ tổng thể như sau:

 $\left(\left[M' \right] + \left[M' \right]^{p} \right) \left\{ \ddot{q}' \right\} + \left[C' \right]^{p} \left\{ \dot{q}' \right\} + \left(\left[K' \right] + \left[K' \right]^{c} + \left[K' \right]^{p} \right) \left\{ q' \right\} = \left\{ P' \right\}, \quad (2.107)$ trong đó:

$$\begin{split} \left[M'\right] &= \sum_{N_{e}} \left[M'\right]_{e}, \left[M'\right]^{p} = \sum_{N_{m}} \left[M'\right]_{e}^{p}, \\ \left[C'\right]^{p} &= \sum_{N_{m}} \left[C'\right]_{e}^{p}, \left[K'\right]^{p} = \sum_{N_{m}} \left[K'\right]_{e}^{p}, \\ \left[K'\right] &= \sum_{N_{e}} \left[K'\right]_{e}, \left[K'\right]^{p} = \sum_{N_{m}} \left[K'\right]_{e}^{p}, \\ \left[K'\right]^{c} &= \sum_{N_{c}} \left[K'\right]_{e}^{c}, \left\{P'\right\} = \sum_{N_{e}} \left\{P\right\}_{e}, \end{split}$$
(2.108)

 N_e là số phần tử tấm không nứt, N_c là số phần tử tấm bị nứt, N_m là số phần tử tấm tiếp xúc trực tiếp với khối lượng m.

b) Tấm có vết nứt chịu tác dụng của hệ dao động di động:

Xuất phát từ phương trình (2.102), phương trình tổng thể mô tả dao động của hệ tấm có vết nứt - hệ dao động di động:

$$\begin{bmatrix} [M'] + [M']^{pm_1} & [M']^{pm_2} \\ [0] & m_2 \end{bmatrix} \begin{cases} \{\ddot{q}'\} \\ \ddot{u} \end{pmatrix} + \begin{bmatrix} [C']^p & [0] \\ -c[N] & c \end{bmatrix} \begin{cases} \{\dot{q}'\} \\ \dot{u} \end{pmatrix} + \\ + \begin{bmatrix} [K'] + [K']^c + [K']^p & [0] \\ -k[N] & k \end{bmatrix} \begin{cases} \{q'\} \\ u \end{pmatrix} = \begin{cases} \{P'\} \\ Q(t) \end{cases},$$
(2.109)
trong đó: $[M']^{pm_1} = \sum_{N_{m1}} [M']^{pm_1}_e, [M']^{pm_2} = \sum_{N_{m2}} [M']^{pm_2}_e,$ (2.110)

 N_{m1} , N_{m2} tương ứng là số phần tử tấm tiếp xúc trực tiếp với khối lượng m₁ và hình chiếu đứng của khối lượng m₂. Với mô hình hệ di động đã xét, ta có $N_{m1} = N_{m2}$.

2.5.2. Điều kiện biên

Với tấm được khảo sát và chọn hệ trục toạ độ như Hình 2.1 thì các cạnh của tấm được biểu diễn bởi phương trình:

$$x = 0, x = L_p,$$

 $y = 0, y = W_p.$ (2.111)

Khi đó điều kiện biên là:

2.5.2.1. Liên kết tựa bản lề:

- Tại $x = 0, x = L_p$: $w = 0, M_y = 0,$ (2.112)
- Tại $y = 0, y = W_p$: $w = 0, M_x = 0.$ (2.113)

2.5.2.2. Liên kết ngàm:

• Tại x = 0, x = L_p: w = 0,
$$\frac{\partial w}{\partial x} = 0$$
, (2.114)

• Tại y = 0, y = W_p: w = 0,
$$\frac{\partial w}{\partial y} = 0$$
, (2.115)

Điều này theo phương pháp PTHH chúng được xem xét trên cơ sở tính chất bậc tự do tại mỗi nút trên cạnh tấm chịu liên kết, theo đó [1], [21], [38]:

- Bước 1: Xác định thứ tự bậc tự do thuộc liên kết bằng không, giả sử bậc tự do thứ "i", $q_i = 0$.

 Bước 2: Thực hiện khử biên bằng cách xoá hàng i, cột i trong phương trình cân bằng hoặc phương trình vi phân chuyển động dưới dạng ma trận của hệ.

2.5.3. Thuật toán giải phương trình tổng thể mô tả dao động của hệ

Sau khi thực hiện khử biên, các phương trình (2.107) và (2.109) được xác định và viết lại dưới dạng tổng quát sau:

• Tấm có vết nứt chịu khối lượng di động:

$$\left[\overline{\mathbf{M}}\right]_{\mathrm{m}}\left\{\overline{\mathbf{U}}\right\}_{\mathrm{m}} + \left[\overline{\mathbf{C}}_{\mathrm{p}}\right]_{\mathrm{m}}\left\{\overline{\mathbf{U}}\right\}_{\mathrm{m}} + \left[\overline{\mathbf{K}}\right]_{\mathrm{m}}\left\{\overline{\mathbf{U}}\right\}_{\mathrm{m}} = \left\{\overline{\mathbf{R}}\right\}_{\mathrm{m}}, \qquad (2.116)$$

trong đó:

$$\begin{bmatrix} \overline{\mathbf{M}} \end{bmatrix}_{\mathrm{m}} = \begin{bmatrix} \overline{\mathbf{M}} \end{bmatrix} + \begin{bmatrix} \overline{\mathbf{M}} \end{bmatrix}^{\mathrm{p}}, \begin{bmatrix} \overline{\mathbf{C}} \end{bmatrix}_{\mathrm{m}} = \begin{bmatrix} \overline{\mathbf{C}} \end{bmatrix}^{\mathrm{p}},$$

$$\begin{bmatrix} \overline{\mathbf{K}} \end{bmatrix}_{\mathrm{m}} = \begin{bmatrix} \overline{\mathbf{K}} \end{bmatrix} + \begin{bmatrix} \overline{\mathbf{K}} \end{bmatrix}^{\mathrm{c}} + \begin{bmatrix} \overline{\mathbf{K}} \end{bmatrix}^{\mathrm{p}}, \{ \overline{\mathbf{R}} \}_{\mathrm{m}} = \{ \overline{\mathbf{P}}' \}_{\mathrm{m}}, \{ \overline{\mathbf{U}} \}_{\mathrm{m}} = \{ \overline{\mathbf{q}} \}.$$
(2.117)

• Tấm có vết nứt chịu hệ dao động di động:

$$\left[\bar{\mathbf{M}}\right]_{\rm os} \left\{ \ddot{\overline{\mathbf{U}}} \right\}_{\rm os} + \left[\bar{\mathbf{C}}_{\rm p}\right]_{\rm os} \left\{ \dot{\overline{\mathbf{U}}} \right\}_{\rm os} + \left[\bar{\mathbf{K}}\right]_{\rm os} \left\{ \overline{\mathbf{U}} \right\}_{\rm os} = \left\{ \bar{\mathbf{R}} \right\}_{\rm os}, \qquad (2.118)$$

trong đó:

$$\begin{bmatrix} \overline{\mathbf{M}} \end{bmatrix}_{\text{os}} = \begin{bmatrix} \begin{bmatrix} \overline{\mathbf{M}'} \end{bmatrix} + \begin{bmatrix} \overline{\mathbf{M}'} \end{bmatrix}^{\text{pm}_{1}} \begin{bmatrix} \overline{\mathbf{M}'} \end{bmatrix}^{\text{pm}_{2}} \\ \begin{bmatrix} \mathbf{0} \end{bmatrix} & \mathbf{m}_{2} \end{bmatrix}, \begin{bmatrix} \overline{\mathbf{C}} \end{bmatrix}_{\text{os}} = \begin{bmatrix} \begin{bmatrix} \overline{\mathbf{C}'} \end{bmatrix}^{\text{p}} \begin{bmatrix} \mathbf{0} \end{bmatrix} \\ -\mathbf{c} \begin{bmatrix} \mathbf{N} \end{bmatrix} \mathbf{c} \end{bmatrix}, \\ \begin{bmatrix} \overline{\mathbf{K}} \end{bmatrix}_{\text{os}} = \begin{bmatrix} \begin{bmatrix} \overline{\mathbf{K}'} \end{bmatrix} + \begin{bmatrix} \overline{\mathbf{K}'} \end{bmatrix}^{\text{c}} + \begin{bmatrix} \overline{\mathbf{K}'} \end{bmatrix}^{\text{p}} \begin{bmatrix} \mathbf{0} \end{bmatrix} \\ -\mathbf{k} \begin{bmatrix} \mathbf{N} \end{bmatrix} \mathbf{k} \end{bmatrix}, \{ \overline{\mathbf{R}} \}_{\text{os}} = \begin{cases} \{ \overline{\mathbf{P}'} \} \\ \mathbf{Q}(\mathbf{t}) \end{cases}, \{ \overline{\mathbf{U}} \}_{\text{os}} = \begin{cases} \{ \overline{\mathbf{q}'} \} \\ \mathbf{u} \end{cases}. \end{cases}$$
(2.119)

Các ma trận có chỉ số "p" trong các phương trình (2.116) và (2.118) là các ma trận sinh ra do khối lượng di động hoặc hệ dao động di động hay còn gọi là các ma trận bổ sung do tải trọng di động gây nên. Mặt khác, do phụ thuộc vào vị trí của khối lượng hay hệ dao động tác dụng lên tấm, nên

chúng phụ thuộc vào thời gian t. Vì vậy, cả 2 phương trình (2.116) và (2.118) ở trên đều là các phương trình mô tả dao động dạng vi phân cấp 2 tuyến tính có hệ số phụ thuộc vào thời gian. Chúng sẽ được giải bằng phương pháp tích phân trực tiếp của Newmark. Để thuận tiện trong việc trình bày thuật toán giải các phương trình trên, tác giả viết gọn (2.116) và (2.118) dưới dạng sau:

$$\left[\bar{\mathbf{M}}\right]\left\{\bar{\mathbf{U}}\right\} + \left[\bar{\mathbf{C}}_{p}\right]\left\{\bar{\mathbf{U}}\right\} + \left[\bar{\mathbf{K}}\right]\left\{\bar{\mathbf{U}}\right\} = \left\{\bar{\mathbf{R}}\right\},\tag{2.120}$$

trong đó:

 $\begin{bmatrix} \overline{M} \end{bmatrix} = \begin{bmatrix} \overline{M} \end{bmatrix}_m, \begin{bmatrix} \overline{C}_p \end{bmatrix} = \begin{bmatrix} \overline{C} \end{bmatrix}_m, \begin{bmatrix} \overline{K} \end{bmatrix} = \begin{bmatrix} \overline{K} \end{bmatrix}_m, \{ \overline{R} \} = \{ \overline{R} \}_m, \{ \overline{U} \} = \{ \overline{U} \}_m \text{dối}$ với tấm chịu khối lượng di động;

$$\begin{bmatrix} \overline{\mathbf{M}} \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{M}} \end{bmatrix}_{\text{os}}, \begin{bmatrix} \overline{\mathbf{C}} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{C}} \end{bmatrix}_{\text{os}}, \begin{bmatrix} \overline{\mathbf{K}} \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{K}} \end{bmatrix}_{\text{os}}, \{ \overline{\mathbf{R}} \} = \{ \overline{\mathbf{R}} \}_{\text{os}}, \{ \overline{\mathbf{U}} \} = \{ \overline{\mathbf{U}} \}_{\text{os}} \text{d}\hat{\mathbf{o}} \text{i}$$

với tấm chịu hệ dao động di động.

Trường hợp xét đến cản của kết cấu tấm, với giả thiết lực cản tỷ lệ thuận với véc tơ vận tốc dịch chuyển $\left(\left\{f\right\}_{d} = -\left[\overline{C}_{R}\right]\left\{\dot{\overline{U}}\right\}\right)$, thay vào phương trình (2.120) ta có phương trình mô tả dao động có cản của hệ:

$$\left[\bar{\mathbf{M}}\right]\left\{\bar{\mathbf{U}}\right\} + \left(\left[\bar{\mathbf{C}}_{\mathbf{R}}\right] + \left[\bar{\mathbf{C}}_{\mathbf{p}}\right]\right)\left\{\bar{\mathbf{U}}\right\} + \left[\bar{\mathbf{K}}\right]\left\{\bar{\mathbf{U}}\right\} = \left\{\bar{\mathbf{R}}\right\},\tag{2.121}$$

với $\left[\overline{C}_{R}\right]$ - ma trận cản của tấm.

Thông thường, đối với hệ nhiều bậc tự do, việc xác định ma trận cản tổng thể của kết cấu dưới dạng tổ hợp của các ma trận cản phần tử là không thể vì rất khó xác định được tỉ số cản phần tử, lúc này phương pháp cản Rayleigh thường được sử dụng. Theo đó, ma trận cản tổng thể của kết cấu là tổ hợp tuyến tính của ma trận khối lượng $\left[\overline{M}\right]$ và ma trận độ cứng $\left[\overline{K}\right]$ thông qua hệ số cản Rayleigh α_R , β_R [30]:

$$\left[\bar{C}_{R}\right] = \alpha_{R}\left[\bar{M}\right] + \beta_{R}\left[\bar{K}\right], \qquad (2.122)$$

trong đó các hằng số cản Rayleigh α_R , β_R thông thường được xác định thông qua tỷ số cản ξ_R và hai tần số dao động riêng đầu tiên ω_1, ω_2 của hệ:

$$\beta_{\rm R} = \frac{2\xi_{\rm R}}{\omega_1 + \omega_2}; \alpha_{\rm R} = \frac{2\xi_{\rm R}}{\omega_1 + \omega_2} \omega_1 \omega_2 = \beta_{\rm R} \omega_1 \omega_2.$$
(2.123)

Phương trình (2.121) được viết gọn dưới dạng:

$$\left[\bar{\mathbf{M}}\right]\left\{\bar{\mathbf{U}}\right\} + \left[\bar{\mathbf{C}}\right]\left\{\bar{\mathbf{U}}\right\} + \left[\bar{\mathbf{K}}\right]\left\{\bar{\mathbf{U}}\right\} = \left\{\bar{\mathbf{R}}\right\},\tag{2.124}$$

với: $\left[\overline{\mathbf{C}}\right] = \left(\left[\overline{\mathbf{C}}_{\mathbf{R}}\right] + \left[\overline{\mathbf{C}}_{\mathbf{p}}\right]\right).$

Đây là hệ phương trình tuyến tính có hệ số phụ thuộc thời gian. Theo phương pháp tích phân trực tiếp Newmark, các bước tích phân được thực hiện trên khoảng thời gian Δt , với nội dung cụ thể như sau [21], [30], [38]:

Gán điều kiện đầu:

$$\left\{\overline{\mathbf{U}}\right\}_{0} = 0; \left\{\dot{\overline{\mathbf{U}}}\right\}_{0} = 0 \tag{2.125}$$

$$[\mathbf{A}] = [\overline{\mathbf{M}}] + \gamma \Delta t + \beta (\Delta t)^{2} [\overline{\mathbf{K}}], \qquad (2.126)$$

với Δt là bước thời gian, còn các hằng số sai phân chọn: $\beta = \frac{1}{4}; \gamma = \frac{1}{2}$.

Gia tốc tại bước (n+1):

$$\left\{ \ddot{\overline{U}} \right\}_{n+1} = \left[A \right]^{-1} \begin{pmatrix} \{R\} - \left[\overline{C}\right] \left(\left\{ \dot{\overline{U}} \right\}_{n} + (1 - \gamma) \Delta t \left\{ \ddot{\overline{U}} \right\}_{n} \right) - \left[\overline{K}\right] \left(\left\{ \overline{U} \right\}_{n} + \Delta t \left\{ \dot{\overline{U}} \right\}_{n} + \left(\frac{1}{2} - \beta \right) (\Delta t)^{2} \left\{ \ddot{\overline{U}} \right\}_{n} \end{pmatrix} \right)$$
(2.127)

Vận tốc tại bước (n+1):

$$\left\{ \dot{\overline{U}} \right\}_{n+1} = \left\{ \dot{\overline{U}} \right\}_{n} + (1 - \gamma) \Delta t \left\{ \ddot{\overline{U}} \right\}_{n} + \gamma \Delta t \left\{ \ddot{\overline{U}} \right\}_{n+1}$$
(2.128)

Chuyển vị tại bước (n+1):

$$\left\{\overline{\mathbf{U}}\right\}_{n+1} = \left\{\overline{\mathbf{U}}\right\}_{n} + \Delta t \left\{\dot{\overline{\mathbf{U}}}\right\}_{n} + \left(\Delta t\right)^{2} \left(\frac{1}{2} - \beta\right) \left\{\ddot{\overline{\mathbf{U}}}\right\}_{n} + \left(\Delta t\right)^{2} \beta \left\{\ddot{\overline{\mathbf{U}}}\right\}_{n+1} \quad (2.129)$$

Tóm tắt thuật toán gồm các bước chính sau:

1. Lập các ma trận $[M_0]$, $[C_0]$, $[K_0]$, $[K_c]$ của bản thân kết cấu.

2. Gán điều kiện đầu theo (2.125).

3. Thực hiện chu trình theo bước tích phân, tại mỗi thời điểm:

3.1. Xác định số hiệu phần tử e và toạ độ tự nhiên ξ , η mà tại đó đặt tải trọng di động.

3.2. Tính các ma trận $[M]_{e}^{p}$, $[K]_{e}^{p}$, $[C]_{e}^{p}$ cho phần tử e.

- 3.3. Tính vécto tải trọng nút cho phần tử e.
- 3.4. Bổ sung các ma trận phần tử e vào các ma trận toàn hệ:
- 3.5. Tính ma trận [A] theo (2.126)
- 3.6. Tính vécto gia tốc theo (2.127)
- 3.7. Tính vécto vận tốc theo (2.128)
- 3.8. Tính vécto chuyển vị theo (2.129).

Sơ đồ khối của thuật toán trên được thể hiện như trên hình 2.8.

Hình 2.8. Sơ đồ thuật toán giải bài toán tấm có vết nứt chịu tải trọng di động

2.6. Chương trình tính và kiểm tra độ tin cậy của chương trình tính 2.6.1. *Giới thiệu chương trình tính*

Trên cơ sở thuật toán đã trình bày, tác giả lập trình tính trong môi trường Matlab. Chương trình do tác giả xây dựng trên cơ sở phương pháp PTHH, có tên CRACKED_PLATE_MOVING_2019 (CPM_2019) có khả năng phân tích động đối với tấm chịu tác dụng của tải trọng di động theo hai mô hình tải trọng đã trình bày. Chương trình CPM_2019 chạy trên máy tính với hệ điều hành Window xp. Cấu trúc của chương trình gồm 4 mô đun chính như sau:

- Mô đun nhập số liệu (*Nhap_so_lieu.m*)

- Mô đun phân tích dao động riêng (*Free_Vibration_analysis.m*)

- Mô đun phân tích động (Dynamic_analysis.m)

- Mô đun xuất và in kết quả (*Results_print.m*)

Việc chia lưới phần tử hữu hạn được thực hiện trực tiếp nhờ phần mềm ANSYS 13.5.

Chương trình CPM_2019 phù hợp với việc phân tích động lực học của tấm có hoặc không có vết nứt chịu tải trọng di động với cả hai mô hình: khối lượng di động và hệ dao động di động.

2.6.2. Kiểm tra độ tin cậy của chương trình tính

Để kiểm tra mức độ tin cậy của chương trình CPM_2019 đã lập, tác giả tính toán, so sánh với kết quả trong 2 công trình công bố với trường hợp: Tấm có vết nứt chịu tải trọng tĩnh phân bố đều và tấm không có vết nứt chịu tác dụng của hệ dao động 1 bậc tự do di động.

2.6.2.1. Tấm với vết nứt chính giữa chịu lực phân bố đều: Sử dụng chương trình tính CPM_2019 đã lập, tính toán bài toán như trong công trình công bố của Amraei A., Fallah N. [15(2017)], trong đó tấm hình vuông cạnh $L_p =$

 $W_p = 20$ cm, chiều dày h = 1cm có vết nứt dài $2a_c = 8$ cm ở chính giữa và song song với cạnh của tấm. Vật liệu tấm với Mô đun đàn hồi E = $1x10^5$ N/cm², hệ số Poisson v = 0,3. Tấm được liên kết tựa khớp theo chu vi và chịu tác dụng của lực phân bố đều với cường độ q = $1x10^2$ N/cm² (Hình 2.9).

Hình 2.9. Mô hình của bài toán [15]

Sử dụng lưới chia: Tổng số 15 phần tử, trong đó 10 phần tử kích thước 5cmx4cm bố trí thành hai dãy song song ox, đối xứng về hai phía của vết nứt, 5 phần tử kích thước 10cmx4cm ở chính giữa tấm. Kết quả so sánh chuyển vị tại điểm chính giữa tấm thể hiện như trong bảng 2.1.

Bảng 2.1. Kết quả so sánh chuyển vị tại điểm giữa tấm

Đại lượng	Phương pháp		Sai
	Amraei A., Fallah N. [15]	СРМ_2019	sô (%)
w _{max} [mm]	0,01182	0,01194	1,02

2.6.2.2. Tấm chịu tác dụng của hệ dao động di động: Tính toán với mô hình bài toán và các thông số như trong công trình của Asghari M. và các cộng sự [17(2009)], trong đó các tác giả sử dụng phương pháp bán giải tích. Mô hình bài toán như hình 2.10, tấm hình chữ nhật có chiều dài a =
60m, chiều rộng b = 30m, chiều dày h = 15.10⁻²m, độ cứng chống uốn của tấm $D = \frac{Eh^3}{12(1-v^2)} = 7,1.10^9 \text{ Nm}, \text{ vật liệu có khối lượng riêng } \rho =$

7750kg/m³. Tấm liên kết bản lề 4 cạnh, chịu tác dụng của hệ dao dộng di động, gồm: lò xo có độ cứng kéo, nén k = 10⁹N/m mang khối lượng m = 10⁵kg, chuyển động theo đường thẳng y = c = b/2 = 15m, với vận tốc không đổi v = 20m/s. Điều kiện đầu của bài toán: $z(0) = \frac{mg}{k}$, $\dot{w}(x,y,0) = \frac{\partial w}{dt} = -0$. Đây là công trình được các tác giả nghiên cứu bằng

 $\dot{w}(x,y,0) = \frac{\partial w}{\partial t}\Big|_{t=0} = 0.$ Đây là công trình được các tác giả nghiên cứu bằng

phương pháp giải tích.

Dao động di động

a, Mô hình không gian tổng quát b, Mô hình phẳng Hình 2.10. Mô hình của bài toán [17]

Giải bài toán bằng bộ chương trình đã lập, kết quả so sánh về chuyển vị lớn nhất w_{max} [mm] của điểm giữa tấm, cụ thể như bảng 2.2.

Dai	Phương pháp					
Đại lượng	Asghari M., Ghahremani A.R., Ghafoori E. [17]	СРМ_2019	Sai so (%)			
W _{max}	17,68	18,12	1,86			

Bảng 2.2. Kết quả so sánh kiểm tra độ tin cậy chương trình tính (*Trường hợp tải trọng di động là hệ dao động di động đơn giản*)

Nhận xét: Với hai bài toán kiểm chứng đã thực hiện ở trên cho thấy sai số về chuyển vị lớn nhất cả hai trường hợp đều nhỏ hơn 1,9%, điều này có thể nhận định chương trình tính CPM_2019 do tác giả lập có cơ sở để tin cậy.

2.7. Kết luận chương 2

Kết quả chính trong chương này:

- Úng dụng biểu thức tổng quát xác định ma trận độ cứng phần tử tấm có vết nứt, đã xác định được ma trận biểu thị độ mềm bổ sung của phần tử tấm do vết nứt gây nên trên cơ sở thực hiện thành công các phép tính xác định các phần tử của ma trận này. Chính vì điều này, đã xác định được ma trận độ cứng của phần tử tấm có vết nứt làm cơ sở thiết lập phương trình dao động của phần tử và của tấm có vết nứt chịu tải trọng di động.

- Trên cơ sở phân tích, xây dựng các ma trận phần tử của tấm có và không có vết nứt, đặc biệt là phần tử tấm có vết nứt và các thành phần bổ sung vào ma trận khối lượng, ma trận cản, ma trận độ cứng của phần tử do tải trọng di động gây nên, đã thiết lập phương trình vi phân dao động của phần tử tấm có vết nứt chịu tác dụng của tải trọng di động là khối lượng di động hoặc hệ dao động 1 bậc tự do di động, trong đó vận tốc tải trọng thay đổi, quỹ đạo di chuyển của tải trọng là bất kỳ. Từ đó, đã thiết lập được phương trình mô tả dao động của tấm có vết nứt chịu tác dụng của 2 mô hình tải trọng di động nêu trên.

- Xây dựng thuật toán PTHH và chương trình tính CPM_2019 trong môi trường Matlab phân tích động lực học của tấm có vết nứt chịu tác dụng của tải trọng di động với hai mô hình tải trọng: khối lượng di động và hệ dao động di động. Chương trình tính CPM_2019 đã được kiểm chứng cho thấy có cơ sở tin cậy.

CHƯỜNG 3 ẢNH HƯỞNG CỦA MỘT SỐ YẾU TỐ ĐẾN ĐÁP ỨNG ĐỘNG LỰC HỌC CỦA TẤM CÓ VẾT NỨT CHỊU TÁC DỤNG CỦA TẢI TRỌNG DI ĐỘNG

3.1. Đặt vấn đề

Trong chương 2 đã xây dựng được thuật toán và chương trình tính cho bài toán tấm có và không có vết nứt chịu tải trọng di động (khối lượng di động hoặc hệ dao động di động). Trong chương này, để khẳng định sự linh hoạt, khả năng của chương trình tính và cho thấy bức tranh rõ nét về sự làm việc, ứng xử cơ học của kết cấu tấm có vết nứt chịu tác dụng của tải trọng di động, đưa ra các khuyến cáo kỹ thuật nhằm nâng cao hiệu quả sử dụng, khai thác các loại kết cấu dạng này, tác giả tính toán số với các thông số của bài toán thay đổi, trong đó tập trung xem xét ảnh hưởng của các yếu tố phổ biến: tải trọng, vết nứt, kích thước hình học, vật liệu, điều kiện liên kết đến đáp ứng động lực học của tấm dưới tác dụng của khối lượng di động và hệ dao động di động đến đáp ứng động lực học của tấm. Kết quả tính toán kèm theo các khuyến cáo kỹ thuật có thể là tham khảo cho tính toán, thiết kế, gia cường các kết cấu tấm chịu tải trọng di động.

3.2. Tấm có vết nứt chịu tác dụng của khối lượng di động

3.2.1. Bài toán xuất phát

Thông số kết cấu: Tấm chữ nhật, vật liệu thép, chiều dài $L_p = 3m$, chiều rộng $W_p = 2,0m$, chiều dày h = 0,025m, một (01) vết nứt giữa tấm với chiều dài $2a_c = 0,3m$ có phương song song với cạnh ngắn của tấm. Tấm có các đặc trưng vật liệu: Mô đun đàn hồi $E = 2,1.10^{11}$ N/m², hệ số Poisson v = 0,28, khối lượng riêng $\rho = 7800$ kg/m³.

Thông số tải trọng: Một khối lượng m = 5.10^2 kg chuyển động trên tấm theo quỹ đạo đường thẳng y = W_p/2, với vận tốc v = 10m/s (Hình 3.1).

Hình 3.1. Mô hình bài toán

Điều kiện biên: Tấm liên kết gối tựa dọc 2 cạnh ngắn, 2 cạnh dài tự do.

Điều kiện đầu của bài toán: $\{\overline{U}\}_0 = 0$; $\{\overline{\dot{U}}\}_0 = 0$, v(0) = v = 10m/s.

Tấm được rời rạc hoá bởi 75 phần tử, tương ứng với 96 nút và 2 nút mô tả vết nứt, mô hình PTHH của bài toán thể hiện như trên hình 3.2.

Hình 3.2. Mô hình PTHH của bài toán

Sử dụng chương trình CRACKED_PLATE_MOVING_2019 đã lập ở chương 2, tính toán dao động riêng và dao động cưỡng bức của bài toán với bước tích phân $\Delta t = 0,005$ s, thời gian tính t_{cal} = 0,3s (bằng thời gian từ lúc khối lượng vừa vào tấm đến khi khối lượng vừa ra khỏi tấm).

Bài toán dao động riêng: Giải bài toán dao động riêng, tác giả nhận được các tần số riêng và dạng dao động riêng, trong đó bốn (04) tần số riêng đầu tiên [Hz]: $f_1 = 6,6367$; $f_2 = 15,1910$; $f_3 = 26,8678$; $f_4 = 38,6807$, tương ứng với bốn dạng dao động riêng như hình 3.3.

a, Dạng dao động riêng thứ nhất ($f_1 = 6,6367Hz$)

b, Dạng dao động riêng thứ hai ($f_2 = 15, 1910Hz$)

c, Dạng dao động riêng thứ ba ($f_3 = 26,8678Hz$)

d, *Dang dao dong riêng thứ tư* ($f_4 = 38,6807$ Hz) **Hình 3.3.** Bốn dạng dao động riêng đầu tiên của hệ

Bài toán dao động cưỡng bức: Giải bài toán cho 2 trường hợp tấm không có vết nứt và tấm có vết nứt với các thông số như đã nêu ở trên. Điểm xuất kết quả là điểm giữa tấm (Điểm A) và điểm đầu vết nứt (Điểm B) - Hình 3.1. Kết quả đáp ứng độ võng, gia tốc theo phương đứng và ứng suất σ_y (tại A), σ_x (tại B) tại các điểm tính thể hiện như trên hình 3.4, 3.5, 3.6.

Hình 3.4. Đáp ứng chuyển vị W tại điểm A theo thời gian

Hình 3.5. Đáp ứng gia tốc W tại điểm A theo thời gian

Hình 3.6. Đáp ứng ứng suất σ_y tại điểm A và σ_x tại B theo thời gian Bảng 3.1 là tóm tắt các giá trị lớn nhất về chuyển vị, gia tốc và ứng suất tại các điểm tính thuộc tấm.

	Giá trị					
Trường hợp	W _A ^{max} [cm]	$\ddot{W}_{A}^{max} [m/s^2]$	$\sigma_{intA}^{max}[N/m^2]$	$\sigma_{intB}^{max}[N/m^2]$		
Có vết nứt	0,837	15,293	4,237×10 ⁷	12,240×10 ⁷		
Không có vết nứt	0,764	3,726	3,939×10 ⁷	2,599×10 ⁷		
Chênh lệch	Tăng 9,6%	Tăng 4,1 lần	Tăng 7,0%	Tăng 4,7 lần		

Bảng 3.1. Chuyển vị, gia tốc và ứng suất lớn nhất của các điểm tính

Nhận xét: Ứng suất tại đầu vết nứt là lớn, có ứng xử cơ học khác biệt giữa tấm có vết nứt và không có vết nứt, trong đó sự thay đổi đột biến của ứng suất đầu vết nứt là vấn đề cần thiết phải quan tâm (tăng 4,7 lần so với không có vết nứt). Đối với độ võng, có sự sai khác tương đối lớn giữa tấm có vết nứt và không có vết nứt (9,6%), do đó các phần tiếp theo của chương này tác giả tập trung xem xét hai yếu tố trên là chủ yếu.

3.2.2. Ảnh hưởng của một số yếu tố đến sự làm việc của hệ

3.2.2.1. Ảnh hưởng của chiều dài vết nứt:

Giải bài toán với chiều dài $2a_c$ của vết nứt thay đổi từ 0,0m đến 0,4m. Kết quả sự phụ thuộc các giá trị lớn nhất về chuyển vị, vận tốc, gia tốc và ứng suất tại điểm tính thuộc tấm theo chiều dài vết nứt thể hiện như trong bảng 3.2 và đồ thị các hình 3.7, 3.8 và 3.9.

Bảng 3.2. Sự phụ thuộc các đại lượng lớn nhất của chuyển vị, gia tốc và ứng suất theo chiều dài vết nứt

	······································							
2a _c [m]	0,0	0,1	0,2	0,3	0,4			
W _{max} [cm]	0,764	0,772	0,785	0,8370	0,951			
$\ddot{W}_{_{max}}[m/s^2]$	3,726	5,214	8,807	15,292	23,912			
$\sigma^{\rm A}_{\rm max}$.10 ⁷ [N/m ²]	3,939	4,012	4,106	4,237	6,562			
$\sigma^{\rm B}_{\rm max}.10^7[N/m^2]$	2,599	3,821	7,218	12,240	18,428			

Hình 3.7. Quan hệ W_{max} tại điểm A và chiều dài 2a_c của vết nứt

Hình 3.8. Quan hệ \ddot{W}_{max} tại điểm A và chiều dài $2a_c$ của vết nứt

Hình 3.9. Quan hệ σ_y^{max} , σ_x^{max} tương ứng tại A, B và chiều dài $2a_c$ của vết nứt

Nhận xét: Chiều dài của vết nứt (2a_c) ảnh hưởng khá lớn đến đáp ứng chuyển vị, gia tốc và ứng suất của điểm giữa tấm và điểm đầu vết nứt (các điểm tính). Cụ thể, khi 2a_c tăng thì tất cả các đại lượng ở trên đều tăng, nhưng với mức độ tăng là khác nhau tùy theo từng đại lượng, trong đó thay đổi nhiều nhất phải kể đến ứng suất pháp tuyến theo phương trục x tại điểm B: tăng 7 lần khi 2a_c tăng từ 0 đến 0,4m, với kích thước vết nứt nhỏ thì sự thay đổi này là bé (47% khi 2a_c tăng từ 0 đến 0,4m. Điều này cho thấy ứng suất pháp tại đầu vết nứt đặc biệt nhạy cảm với chiều dài của vết nứt, tốc độ tăng của nó càng lớn khi chiều dài vết nứt càng lớn. Bên cạnh đó, ứng suất tại điểm giữa cạnh vết nứt có tăng khi chiều dài vết nứt tăng, nhưng tốc độ tăng không lớn: tăng 7,6% khi 2a_c tăng từ 0 đến 0,3m và 54,9% chỉ khi kích thước này tăng từ 0,3m đến 0,4m.

3.2.2.2. Ånh hưởng của số lượng vết nứt:

Giải bài toán cho ba trường hợp tương ứng với số lượng vết nứt khác nhau:

- Trường hợp 1 (TH 1): Tấm có 01 vết nứt ở chính giữa (x = Lp/2 - bài toán xuất phát);

- Trường hợp 2 (TH 2): Tấm có 02 vết nứt kích thước giống nhau, song song với nhau và song song với cạnh ngắn của tấm, trong đó 01 vết nứt chính giữa, 01 vết nứt tại x = Lp/4;

- Trường hợp 3 (TH 3): Tấm có 03 vết nứt kích thước giống nhau, song song với nhau và song song với cạnh ngắn của tấm, trong đó 01 vết nứt chính giữa, 02 vết nứt đối xứng với vết nứt chính giữa về 2 phía tại x = Lp/4 và x = 3Lp/4.

Kết quả đáp ứng độ võng, gia tốc và ứng suất tại các điểm tính thể hiện như trên các hình 3.10, 3.11 và 3.12.

Hình 3.10. Đáp ứng độ võng W tại điểm A theo thời gian

Hình 3.11. Đáp ứng gia tốc ẅ tại điểm A theo thời gian

Hình 3.12. Đáp ứng ứng suất σ_x tại điểm B theo thời gian

Bảng 3.3 là tóm tắt các giá trị lớn nhất về độ võng, gia tốc và ứng suất tại các điểm tính thuộc tấm.

Trường hợp		Giá trị				
		W _A ^{max} [cm]	\ddot{W}_{A}^{max} [m/s ²]	$\sigma_{intA}^{max}[N\!/\!m^2]$	$\sigma_{intB}^{max}[N/m^2]$	
	TH 1	0,837	15,293	4,237×10 ⁷	12,240×10 ⁷	
TH 2		0,873	51,822	5,875×10 ⁷	12,649×10 ⁷	
	TH 3	0,889	51,444	5,878×10 ⁷	$12,752 \times 10^{7}$	
Chênh	TH 1-TH 2	4,3%	3,39 lần	38,7%	3,3%	
lệch	TH 1- TH 3	6,2%	3,36 lần	38,7%	4,2%	

Bảng 3.3. Độ võng, gia tốc và ứng suất lớn nhất của các điểm tính

Nhận xét: Số lượng vết nứt có ảnh hưởng đáng kể tới độ võng, gia tốc và ứng suất của tấm, nhìn chung theo xu hướng tăng, trong đó gia tốc và ứng suất tại điểm A (điểm giữa vết nứt) tăng mạnh khi số lượng vết nứt tăng (gần 3,4 lần đối với gia tốc và 38,7% đối với ứng suất khi số lượng vết nứt tăng

từ 1 đến 3). Với kết quả trên cho thấy tấm sẽ giảm yếu nhanh khi số lượng vết nứt tăng và bố trí đối xứng.

3.2.2.3. Ảnh hưởng của vận tốc tải trọng:

Tính toán với vận tốc của khối lượng di động trên tấm biến thiên từ 6,0m/s (21,6km/h) đến 14,0m/s (50,4km/h), kết quả biến thiên các giá trị lớn nhất về độ võng W_{max} , gia tốc \ddot{W}_{max} và ứng suất σ_{max} tại các điểm khảo sát của tấm thể hiện như trong bảng 3.4 và các đồ thị hình 3.13, 3.14, 3.15 và 3.16.

Bảng 3.4. Biến thiên các đại lượng lớn nhất về chuyển vị, gia tốc và ứng suất theo vận tốc v của khối lượng

	U			6
v [m/s]	$W_{max}^{A}[cm]$	\ddot{W}^{A}_{max} [m/s ²]	σ^{max}_{A} [N/m ²]	$\sigma_{\rm B}^{\rm max}$ [N/m ²]
6	0,548	4,308	3,916×10 ⁷	8,366×10 ⁷
8	0,708	8,621	4,084×10 ⁷	10,394×10 ⁷
10	0,837	15,293	4,237×10 ⁷	12,240×10 ⁷
12	0,947	23,906	4,348×10 ⁷	13,941×10 ⁷
14	1,013	33,094	4,398×10 ⁷	15,253×10 ⁷

Hình 3.13. Quan hệ W_{max}^{A} tại điểm A và vận tốc v của khối lượng

Hình 3.14. Quan hệ \ddot{W}^{A}_{max} tại điểm A và vận tốc v của khối lượng

Hình 3.15. Quan hệ $\sigma^{\rm A}_{\rm max}$, $\sigma^{\rm B}_{\rm max}$ tại A và B và vận tốc v của khối lượng

Hình 3.16. Biến thiên độ võng W tại điểm A theo thời gian (v = 6m/s, 8m/s, 10m/s, 12m/s, 14m/s)

Nhận xét: Tốc độ của khối lượng di động có ảnh hưởng đáng kể đến đáp ứng động lực học của tấm có vết nứt. Cụ thể với bài toán đã xét, khi tốc độ khối lượng tăng từ 6m/s đến 14m/s thì: chuyển vị, vận tốc, gia tốc và ứng suất lớn nhất tại các điểm tính đều tăng theo xu hướng phi tuyến (84,9% - chuyển vị, 12,31% - ứng suất tại điểm giữa tấm và 82,32% - ứng suất tại đầu vết nứt). Qua đó cho thấy ứng suất tại đầu vết nứt rất nhạy cảm với vận tốc di chuyển của tải trọng. Ngoài ra, từ đồ thị đáp ứng độ võng tại điểm giữa của tấm cho ta thấy độ võng tấm tăng đến một điều kiện nào đó của vận tốc khối lượng sẽ có xu hướng gây mất ổn định đối với tấm do chuyển vị tăng đột biến hoặc tấm bị phá huỷ do ứng suất vượt quá ứng suất cho phép của vật liệu.

3.2.2.4. Ånh hưởng của gia tốc khối lượng di chuyển:

Khảo sát bài toán với quỹ đạo khối lượng di chuyển như đã nêu ở trên, với vận tốc của khối lượng biến thiên theo quy luật bậc nhất: $v = v_0 + at$,

trong đó $v_0 = 10$ m/s và gia tốc a = - [0,0; 2,5; 5,0; 7,5; 10,0]m/s². Kết quả đáp ứng độ võng giữa tấm theo thời gian thể hiện như trên đồ thị hình 3.17.

a [m/s ²]	0	-2,5	-5,0	-7,5	-10,0
W _{max} [cm]	0,837	1,740	3,031	4,391	6,076

Bảng 3.5. Giá trị lớn nhất của độ võng tấm ứng với các giá trị gia tốc khác nhau

Nhận xét: Ảnh hưởng của gia tốc khối lượng chuyển động đến đáp ứng động lực học của tấm có vết nứt là đáng kể. Với trường hợp cụ thể đã xét (tương ứng chuyển động chậm dần đều): Giá trị gia tốc càng lớn, đường đáp ứng độ võng - thời gian của tấm càng "gồ ghề", phức tạp và độ "giật" của đường cong càng nhiều. Điều này cho thấy sự nguy hiểm đối với tấm khi thay đổi vận tốc di chuyển của khối lượng trên nó vì mất ổn định hoặc phá hủy bền đối với tấm có thể xảy ra. Đồng thời hiện tượng trên cho phép cảnh báo đối với kết cấu dạng tấm chịu tải trọng di động là cần hạn chế thấp nhất việc tăng, giảm đột ngột vận tốc của phương tiện khi di chuyển trên kết cấu.

3.2.2.5. Ånh hưởng của liên kết:

Xét bài toán như đã nêu ở trên, tương ứng với 3 trường hợp liên kết của tấm:

Trường hợp 1: Tấm liên kết gối tựa dọc 2 cạnh ngắn, 2 cạnh dài tự do (SSFF);

Trường hợp 2: Tấm liên kết gối tựa đơn 4 cạnh (SSSS).

Trường hợp 3: Tấm liên kết ngàm 2 cạnh ngắn, gối tựa đơn 2 cạnh dài (CCSS).

Kết quả đáp ứng độ võng, gia tốc và ứng suất tại các điểm tính cho 3 trường hợp trên thể hiện như trong các đồ thị hình 3.18, 3.19, 3.20 và 3.21.

(Với các trường hợp liên kết khác nhau)

Hình 3.19. Đáp ứng gia tốc Ӝ tại điểm A theo thời gian (Với các trường hợp liên kết khác nhau)

(Với các trường hợp liên kết khác nhau)

Hình 3.21. Đáp ứng ứng suất σ_x tại điểm B theo thời gian (Với các trường hợp liên kết khác nhau)
Bảng 3.6. Các giá trị lớn nhất của độ võng, gia tốc và ứng suất

Liên kết	Đại lượng	W _{max} [cm]	₩ _{max} [m/s²]	σ^{A}_{max} [N/m ²]	σ_{\max}^{B} [N/m ²]
SSF	F (1)	0,8370	15,2923	4,237×10 ⁷	12,240×10 ⁷
SSS	S (2)	0,7420	17,7385	4,921×10 ⁷	14,666×10 ⁷
CCS	S (3)	0,5620	21,1032	5,769×10 ⁷	17,046×10 ⁷
Chênh	(1) - (2)	11,35	15,89	16,14	19,82
lệch [%]	(1) - (3)	32,86	37,88	36,16	39,27

Nhận xét: Với 3 trường hợp liên kết đã xét, ta thấy sự thay đổi về chuyển vị, vận tốc, gia tốc và ứng suất tại các điểm tính của tấm phù hợp quy luật cơ học cho mỗi trường hợp cả về mặt định tính và định lượng, điều này một lần nữa cho thấy chương trình tính do tác giả lập trong chương 2 sử dụng để tính toán là có cơ sở tin cậy.

3.2.2.6. Ảnh hưởng của chiều dày tấm:

Khảo sát bài toán với chiều dày h của tấm biến thiên từ 0,005m đến 0,03m. Kết quả biến thiên các giá trị lớn nhất về chuyển vị, vận tốc, gia tốc và ứng suất tại điểm tính thuộc tấm thể hiện như trong bảng 3.7 và đồ thị các hình 3.22, 3.23, 3.24 và 3.25

Bảng 3.7. Biến thiên các đại lượng lớn nhất của chuyển vị, gia tốc và ứng suất theo chiều dày tấm

h[m]	0,005	0,010	0,015	0,020	0,025	0,03
W _{max} [cm]	4,751	2,674	1,579	1,072	0,8370	0,758
$\ddot{W}_{_{max}}[m/s^2]$	3,861	8,413	11,509	13,895	15,292	16,272
$\sigma^{\rm A}_{\rm max}.10^7\\[{\rm N/m^2}]$	9,508	6,893	5,406	4,664	4,237	4,116
$\frac{\sigma^{\rm B}_{\rm max}.10^7}{[{\rm N/m^2}]}$	28,31	21,16	16,83	13,87	12,240	11,42

Hình 3.22. Quan hệ W_{max} tại điểm A và chiều dày của tấm

Hình 3.24. Quan hệ σ_y^{max} , σ_x^{max} tại điểm A, B và chiều dày của tấm

Hình 3.25. Đáp ứng độ võng tại điểm A theo thời gian với các chiều dày khác nhau (h = [0,005; 0,010; 0,015; 0,020; 0,025; 0,030]m)

Nhận xét: Trường hợp tấm có vết nứt chịu khối lượng di động, các đại lượng lớn nhất, như: độ võng, vận tốc, gia tốc và ứng suất tại các điểm tính thuộc tấm không tỷ lệ với chiều dày như tấm không có vết nứt. Cụ thể với trường hợp tính toán ở trên cho thấy khi chiều dày tấm tăng từ 0,005m đến 0,03m thì cả chuyển vị, ứng suất và gia tốc đều thay đổi lớn (chuyển vị và ứng suất giảm: 6,26 lần - chuyển vị, 2,31 lần - ứng suất tại A và 2,48 lần - ứng suất tại B; gia tốc tăng: 4,21 lần). Trong đó, các giá trị trên thay đổi (tăng, giảm) nhanh khi chiều dày tấm thay đổi từ 0,005m đến 0,02m, sau đó tốc độ thay đổi chậm hơn.

3.3. Tấm có vết nứt chịu tác dụng của hệ dao động di động

Xét bài toán với các thông số kết cấu, vật liệu và liên kết mô tả như mục 3.2.1, trong đó tải trọng di động tác dụng lên tấm là hệ dao động 1 bậc tự do như trên hình 2.7 (ký hiệu MO), với: $m_1 = 300$ kg, $m_2 = 200$ kg, $k = 1,5 \times 10^5$ N/m, $c = 4,5 \times 10^3$ Ns/m. Hệ dao động di chuyển với vận tốc v = 10 m/s. Kết quả tính được so sánh với trường hợp khối lượng m = $m_1 + m_2 = 500$ kg (ký hiệu MM) di chuyển cùng vận tốc trên tấm. Đáp ứng độ võng giữa tấm (điểm A) và tóm tắt các giá trị lớn nhất về độ võng, gia tốc và ứng suất tại các điểm tính thuộc tấm như trên hình 3.26, 3.27, 3.28 và bảng 3.8.

Bảng 3.8. Các giá trị độ võng, gia tốc và ứng suất lớn nhất tại A và B (Hệ dao động và khối lượng di động tác dụng)

Đại lượng Trường hợp	W _{max} [cm]	₩ _{max} [m/s ²]	$\sigma^{\rm A}_{max}$ [N/m ²]	$\sigma^{\scriptscriptstyle B}_{\scriptscriptstyle max}[N/m^2]$
МО	0,755	13,217	3,641×10 ⁷	10,536×10 ⁷
MM	0,837	15,292	4,237×10 ⁷	12,240×10 ⁷
Sai khác [%]	10,86	15,70	16,37	16,17

Hình 3.26. Đáp ứng độ võng tại điểm A theo thời gian (Hệ dao động và khối lượng di động tác dụng)

Hình 3.28. Đáp ứng ứng suất σ_y tại A và σ_x tại B theo thời gian (*Hệ dao động và khối lượng di động tác dụng*)

3.3.1. Ảnh hưởng của số lượng vết nứt

Tính toán với trường hợp tấm có 1 vết nứt, 2 vết nứt và 3 vết nứt, trong đó các vết nứt giống nhau và có vị trí như mô tả tại mục 3.2.2.1 nêu trên. Kết quả đáp ứng của các đại lượng độ võng, gia tốc và ứng suất tại các điểm tính thuộc tấm thể hiện như trong bảng 3.9 và đồ thị hình 3.29, 3.30 và 3.31.

Đại lượng Trường hợp	W _{max} [cm]	$\ddot{W}_{max}[m/s^2]$	σ^{A}_{max} [N/m ²]	$\sigma^{\rm B}_{max}[N/m^2]$
1 vết nứt	0,755	13,217	3,641×10 ⁷	10,536×10 ⁷
2 vết nứt	0,768	33,814	5,480×10 ⁷	10,177×10 ⁷
3 vết nứt	0,795	33,821	5,504×10 ⁷	$10,265 \times 10^7$

Bảng 3.9. Các giá trị độ võng, gia tốc và ứng suất tại A và B

Hình 3.29. Đáp ứng độ võng tại điểm A theo thời gian (Với các trường hợp số lượng vết nứt khác nhau)

Hình 3.30. Đáp ứng gia tốc tại điểm A theo thời gian (Với các trường hợp số lượng vết nứt khác nhau)

Hình 3.31. Đáp ứng ứng suất σ_x tại B theo thời gian (Với các trường hợp số lượng vết nứt khác nhau)

Nhận xét: Khi số lượng vết nứt tăng với quy luật như trên, đáp ứng độ võng, gia tốc và ứng suất tại các điểm tính đều tăng, điều này cho thấy vết nứt làm giảm yếu khả năng chịu lực của kết cấu và khẳng định chương trình tính do tác giả lập trong chương 2 sử dụng để tính toán là có cơ sở đáng tin cậy.

3.3.2. Ảnh hưởng độ cứng lò xo của hệ dao động

Giải bài toán với độ cứng k của lò xo của hệ dao động di động biến thiên từ $1,0\times10^5$ N/m đến $9,0\times10^5$ N/m, kết quả đáp ứng của độ võng, ứng suất tại các điểm tính thuộc tấm theo thời gian và các giá trị lớn nhất tương ứng với các giá trị độ cứng k khác nhau thể hiện như trên đồ thị các hình 3.32, 3.33, 3.34, 3.35, 3.36 và bảng 3.10.

Hình 3.32. Đáp ứng độ võng tại điểm A theo thời gian (Với các trường hợp độ cứng lò xo khác nhau)

Hình 3.33. Đáp ứng ứng suất σ_x tại B theo thời gian (Với các trường hợp độ cứng lò xo khác nhau)

Hình 3.34. Quan hệ độ võng lớn nhất W_{max} tại điểm A và độ cứng lò xo

Hình 3.35. Quan hệ gia tốc lớn nhất \ddot{W}_{max} tại điểm A và độ cứng lò xo

Hình 3.36. Quan hệ ứng suất lớn nhất tại A, B và độ cứng lò xo

Đại lượng k×10 ⁵ [N/m]	W _{max} [cm]	₩ _{max} [m/s ²]	σ^{A}_{max} [N/m ²]	$\sigma^{B}_{max} \left[N/m^{2} \right]$
1,0	0,081	8,942	0,813×10 ⁷	0,842×10 ⁷
1,5	1,012	13,217	$1,364 \times 10^{7}$	10,536×10 ⁷
2,0	1,075	19,415	2,285×10 ⁷	11,284×10 ⁷
2,5	1,078	23,073	3,150×10 ⁷	11,553×10 ⁷
3,5	1,033	21,224	4,036×10 ⁷	11,363×10 ⁷
6,0	0,905	17,740	2,380×10 ⁷	11,213×10 ⁷
9,0	0,783	12,360	1,554×10 ⁷	8,693×10 ⁷

Bảng 3.10. Biến thiên các giá trị lớn nhất theo độ cứng lò xo

Nhận xét: Độ cứng lò xo của hệ dao động di động có ảnh hưởng đáng kể đến đáp ứng động lực học của tấm, với bài toán khảo sát cho thấy khi độ cứng lò xo tăng, đáp ứng độ võng của tấm biến thiên không theo quy luật tăng hay giảm một cách đơn thuần, trong vùng biến thiên của độ cứng lò xo như trên ta thấy khi k = $1,5 \times 10^5$ N/m và k = $2,5 \times 10^5$ N/m thì đáp ứng độ võng có xu hướng tăng theo thời gian, còn các giá trị khác thì đáp ứng này giảm. Bên cạnh đó, các giá trí lớn nhất về độ võng, gia tốc và ứng suất tại các điểm tính biến thiên tăng ứng với k $\in [1,0 - 2,5] \times 10^5$ N/m và giảm ứng với k $\in [2,5-9,0] \times 10^5$ N/m. Sở dĩ có hiện tượng trên, theo tác giả là khi thay đổi độ cứng lò xo đã làm cho tần số dao động của hệ dao động thay đổi, cùng với tần số dao động của tấm sẽ ảnh hưởng đến dao động chung của hệ.

3.3.3. Ảnh hưởng vận tốc của hệ dao động

Tính toán với trường hợp vận tốc di chuyển của hệ dao động thay đối từ 6m/s đến 14m/s, kết quả đáp ứng độ võng và ứng suất tại điểm A thuộc tấm theo thời gian và sự thay đổi các giá trị lớn nhất của độ võng, gia tốc và ứng suất tại các điểm tính được thể hiện như trên hình 3.37, 3.38 và bảng 3.11.

Hình 3.37. Đáp ứng độ võng tại điểm A theo thời gian (Với các trường hợp vận tốc di chuyển của hệ dao động khác nhau)

Hình 3.38. Đáp ứng ứng suất σ_y tại A theo thời gian (Với các trường hợp vận tốc di chuyển của hệ dao động khác nhau)

Đại lượng v [m/s]	W _{max} [cm]	₩ _{max} [m/s ²]	$\sigma^{\rm A}_{max}~[N/m^2]$	$\sigma^{\rm B}_{\rm max}$ [N/m ²]
6	1,211	15,429	4,352×10 ⁷	16,323×10 ⁷
8	1,210	13,816	2,931×10 ⁷	13,124×10 ⁷
10	1,012	13,217	1,364×10 ⁷	10,536×10 ⁷
12	0,724	10,201	0,970×10 ⁷	7,718×10 ⁷
14	0,537	11,897	1,137×10 ⁷	6,048×10 ⁷

Bảng 3.11. Biến thiên các giá trị lớn nhất theo vận tốc

Nhận xét: Khi tốc độ di chuyển của hệ dao động tác dụng lên tấm tăng từ 6m/s đến 14m/s, độ võng và ứng suất tại các điểm tính của tấm giảm, điểm đột biến xuất hiện xung quanh thời điểm hệ dao động đi qua vết nứt, nhưng quy luật không rõ ràng. Sở đĩ có hiện tượng này, theo tác giả là do có sự ảnh hưởng giữa tần số dao động riêng của hệ dao động và tần số dao động của tấm gây ra, đây chính là điểm ứng xử cơ học khác nhau của tấm khi chịu tác dụng của hệ dao động và khối lượng di động đối với cả tấm có vết nứt và không có vết nứt.

3.3.4. Ảnh hưởng của phương vết nứt

Xét các trường hợp phương của vết nứt lệch với trục x một góc α , bằng việc sử dụng phần tử tứ giác để mô phỏng PTHH đối với tấm, kết quả đáp ứng độ võng, gia tốc và ứng suất tại các điểm tính thể hiện như trên các hình 3.39, 3.40 và 3.41.

Hình 3.39. Đáp ứng độ võng tại điểm A theo thời gian ($\alpha = 0^0$, 30^0 , 60^0 , 90^0)

Hình 3.40. Đáp ứng gia tốc tại điểm A theo thời gian ($\alpha = 0^0$, 30^0 , 60^0 , 90^0)

Hình 3.41. Đáp ứng ứng suất σ_x tại B theo thời gian ($\alpha = 0^0$, 30^0 , 60^0 , 90^0)

Nhận xét: Với bài toán đang xét, khi góc lệch của phương vết nứt so với trục x tăng lên thì độ võng, gia tốc và ứng suất tại các điểm tính đều tăng, trong đó độ võng và gia tốc tăng nhẹ, song ứng suất tại đầu vết nứt tăng mạnh. Cụ thể khi phương vết nứt càng gần trùng với phương cạnh ngắn tấm ($\alpha = 90^{\circ}$) thì sẽ bất lợi về độ bền, độ ổn định cho tấm.

3.4. Kết luận chương 3

Một số kết quả chính trong chương này:

- Giải các lớp bài toán khác nhau, xem xét ứng xử của tấm có vết nứt chịu tác dụng của 2 mô hình tải trọng thường gặp trong thực tế: mô hình khối lượng di động và hệ dao động di động, trong đó các thông số: kết cấu, tải trọng, liên kết, tính chất vết nứt thay đổi, đồng thời so sánh giữa tấm có vết nứt và không có vết nứt. Các kết quả, nhận xét định lượng là cơ sở cho việc lựa chọn các thông số tính toán, thiết kế mới hoặc gia cường các kết cấu tấm không có vết nứt và có vết nứt nhằm định hướng ứng dụng trong thực tế, như: bản mặt cầu, tấm lát mặt đường, dải vệt chống lầy, tấm ghi sân bay, cầu treo hoặc cầu dây văng có khẩu độ bé, vv.

- Từ kết quả khảo sát số cho thấy: Mô hình tải trọng di động có ảnh hưởng đáng kể đến đáp ứng động lực học của tấm, cụ thể với mô hình hệ dao đông di đông cho thấy các đường đáp ứng (đô võng, gia tốc, ứng suất) phức tạp, gồ ghề hơn trường hợp khối lượng di động tác dụng. Khi tấm có vết nứt, thường xuất hiện "mũi nhọn" trên các đồ thị đáp ứng độ võng, gia tốc, ứng suất, trong đó rõ rệt nhất là đường đáp ứng ứng suất theo thời gian của điểm đầu vết nứt. Với kết quả tính toán cho 2 mô hình tải trọng, có thể khẳng đinh tấm dễ mất ổn đinh khi chiu tác dung của hê dao đông di đông hơn là chịu tác dụng của khối lượng di động do độ võng dễ thay đối đột ngột hoặc tăng theo thời gian, điều này cũng phù hợp với các nhận xét trước đây khi nghiên cứu đối với tấm không có vết nứt chịu tác dụng của tải trọng di động. Phương của vết nứt ảnh hưởng lớn đến độ võng, gia tốc và ứng suất của tấm, cụ thể: khi phương của vết nứt thay đổi theo xu hướng càng gần trùng với phương canh ngắn của tấm chữ nhật thì các giá tri trên đều tăng, trong đó sai khác lớn nhất là 19,3% - độ võng và 4,3 lần - ứng suất tại đầu vết nứt khi phương vết nứt trùng với phương cạnh ngắn tấm. Vì vậy, theo tác giả đây là vấn đề cần được chú ý trong kỹ thuật thiết kế, thi công, gia cường hoặc cảnh báo đối với các kết cấu tấm có vết nứt trong thực tiễn.

 Việc khảo sát ảnh hưởng của vị trí, kích thước vết nứt, liên kết, chiều dày tấm đều cho kết quả phù hợp với quy luật cơ học và vật lý, điều này một lần nữa cho thấy chương trình CRACKED_PLATE_MOVING_2019 do tác giả đã lập có cơ sở tin cậy.
CHƯỜNG 4 XÁC ĐỊNH PHẢN ỨNG ĐỘNG CỦA TẤM CÓ VẾT NỨT CHỊU TÁC DỤNG CỦA KHỐI LƯỢNG DI ĐỘNG BẰNG THỰC NGHIỆM

4.1. Mục đích thí nghiệm

Trong chương 2 và 3 của luận án tác giả đã trình bày thuật toán PTHH, chương trình tính và kết quả khảo sát số cho bài toán đáp ứng động lực học của tấm có và không có vết nứt chịu tác dụng của tải trọng di động, trong đó mô hình tải trọng là khối lượng và hệ dao động di động đã được xem xét. Để có cơ sở đánh giá mức độ phù hợp của mô hình lý thuyết và chương trình tính đã lập, cũng như góp phần làm phong phú thêm kết quả nghiên cứu thực nghiệm, trong chương này tác giả trình bày mô hình, kết quả nghiên cứu thực nghiệm xác định đáp ứng động của tấm không có vết nứt và có các vết nứt chịu tác dụng của khối lượng di động. Mục đích cụ thể của chương này gồm:

- Bằng thực nghiệm xác định đáp ứng động của tấm chữ nhật thông qua các đặc trưng gia tốc, biến dạng cho các trường hợp: tấm không có vết nứt, có 1 vết nứt và có 3 vết nứt, với liên kết ngàm 2 cạnh ngắn, chịu tác dụng của khối lượng di động chính giữa, dọc theo chiều dài của tấm.

 Góp phần kiểm tra, đánh giá mức độ phù hợp của mô hình lý thuyết và chương trình tính CRACKED_PLATE_MOVING_2019 (CPM_2019) đã lập trong chương 2.

Thí nghiệm được tiến hành tại Phòng thí nghiệm Cơ học máy, cơ học -Học viện Kỹ thuật Quân sự, với các thiết bị đo chuyên dụng.

4.2. Mô hình và thiết bị thí nghiệm

4.2.1. Mô hình thí nghiệm

Mô hình thí nghiệm là tấm chữ nhật làm bằng thép. Tấm được ngàm dọc theo 2 cạnh ngắn trên khung thép định hình L20 với hệ bulông vít chặt.

So với tấm thí nghiệm thì độ cứng của khung lớn hơn rất nhiều cho nên điều kiện ngàm có thể được xem là đảm bảo (Hình 4.1).

Hình 4.1. Sơ đồ kết cấu tấm - khung dùng cho thí nghiệm

Thí nghiệm đo đáp ứng biến dạng, gia tốc trong 3 trường hợp: tấm không có vết nứt, có 1 vết nứt chính giữa, 3 vết nứt chia đều chiều dài tấm, trong đó các vết nứt thủng tấm, có kích thước như nhau $2a_c = 0,1m$ và song song với cạnh ngắn của tấm (Hình 4.2).

a, Tấm có 1 vết nứt

b, Tấm có 3 vết nứt **Hình 4.2.** Mô hình tấm với các trường hợp vết nứt và vị trí đo thí nghiệm

Hình 4.3. Mẫu thí nghiệm

4.2.2. Thiết bị thí nghiệm

4.2.2.1. Các thiết bị tạo tải:

Khối lượng di động hình trụ, di chuyển dọc chiều dài tấm theo đường thẳng chính giữa tấm. Vận tốc di chuyển của khối lượng được tạo ra bằng hệ dây - ròng rọc - mô tơ điều chỉnh tốc độ vô cấp. Trong đó mô tơ dùng trong thí nghiệm là loại WUMA, thông số kỹ thuật:

- Công suất 0,18 7,5 kW;
- Phạm vi điều chỉnh tốc độ: 200 1000 vòng/phút;
- Điện áp sử dụng: 220V.

Máy kéo, nén vạn năng MTS-810 Landmark và cân điện tử BC-Ohaus (Mỹ) được sử dụng để xác định các tính chất cơ lý của tấm dùng trong thí nghiệm. Đây là các loại máy thí nghiệm sản xuất từ năm 2010. Máy MTS-810 Landmark là hệ thống sinh lực vạn năng hiện đại, máy hoạt động theo nguyên lý kết hợp điện tử - thủy lực, có khả năng thực hiện các thí nghiệm: kéo, nén uốn, cắt và thử nghiệm từ biến dưới tác dụng của tải tĩnh và động, trong điều kiện nhiệt độ thường hoặc nhiệt độ cao lên đến 1200^oC. Tải trọng lớn nhất máy có thể đạt được là 500kN. Quá trình thí nghiệm, đáp ứng biến dạng theo tải trọng được ghi lại thông qua các đầu đo biến dạng (extensometer) kiểu cơ học - điện và bộ xử lý tín hiệu được tích hợp vào máy. Các thông số kỹ thuật của hệ thống sinh lực MTS-810 Landmark cụ thể như sau:

- Tải trọng lớn nhất: 500kN;
- Khoảng cách tối đa giữa 2 đầu kẹp mẫu: 2108mm;
- Độ rộng giữa 2 cột: 762mm;
- Nhiệt độ thử nghiệm lớn nhất: 1200°C;
- Kiểu sinh tải: tĩnh và động;

- Tần số dao động dọc lớn nhất khi tạo tải trọng động: 12Hz.

- Chuẩn đo của extensometer: 10mm, 20mm, 50mm.

Sau khi thí nghiệm, xác định được tính chất cơ lý của tấm: mô đun đàn hồi E = 2,08.10¹¹N/m², hệ số Poát-xông v = 0,3, khối lượng riêng ρ = 7810kg/m³.

4.2.2.2. Cảm biến gia tốc và cảm biến biến dạng:

Cảm biến gia tốc dùng trong thí nghiệm là loại PCB (Hình 4.4a), có các thông số kỹ thuật như sau:

Đường kính 10mm, trọng lượng: 8 gram, độ nhạy: 10mV/g, dải tần số đo: 1,0Hz ÷ 20kHz, dải động học: ± 250g, độ phân dải: $40\mu g \sqrt{Hz}$, tần số cộng hưởng: > 35kHz, độ tuyến tính: 0.1%, dải nhiệt độ hoạt động: -40°C đến +80°C, pick lớn nhất: 1000g (g - gia tốc trọng trường), phương pháp định vị: Bằng keo dán.

Cảm biến dùng trong thí nghiệm để đo biến dạng là loại HBM của hãng Kyowa Nhật Bản, có chuẩn đo 2mm (Hình 4.4b).

a, Cảm biến gia tốc PCB

b, Cảm biến biến dạng HBM

Hình 4.4. Cảm biến gia tốc, cảm biến biến dạng

4.2.2.3. Thiết bị đo dao động:

Thiết bị đo dao động dùng trong thí nghiệm là hệ thống đo rung, ồn, biến dạng, do hãng LMS (Bỉ) sản xuất (Hình 4.5). Máy có cấu trúc mở theo chuẩn công nghiệp. Trên máy có 16 khe cắm tương đương với 16 kênh đo đồng thời. Theo đó, để đo một đại lượng cơ học nào đó, như: chuyển vị, gia tốc, lực, ... cần có một mô đun đo tương ứng cắm vào một trong 16 khe này. Bằng việc tổ hợp các mô đun cần thiết cho mỗi lần đo khiến việc đo lường trong các thí nghiệm trở nên đơn giản và linh hoạt hơn các mô đun đơn.

Hình 4.5. Hệ thống đo rung, ồn, biến dạng LMS

Các thông số kỹ thuật cơ bản của máy đo dao động đa năng LMS:

- Số lượng kênh đo tối đa: 16 kênh,
- Độ chính xác: 0,0025%,
- Độ phân giải ADC: 24 bit,
- Tần số lấy mẫu: 102,4 kHz,
- Hiển thị tại chỗ, ghi số liệu thành file để xử lý tín hiệu số.

4.3. Phương pháp xác định đáp ứng gia tốc, biến dạng của kết cấu

Để xác định đáp ứng gia tốc dao động tại vị trí nào đó thuộc tấm trong quá trình chịu khối lượng di động ta gắn cảm biến gia tốc cố định tại điểm cần đo, trong đó phương trục cảm biến trùng với phương cần đo gia tốc. Cụ thể trong thí nghiệm của chương này, trục cảm biến gia tốc vuông góc với mặt trung bình tấm (Hình 4.6).

a) Gắn cảm biến gia tốc

b) Gắn cảm biến điện trở
Hình 4.6. Gắn cảm biến lên tấm

Dưới tác dụng của tải trọng, tấm dao động làm đầu đo của cảm biến gia tốc dao động theo đồng thời gây ra biến dạng cho cảm biến, chúng tạo ra tín hiệu và được truyền về máy tính để xử lý. Kết quả mỗi lần đo, ứng với một đầu đo có được bộ số liệu thể hiện đáp ứng gia tốc theo thời gian tại vị trí trên kết cấu mà tại đó gắn đầu đo gia tốc. Từ đáp ứng gia tốc - thời gian, với bộ xử lý *deflection analysis* được tích hợp trong máy tính, sau khi phân tích ta có được đáp ứng chuyển vị theo phương vuông góc với mặt trung bình tấm tại điểm đo theo thời gian.

Để đo biến dạng tỷ đối tại một điểm theo phương cần đo, ta tiến hành dán cảm biến biến dạng tại vị trí đó sao cho phương của cảm biến trùng với phương cần xác định biến dạng. Để kết quả đo được chính xác, cảm biến phải đảm bảo bám dính tuyệt đối với bề mặt tấm. Điều này được tác giả thực hiện bằng việc làm sạch bề mặt tấm trước khi dán tấm điện trở bằng keo dán chuyên dụng. Dưới tác dụng của tải trọng, tấm bị biến dạng làm cho cảm biến biến dạng theo. Tín hiệu về đáp ứng biến dạng tại điểm đo được thu thập bởi phần mềm chuyên dụng của máy đo.

Việc tính toán số để so sánh với kết quả thí nghiệm được tác giả thực hiện bởi chương trình tính CRACKED_PLATE_MOVING_2019, trong đó mô hình tính và tải trọng được mô phỏng như điều kiện các thí nghiệm.

4.4. Phân tích và xử lý kết quả thí nghiệm

Bộ số liệu đo được các mô đun và phần mềm tương ứng trong hệ thống thiết bị đo động đa kênh lưu trữ cho mỗi lần thí nghiệm, đây là bộ số liệu "thô", chưa được phân tích, xử lý thống kê. Các số liệu này cần phải được phân tích, xử lý theo lý thuyết thống kê để có được tính đại diện cho các chỉ tiêu thí nghiệm. Trình tự các bước xử lý số liệu thí nghiệm dùng trong thí nghiệm cụ thể như sau [2]:

Giả sử, tại mỗi điểm cần xác định đáp ứng gia tốc theo thời gian, ta tiến hành thực hiện n lần đo, trong đó mỗi lần đo có được một cặp số liệu $[N_i, t_i]$, với i là số hiệu của bước thời gian trích mẫu thí nghiệm của máy đo. Các bước xử lý số liệu gồm:

Bước 1. Xuất bộ số liệu đo của n lần đo từ máy tính.

Bước 2. Xác định giá trị trung bình \overline{N} của từng đại lượng cần đo trên dãy số liệu (N_i)_j, với $j = \overline{1, n}$:

$$\overline{N} = \frac{1}{n} \sum_{j=1}^{n} \left(N_i \right)_j \tag{4.1}$$

Bước 3. Tập hợp số liệu $\left[\overline{N}_{i}, t_{i}\right]$, có được đáp ứng của số liệu đo sau khi xử lý thống kê theo thời gian.

Bước 4. Vẽ đáp ứng theo thời gian và xác định giá trị lớn nhất \overline{N}_{max} , nhỏ nhất \overline{N}_{min} của bộ số liệu sau khi đã xử lý:

$$\begin{cases} \bar{\mathbf{N}}_{\max} = \max \left| \bar{\mathbf{N}}_{i} \right| \\ \bar{\mathbf{N}}_{\min} = \min \left| \bar{\mathbf{N}}_{i} \right| \end{cases}$$
(4.2)

Bước 5. Đánh giá, nhận xét kết quả.

4.5. Thí nghiệm và kết quả thí nghiệm

Thí nghiệm với tấm chữ nhật, bằng vật liệu thép, có kích thước hình học: chiều dài Lp = 1,5m, chiều rộng Wp = 0,6m, chiều dày h = 0,005m. Tấm có các vết nứt thủng, hở giống nhau, có chiều dài $2a_c = 0,1m$, được bố trí vuông góc với đường thẳng chính giữa tấm (Hình 4.2). Khối lượng m di chuyển với vận tốc v theo quỹ đạo thẳng y = Wp/2 dọc phương trục Ox. Thí nghiệm với các trường hợp: tấm không có vết nứt (TH1) và tấm có vết nứt, trong đó tấm có 01 vết nứt (TH2) và tấm có 03 vết nứt (TH3) được tác giả sử dụng để thí nghiệm. Vị trí đo được thể hiện như trên hình 4.2. Các thông số cụ thể của thí nghiệm: Khối lượng m = 6kg di chuyển với vận tốc quy đổi v = 0,5m/s. Hình 4.7 minh họa một số hình ảnh thí nghiệm.

Hình 4.7. Một số hình ảnh thí nghiệm

Kết quả thí nghiệm sau khi phân tích có được đáp ứng độ võng theo thời gian tại điểm giữa tấm thể hiện như hình 4.8.

Hình 4.8. Đáp ứng độ võng theo thời gian tại điểm giữa tấm

Nhận xét: Số lượng vết nứt ảnh hưởng lớn đến cả hình dạng và độ lớn đường cong đáp ứng độ võng của tấm theo thời gian, cụ thể trong thí nghiệm trên: khi tấm có 3 vết nứt thì đồ thị đường cong đáp ứng độ võng theo thời gian có độ gồ ghề lớn hơn nhiều so với tấm không có vết nứt, đồng thời cường độ cũng lớn hơn khá nhiều (18% đối với tấm có 3 vết nứt và 7,5% đối với tấm có 1 vết nứt).

Từ kết quả đáp ứng gia tốc theo thời gian, bằng phương pháp biến đổi Fourier nhanh (phân tích FFT) có được đáp ứng biên độ - tần số của tấm. Trên hình 4.9, 4.10 cho thấy kết quả phân tích biên độ - tần số của tấm tại điểm đo gia tốc theo thí nghiệm của các trường hợp tấm dùng trong thí nghiệm và kết quả tính toán lý thuyết bởi chương trình tính CRACKED_PLATE_MOVING_2019 đã lập ở chương 2.

Hình 4.9. Đáp ứng biên độ - tần số của tấm không có vết nứt

Hình 4.10. Đáp ứng biên độ - tần số của tấm có 3 vết nứt

Bảng 4.1 là kết quả thí nghiệm và tính toán lý thuyết tần số riêng đầu tiên của các trường hợp tấm dùng trong thí nghiệm.

Trường hơn của tấm	Tần số rić	Sai khác		
Truong nộp của tảm	Lý thuyết	Thực nghiệm	[%]	
Không có vết nứt (TH1)	12,25	12,75	3,92	
Có 1 vết nứt (TH2)	10,65	11,15	4,48	
Có 3 vết nứt (TH3)	9,25	10,05	7,96	

Bảng 4.1. Tần số riêng đầu tiên của tấm

Nhận xét: Đồ thị đáp ứng biên độ - tần số của tấm trong các trường hợp cho kết quả thí nghiệm và tính toán lý thuyết là khá đồng dạng, trong đó sai số giữa 2 phương pháp đối với tần số dao đông riêng đầu tiên dao động từ 3,92% đến 7,96%, điều này cùng với các phân tích trong chương 2 và chương 3 cho thấy mô hình và chương trình tính đã thiết lập trong chương 2 của luận án là phù hợp và tin cậy. Đồng thời, kết quả tần số riêng thu được từ tính toán lý thuyết bé hơn tần số đo đạc thực nghiệm. Điều này có thể lý giải như sau: mô hình vết nứt thủng theo lý thuyết là lý tưởng, còn mô hình vết nứt thủng thực nghiêm được tao ra bằng cựa lưỡi tròn nên có thể không thể là lý tưởng mà chỉ là gần đúng, do đó tần số vẫn cao hơn. Ngoài ra, biên đô chuyển vi đo được (Hình 4.9 và 4.10) trong thực nghiêm tại tần số đầu tiên lớn hơn biên độ dao động tính theo lý thuyết, sự sai khác này theo tác giả có thể là do ảnh hưởng của tiếp xúc tại các bu lông liên kết giữa tâm và khung (ngay lúc tải tác dụng có sự xê dịch, sau đó xê dịch này mới được khử hết trong quá trình chịu tải tiếp theo) hoặc hệ số cản tính toán lý thuyết chưa phù hợp với thực tế của mô hình thí nghiệm.

4.6. Kết luận chương 4

Một số kết quả chính đạt được:

- Góp phần nâng cao trình độ, năng lực cho tác giả luận án trong việc tổ chức, thực hiện thí nghiệm xác định các tính chất cơ lý của vật liệu và ứng xử cơ học của kết cấu tấm chịu tải trọng động nói chung và tải trọng di động nói riêng.

- Có được bộ số liệu thí nghiệm làm cơ sở cho việc kiểm tra, đối chứng với kết quả tính toán lý thuyết bằng chương trình tính CRACKED_PLATE_MOVING_2019, cho phép đánh giá mức độ phù hợp của mô hình, thuật toán và độ tin cậy của chương trình tính đã lập. Ngoài ra, kết quả so sánh giữa tính toán lý thuyết và thực nghiệm cho phép khuyến cáo kỹ thuật trên cho tấm có vết nứt.

- Bộ số liệu và kết quả thí nghiệm góp phần làm phong phú thêm cho lĩnh vực thực nghiệm xác định đáp ứng động lực học của tấm có hoặc không có vết nứt chịu tác dụng của khối lượng di động.

KẾT LUẬN VÀ KIẾN NGHỊ

1/ Những đóng góp mới của luận án:

1. Trên cơ sở các công bố liên quan đến vết nứt của tấm, đã phát triển và cụ thể hóa được các quan hệ ứng xử và các ma trận đối với phần tử tấm có vết nứt, chịu uốn cùng với việc xây dựng các ma trận bổ sung do khối lượng di động và hệ dao động di động gây ra, đã thiết lập các phương trình mô tả dao động của tấm có vết nứt chịu tác dụng của 2 mô hình tải trọng di động nêu trên, trong đó lý thuyết chuyển vị bậc nhất của tấm đã được sử dụng.

2. Thiết lập thuật toán PTHH và chương trình tính CRACKED_ PLATE_MOVING_2019 (CPM_2019) để giải phương trình vi phân có hệ số phụ thuộc thời gian, tính chất vết nứt... mô tả dao động của tấm có vết nứt chịu tác dụng của khối lượng di động và hệ dao động di động. Chương trình tính đã được kiểm chứng và cho thấy đảm bảo tin cậy.

3. Kết quả khảo sát số trên nhiều bài toán với các thông số kết cấu, vết nứt, tải trọng, điều kiện liên kết thay đổi, cho thấy ảnh hưởng của chúng đến đáp ứng động lực học của tấm có vết nứt chịu tải trọng di động. Trước hết, kết quả nghiên cứu cho thấy ảnh hưởng của vết nứt trong ứng xử cơ học của tấm là đáng kể, không thể bỏ qua, tiếp theo các nhận xét, đánh giá và khuyến cáo kỹ thuật với các kết quả khảo sát khác có ý nghĩa khoa học và thực tiễn trong lĩnh vực: giao thông vận tải, đảm bảo vượt sông, chống lầy cho xe cơ giới.

4. Bộ số liệu thực nghiệm trên mô hình với các trường hợp tấm thép không có vết nứt và có số lượng vết nứt khác nhau cho phép đánh giá đáp ứng động của tấm chịu tác dụng của khối lượng di động. Kết quả thực nghiệm đã góp phần kiểm tra và cho phép khẳng định sự phù hợp của mô hình, thuật toán và độ tin cậy của chương trình tình CPM_2019 do tác giả đã lập. Ngoài ra, kết quả thí nghiệm góp phần làm phong phú thêm trong nghiên cứu thực nghiệm đối với kết cấu tấm có vết nứt và không có vết nứt chịu tác dụng của tải trọng di động.

2/ Nhận xét và kiến nghị:

Từ các kết quả đạt được trong luận án, tác giả có một số nhận xét và kiến nghị sau:

1. Mô hình tải trọng di động có ảnh hưởng đáng kế đến đáp ứng động lực học của tấm, cụ thể với mô hình hệ dao động di động cho thấy các đường đáp ứng (đô võng, gia tốc, ứng suất) phức tap, gồ ghề hơn trường hợp khối lượng di động tác dụng. Với tấm có vết nứt, thường xuất hiện "mũi nhọn" trên các đồ thị đáp ứng này, trong đó rõ rệt nhất là đường đáp ứng ứng suất theo thời gian của điểm đầu vết nứt. Với kết quả tính toán cho 2 mô hình tải trọng, có thể khẳng định tấm dễ mất ổn định khi chịu tác dụng của hệ dao động di động hơn là chịu tác dụng của khối lượng di động do độ võng dễ thay đổi đột ngột hoặc tăng theo thời gian, điều này cũng phù hợp với các nhân xét trước đây khi nghiên cứu đối với tấm không có vết nứt chịu tác dụng của tải trọng di động. Phương của vết nứt ảnh hưởng lớn đến độ võng, gia tốc và ứng suất của tấm, cụ thể với bài toán khảo sát trong luận án: khi phương của vết nứt thay đổi theo xu hướng càng gần trùng với phương cạnh ngắn của tấm chữ nhật (trong khi tải trọng di chuyển dọc, song song với cạnh dài) thì các giá trị trên đều tăng, trong đó sai khác lớn nhất là 19,3% - độ võng và 4,3 lần - ứng suất tại đầu vết nứt. Vì vậy, theo tác giả đây là vấn đề cần được chú ý trong kỹ thuật thiết kế, thi công, gia cường hoặc cảnh báo với các kết cấu tấm có vết nứt trong thực tiễn.

2. Độ cứng lò xo của hệ dao động di động có ảnh hưởng đáng kế đến đáp ứng động lực học của tấm, với bài toán khảo sát cho thấy khi độ cứng lò xo tăng, đáp ứng độ võng của tấm biến thiên không theo quy luật tăng hay giảm một cách đơn thuần, trong vùng biến thiên của độ cứng lò xo như

trên ta thấy khi k = $1,5 \times 10^5$ N/m và k = $2,5 \times 10^5$ N/m thì đáp ứng độ võng có xu hướng tăng theo thời gian, còn các giá trị khác thì đáp ứng này giảm. Bên cạnh đó, các giá trị lớn nhất về độ võng, gia tốc và ứng suất tại các điểm tính biến thiên tăng ứng với k $\in [1,0 - 2,5] \times 10^5$ N/m và giảm ứng với k $\in [2,5 - 9,0] \times 10^5$ N/m. Sở dĩ có hiện tượng trên, theo tác giả khi thay đổi độ cứng lò xo đã làm cho tần số dao động của hệ dao động thay đổi, cùng với tần số dao động của tấm sẽ ảnh hưởng đến dao động chung của hệ.

3. Kết quả tần số riêng thu được từ tính toán lý thuyết bé hơn thí nghiệm cho thấy tính toán lý thuyết kém an toàn theo điều kiện cứng hơn nhưng lại an toàn về bền hơn thí nghiệm.

4. Lĩnh vực nghiên cứu của luận án có thể phát triển tiếp theo các hướng sau:

- Phân tích động lực hệ liên hợp tấm - dây - cột chịu tác dụng đồng thời của tải trọng di động (đoàn tải trọng di động) và lực khí động, trong đó có kể đến ảnh hưởng của các vết nứt trên tấm.

- Mô hình hoá tương tác xe - mặt đường - nên đường, trong đó xe được mô hình bởi hệ dao động, mặt đường được mô hình hoá bởi tấm có hoặc không có vết nứt, nền là hữu hạn bởi các phần tử khối, đồng thời xét cả quá trình di chuyển của tải trọng.

- Nghiên cứu thực nghiệm đối với kết cấu tấm có vết nứt trên các loại liên kết khác nhau: liên kết tập trung hoặc tấm trên nền biến dạng chịu tác dụng của các phương tiện thực như xe bánh lốp, bánh xích di chuyển.

DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ

- Nguyễn Thái Chung, Lê Phạm Bình, Nguyễn Thị Hồng (2016), Phân tích động lực học dầm có vết nứt trên nền đàn hồi chịu tác dụng của khối lượng di động, Tạp chí Giao thông vận tải, Hà Nội 05/2016, tr.52-55.
- Nguyen Thi Hong, Nguyen Thai Chung, Le Xuan Thuy (2019), Finite Element Analysis of a Cracked Plate Subjected to Moving Mass, Tap chí Xây dựng Việt Nam, Số 614, tr.55-61.
- 3. Nguyen Thai Chung, Nguyen Thi Hong, and Le Xuan Thuy (2019), Dynamic Analysis of Cracked Plate Subjected to Moving Oscillator by Finite Element Method, Mathematical Problems in Engineering (ISCI), Volume 2019, 11 pages.
- 4. Nguyen Thi Hong, Nguyen Thai Chung, Duong Thi Ngoc Thu (2020), Finite Element Modeling and Experimental Study on Dynamic Behavior of Cracked Plates Subjected to Moving Mass, Tap chí Giao thông Vận tải, Hà Nội 03/2020, tr.82-88.

TÀI LIỆU THAM KHẢO

Tiếng Việt

- Nguyễn Quốc Bảo, Trần Nhất Dũng (2002), *Phương pháp phần tử hữu hạn Lý thuyết và lập trình*, Tập 1, 2, Nhà xuất bản Khoa học và Kỹ thuật.
- Nguyễn Thái Chung (2013), Thí nghiệm cơ học, Học Viện kỹ thuật quân sự.
- Nguyễn Thái Chung, Lê Ngọc Lý (2013), Phân tích động lực tấm mỏng trên liên kết phi tuyến chịu tải trọng di động, Tạp chí Khoa học kỹ thuật – Học Viện kỹ thuật quân sự, Số 152, tr.42 - 51.
- Nguyễn Thái Chung (2016), Cơ sở phương pháp phần tử hữu hạn và lập trình Ansys trong cơ kỹ thuật, Nhà xuất bản Quân đội.
- 5. Ngô Trọng Đức, Trần Văn Liên, Nguyễn Thị Hường (2018), Xác định vị trí vết nứt trong dầm FGM bằng phân tích Wavelet dừng các dạng dao động riêng, Tạp chí Khoa học và Công nghệ Xây dựng, 12(7), tr. 20-33.
- 6. Phí Thị Hằng (2016), Phương pháp phổ tần số trong nghiên cứu dao động của dầm có vết nứt chịu tải trọng di động. Luận án tiến sỹ kỹ thuật, Học Viện Khoa học và công nghệ, Viện HLKH&CNVN.
- 7. Lê Ngọc Lý (2013), Phân tích động lực học kết cấu tấm mỏng chịu tải trọng di động, Luận án tiến sỹ kỹ thuật, Học viện Kỹ thuật quân sự.
- 8. Nguyễn Thị Cẩm Nhung (2018), Phân tích động lực học hệ liên hợp dầm đôi – dây – cột – thanh đàn hồi chịu tác dụng của tải trọng di động và lực khí động, Luận án tiến sỹ, Học viện Kỹ Thuật Quân sự.
- 9. Đỗ Kiến Quốc, Khổng Trọng Toàn, (1999), Phân tích dao động của tấm trên nền đàn hồi chịu tải trọng chuyển động, Tuyển tập công trình Khoa

học Hội nghị Cơ học vật rắn biến dạng toàn quốc lần thứ 6, Hà Nội, 1999.

- Chu Quốc Thắng, 1997, *Phương pháp phần tử hữu hạn*, Nhà xuất bản Khoa học kỹ thuật, Hà Nội.
- Nguyễn Mạnh Yên, 1996, Phương pháp số trong cơ học kết cấu, Nhà xuất bản Khoa học và Kỹ thuật.

Tiếng Anh

- Abhijit N., Pawan S. (2014), Vibration Analysis of a Cracked Beam Using Various Techniques - A Review, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 3, Issue 12, December 2014, pp.17912-17915.
- Ahmad M., Ruhollah M., Mohammad H. (2015), Nonlinear Dynamic Analysis of a Rectangular Plate Subjected to Accelerated/Decelerated Moving Load, Journal of Theoretical and Applied Mechanics, 53, 1, pp.151-166.
- Ahn J.S., Yang S.H., Woo K.S. (2014), Free Vibration Analysis of Patch Repaired Plates with a Through Crack by p - Convergent Layerwise Element, The Scientific World Journal, Volume 2014, Article ID 427879, 8 pages.
- Amraei A., Fallah N. (2017), A Cell Centered Finite Volume Formulation for the Calculation of Stress Intensity Factors in Mindlin-Reissner Cracked Plates, Civil Engineering Journal, Vol. 3, No. 12, December, 2017, pp.1366-1385.
- 16. Alebrahim R., Haris S.M., Mohamed N.A.N., Abdullah S. (2016), Vibration Analysis of Multi-Cracked Beam Traversed by Moving Mass, Asian Journal of Materials Science, 8(1), pp.1-10.

- Asghari M., Ghahremani A.R., Ghafoori E. (2009), Semi-Analytical Analysis of the Dynamic Response of Rectangular Plates under Traversing Moving Oscillator, Euromech Solid Mechanics Conference, Lisbon, Portugal, 11-17 September 2009, pp.1-11.
- Ashish S.A., Nitin N.M. (2016), Vibration Analysis of Cracked Cantilever Beam - A Review, International Research Journal of Engineering and Technology (IRJET), Volume: 03 Issue: 05, May-2016, pp.1177-1181.
- 19. Azam M.S., Kumar B., Ranjan V. (2017), *Free Vibration Analysis of Rhombic Plate with Central Crack*, International Journal of Acoustics and Vibrations 22(4), pp.481-492.
- Baiz P.M., Natarajan S., Bordas S.P.A., Kerfriden P., Rabczuk T. (2011), *Linear Buckling Analysis of Cracked Plates by SFEM and XFEM*, Journal of Mechanics of Materials and Structures, Vol. 6, No. 9-10, 2011, pp.1213-1238.
- 21. Bathe K.J (1996) *Finite element procedures*, Prentice Hall International, Inc.
- Behzad V.F., Eslami S., Melo F.Q., Tavares P.J., Moreira P.M.G.P. (2019) Concept of Stress Dead Zone in Cracked Plates: Theoretical, Experimental and Computational Studies, Fatigue Fract. Eng. Mater Struct, 2019, pp.1-11.
- 23. Blaauwendraad J. (2002), *Theory of Elasticity Energy Principles and Variational Methods*, Delft University of Technology, Faculty of Civil Engineering and Geosciences.

- 24. Brighenti R. (2009), Buckling Sensitivity Analysis of Cracked Thin Plates Under Membrane Tension or Compression Loading, Nuclear Engineering and Design 239 (2009), pp.965-980.
- 25. Chen C.H., Wang C.L. (2008), Stress Intensity Factors and T-Stresses for Offset Double Edge Cracked Plates under Mixed Mode Loadings, Int J Fract 52, pp.149-162.
- 26. Chen Tsung-Chien (2008), Research on Moving Force Estimation of the Bridge Structure using the Adaptive Input Estimation Method, Electronic Journal of Structural Engineering 8, (2008), pp.20-28.
- Cheung M.M.S., Song Z.B. (2009), Finite-Strip Method for the Analysis of Cracked Plates with Application to Plate-Girder Bridges, Journal of Structural Engineering, 2009, No.135, pp.198-205.
- Chouiyakh H., Azrar L., Akourri O., Alnefaie K. (2016), Multi-Cracks Identification Based on the Nonlinear Vibration Response of Beams Subjected to Moving Harmonic Load, MATEC Web of Conferences 8347, 06003 (2016), pp.1-4.
- Dundar C., Kara I.F. (2007), Three-Dimensional Analysis of Reinforced Concrete Frames with Cracked Beam and Column Elements, Engineering Structures 29 (2007), pp. 2262-2273.
- 30. Fryba L. (1999), Vibration of Solids and Structures under Moving Loads, Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, Thomas Telford.
- 31. Gawande P.R., Bharule A. (2014), *Stress Analysis of Cracked Plate for Selected Configurations: A Review*, International Journal of Scientific

Engineering and Research (IJSER), Volume 3 Issue 2, February 2015, pp.18-22.

- 32. Gbadeyan J.A., Dada M.S., Agboola O.O. (2011), *Dynamic Response* of Two Viscoelastically Connected Rayleigh Beams Subjected to Concentrated Moving Load, The Pacific Journal of Science and Technology, Volume 12, Number 1, 2011.
- 33. Ghaffari D., Ahmadi S.R., Shabani F. (2016) XFEM simulation of a quenched cracked glass plate with moving convective boundaries, Comptes Rendus Mécanique Volume 344, Issue 2, pp.78-94.
- 34. Hu X.F., Bui T.Q., Wang J., Yao W., Ton L.H.T., Singh I.V. (2017). A New Cohesive Crack Tip Symplectic Analytical Singular Element Involving Plastic Zone Length for Fatigue Crack Growth Prediction Under Variable Amplitude Cyclic Loading, Eur J Mech A/Solids, 65, pp.79–90.
- 35. Hu X.F., Chen B.Y., Trivaudey M., Tan V.B.C., Tay T.E. (2016). Integrated XFEM CE Analysis of Delamination Migration in Multi-Directional Composite Laminates, Composites Part A: Appl Sci Manuf, 90, pp.161–73.
- 36. Huang C.S., Fu Y.C., Li P.Y. (2017), Vibrations of Skewed FGM Plates with Internal Cracks via MLS-Ritz Method, Advances in Structural Engineering and Mechanics (ASEM17), 2017, Korea, pp. 211-220.
- Huang C.S., Leissa A.W., Li R.S. (2011), Accurate Vibration Analysis of Thick, Cracked Rectangular Plates, Journal of Sound and Vibration, 330 (2011), pp. 2079-2093.

- Houfek L., Krejci P., Kolarova Z. (2011), *ANSYS Inc. Theory reference*, Southpointe 275 Technology Drive Canonsburg.
- 39. Idowu A.S, Titiloye E.O, Dada M.S., Gbadeyan J.A (2008) The Effect of Viscous Damping on the Dynamic Behaviour of Rectangular Plates Resting on Elastic Foundation under Moving Loads, Jour. of Inst. Of Maths. & Comp. Sciences, Vol.21, No.2 (2008), pp.117-123.
- 40. Israr A., Zulfiqar S. (2012), Nonlinear Vibration of Partially Cracked Plates Using Higher Order Perturbation Method, Journal of Space Technology, Vol 1, No. 1, July 2012, pp.7-10.
- 41. Javid F. (2011), Vibration Suppression of Straight and Curved Beams Traversed by Moving Loads, A Thesis submitted in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science in Mechanical Engineering, University of Ontario Institute of Technology, 2011.
- 42. Kago E., Lellep J. (2014), Vibrations of Cracked Plates Resting on Elastic Foundations, Recent Advances in Mechanical Engineering Applications, pp.11-17.
- Khiem N.T., Hang P.T. (2014), Spectral Analysis of Multiple Cracked Beam Subjected to Moving Load, Vietnam Journal of Mechanics, VAST, Vol. 36, No. 4 (2014), pp.245-254.
- 44. Khiem N.T., Hang P.T. (2018) Analysis and Identification of Multiple-Cracked Beam Subjected to Harmonic Load. *Journal of Vibration and Control* 24(13), pp.2782-2801.
- 45. Khiem N.T., Tran T.H., Quang N.V. (2014) An Approach to the Moving Load Problem for Multiple-Cracked Beams. Proceedings of the 31st

IMAC, A Conference on Structural Dynamics, USA 2013. *Topic in Modal Analysis*, Vol. 7, Chapter 43, pp.451-460 (Eds: Allemang et al.).

- 46. Kim T., Lee U. (2018), Vibration Analysis of Thin Plate Structures Subjected to a Moving Force Using Frequency-Domain Spectral Element Method, Shock and Vibration Volume 2018, Article ID 1908508, 27 pages.
- Krawczuk M., Ostachowicz W.M. (1994), A Finite Plate Element for Dynamic Analysis of a Cracked Plate, Comput. Methods Appl. Engrg. 115 (1994), pp.67-78.
- 48. Kurt P., Mulkoglu O., Orhan S. (2016), Vibration Analysis of Cracked Beam Subjected to a Moving Load by Finite Element Method, 4th International Symposium on Innovative Technologies in Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya -Turkey), pp.1220-1229.
- Lal G., Johny A. (2017), Vibration Control of Cantilever Beam with Multiple Cracks, International Journal of Advances in Scientific Research and Engineering (ijasre), Vol. 03, Issue 4, May -2017, pp.76-85.
- 50. Li C., Song C.M., Man H., Ooi E.T., Gao W. (2014), 2D Dynamic Analysis of Cracks and Interface Cracks in Piezoelectric Composites using the SBFEM, International Journal of Solids and Structures, 51 (2014), pp.2096-2108.
- 51. Liu C.Y., DeWolf J., Kim Jeong-Ho (2011), Development of a New Cracked Mindlin Plate Element, International Scholarly Research Network, ISRN Civil Engineering, Volume 2011, Article ID 842572, 11 pages.

- 52. Liu M.F, Chang T.P, Zeng D.Y (2011), *The Interactive Vibration Behavior in a Suspension Bridge System under Moving Vehicle Loads and Vertical Seismic Excitations*, Applied Mathematical Modelling 35(2011), pp.398-411.
- 53. Loc V. Tran, P. Phung-Van, Vinh Phu Nguyen, M. Abdel Wahab, H. Nguyen-Xuan (2014), Vibration Analysis of Cracked Plate using Higher-Order Shear Deformation Theory, Proceedings of the 3rd International Conference on Fracture Fatigue and Wear, pp.127-133.
- 54. Long H., Liu Y., Huang C.Z., Wu W.H., Li Z.J. (2019) Modelling a Cracked Beam Structure Using the Finite Element Displacement Method, Shock and Vibration, Volume 2019, Article ID 7302057, 13 pages.
- 55. Maurya S.K., Singh A.K., Prajapati H. (2018), A Review on Vibration Analysis of Cracked Cantilever Beam with Rectangular Cross-Section, National Journal of Multidisciplinary Research and Development, Volume 3; Issue 1; 2018; pp.483-485.
- Mazaheri H., Rahami H., Kheyroddin A. (2018), Static and Dynamic Analysis of Cracked Concrete Beams Using Experimental Study and Finite Element Analysis, Periodica Polytechnica Civil, 62(2), pp.337-345.
- Moradi S., Makvandi H. (2019) Free Vibration Analysis of Cracked Postbuckled Plate, Applied Mathematical Modelling. Volume 66, February 2019, pp.611-627.
- 58. Nguyen Thai Chung, Hoang Hai, Shin Sang Hee (2016), Dynamic Analysis of High Building with Cracks in Column Subjected to

Earthquake Loading, American Journal of Civil Engineering, 2016; 4(5): pp.233-240.

- 59. Nguyen Thai Chung, Le Pham Binh (2017), Nonlinear Dynamic Analysis of Cracked Beam on Elastic Foundation Subjected to Moving Mass, International Journal of Advanced Engineering Research and Science (IJAERS), Vol-4, Issue-9, Sep- 2017, pp.73-81.
- 60. Nguyen Xuan Toan, Tran Van Duc (2017), Determination of Dynamic Impact Factor for Continuous Girder Bridge due to Vehicle Braking Force with Finite Element Method Analysis and Experimental Investigation, Vietnam Journal of Mechanics, Vol.39, No.2 (2017), pp. 1-16.
- 61. Ozturk H., Kiral Z., Kiral B.G. (2015), *Dynamic Analysis of Elastically Supported Cracked Beam Subjected to a Concentrated Moving Load*, Latin American Journal of Solids and Structures 13 (2016), pp.175-200.
- 62. Phuc Pham Minh, Thom Van Do, Nguyen Dinh Duc (2018) *The stability of cracked rectangular plate with variable thickness using phase field method*, Thin-Walled Structures, Volume 129, pp.157-165.
- 63. Prabhakar M.S. (2009), Vibration Analysis of Cracked Beam, Thesis, National Institute of Technology, Rourkela.
- 64. Przemieniecki J.S. (1968) Theory of Matrix Structural Analysis, McGraw-Hill, New York.
- Qian G.L., Gu S.N., Jiang J.S. (1991), A Finite Element Model of Cracked Plates Application to Vibration Problems, Comput. & Structures 39 (1991), pp.483-487.
- 66. Ramachandran C. Ponnudurai R. (2016), *Finite Element Analysis of Beam Having Crack at Various Locations*, International Journal of

Scientific and Research Publications, Volume 6, Issue 12, December 2016, pp.341-346.

- 67. Reddy J.N. (2004), *Mechanics of Laminated Composite Plates and Shells: Theory and Analysis,* CRC Press.
- Rwayda K.S., Hamd A., Gillie M., Wang Y., Albostami A.S. (2017) *Crack Propagation for Concrete Flat Plates Using XFEM Method*, 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. DOI 10.21012/FC9.079.
- 69. Sadek S.C., Tawfik T. (2016), *Buckling of Cracked Plate Reinforced*, Procedia Structural Integrity 1 (2016), pp.234–241.
- 70. Saleh N.A.H. (2012), A Study on Second Mode Stress Intensity Factor (KII) of Cracked Plates Under Compression Load, Basrah Journal for Engineering Science, pp.54-65.
- 71. Shirazizadeh M.R., Shahverdi H., Imam A. (2016), A Simple Finite Element Procedure for Free Vibration and Buckling Analysis of Cracked Beam Like Structures, Journal of Solid Mechanics, Vol. 8, No. 1 (2016), pp.93-103.
- 72. Sih G.C. (1973), *Handbook of Stress Intensity Factors*, Lehigh University, Bethlchem, PA.
- 73. Song C.M., Tin-Loi F., Gao W. (2010), Transient Dynamic Analysis of Interface Cracks in Anisotropic Bimaterials by the Scaled Boundary Finite-Element Method, International Journal of Solids and Structures, 47 (2010), pp.978-989.
- 74. Tinh Quoc Bui (2015), Extended Isogeometric Dynamic and Static Fracture Analysis for Cracks in Piezoelectric Materials using NURBS,

Computer Methods in Applied Mechanics and Engineering, Engineering Volume 295, pp.470-509.

- 75. Vu Hoai Nam, Duc Hong Doan, Nguyen Minh Khoa, Thom Van Do, Hong Thi Tran (2019), *Phase-field buckling analysis of cracked stiffened functionally graded plates*, Composite Structures, Volume 217, pp.50-59.
- 76. Wang Hai-Tao, Wu G., Pang Yu-Yang (2018), Theoretical and Numerical Study on Stress Intensity Factors for FRP-Strengthened Steel Plates with Double - Edged Cracks, Sensors 2018, 18, 2356, pp.1-19.
- 77. Xu W.T, Lin J.H, Zhang Y.H, Kennedy D., Williams F.W (2009), 2D Moving Element Method for Random Vibration Analysis of Vehicles on Kirchhoff Plate with Kelvin Foundation, Latin American Journal of Solids and Structures, 6(2009), pp.169-183.
- Yao W.A., Hu X.F. (2011) A novel singular finite element of mixedmode crack problems with arbitrary crack tractions. Mech Res Com 38(3), pp.170–175.
- 79. Zienkiewicz O.C. (1998), *The finite element method*, Mc. Graw. Hill. International Editions.

PHŲ LŲC

PHỤ LỤC 1. Một số biểu thức

1. Sơ đồ bố trí hệ lực nút độc lập $\{F\}$ trên phần tử:

Hình 1.1 PL. Lực nút phần tử tấm chữ nhật chịu uốn

Hình 1.2 PL. Lực tĩnh tương đương trong phần tử tấm chữ nhật chịu uốn

2. Đồ thị hàm kiểm tra Φ_1 và Φ_2 :

Hình 1.3 PL. Quan hệ hàm kiểm tra với kích thước phần tử [47]

3. Ma trận biến đổi [G]:

[G]=	1	-a	-b	a^2	ab	b^2	$-a^3$	$-a^2b$	$-ab^2$	$-b^3$	a ³ b	ab ³
	0	0	1	0	-a	-2b	0	a^2	2ab	$3b^2$	$-a^3$	$-3ab^2$
	0	-1	0	2a	b	0	$-3a^2$	–2ab	$-b^2$	0	$3ab^2$	b ³
	1	а	-b	a^2	-ab	b^2	a ³	$-a^2b$	ab ²	$-b^3$	$-a^{3}b$	$-ab^3$
	0	0	1	0	а	-2b	0	a^2	-2ab	$3b^2$	a ³	3ab ²
	0	-1	0	-2a	b	0	$-3a^2$	2ab	$-b^2$	0	3ab ²	b ³
	1	а	b	a^2	ab	b^2	a ³	a²b	ab ²	b^3	a ³ b	ab ³
	0	0	1	0	а	2b	0	a ²	2ab	$3b^2$	a ³	3ab ²
	0	-1	0	-2a	-b	0	$-3a^2$	-2ab	$-b^2$	0	$-3a^2b$	$-b^3$
	1	-a	b	a^2	-ab	b^2	$-a^3$	a²b	$-ab^2$	b ³	$-a^{3}b$	$-ab^3$
	0	0	1	0	-a	2b	0	a ²	-2ab	$3b^2$	$-a^3$	$-3ab^2$
	0	-1	0	2a	-b	0	$-3a^2$	2ab	$-b^2$	0	$-3a^2b$	$-b^3$

PHỤ LỤC 2. Mã nguồn chương trình CPM_2019

```
%------ CRACKED PLATE MOVING 2019.m------
_____
clear all;
echo off;
%_____
global nNode ... % So nut cua ket cau
       nDof ... % So bac tu do cua ket cau
       nDofl ...
       nElem ... % So phan tu
       Coords ... % Bang toa do nut
       Dof ... % Bang danh so bac tu do cua nut (danh so lai
bang cach toi uu bang nay)
       Edof ... % Bang danh so bac tu do cua phan tu
       b2 ...
                 % Gia tri ban dau
       nhist ... % Cac bac tu do khao sat lay so lieu dau ra
       nMode ... \ So dang dao dong rieng can phan tich
% Cac bien trung gian
96_____
function [Ne, Nex, Ney, Nexy, Neyy, Nexy] = platshape(ex, ey, x, y)
a=ex(3)-ex(1); b=ey(3)-ey(1);
N=[1 \times y \times 2 \times y \times 2 \times 3 \times 2 \times x \times y^{2} \times 3 \times 3 \times 2 \times y \times 3 \times 3 \times y \times 3 \times 3 \times y \times 3];
Nx=[0 1 0 2*x y 0 3*x^2 2*x*y y^2 0 3*x^2*y y^3];
Nxx = [0 \ 0 \ 0 \ 2 \ 0 \ 0 \ 6^{x}x \ 2^{y}y \ 0 \ 0 \ 6^{x}x^{y}y \ 0];
Nxy=[0 0 0 0 1 0 0 2*x 2*y 0 3*x^2 3*y^2];
Ny=[0 0 1 0 x 2*y 0 x^2 2*x*y 3*y^2 y 3*x*y^2];
Nyy=[0 \ 0 \ 0 \ 0 \ 2 \ 0 \ 0 \ 2^{x} \ 6^{y} \ 1 \ 6^{x}x^{y}];
a2=a*a;a3=a2*a;b2=b*b;b3=b2*b;ab=a*b;
% Ma tran C
C=[ 1 -a -b a2 ab b2 -a3 -a2*b -a*b2 -b3 a3*b a*b3;
   0 0 1 0 -a -2*b 0 a2 2*ab 3*b2 -a3 -3*a*b2;
   0 -1 0 2*a b 0 -3*a2 -2*ab -b2 0 3*a2*b b3;
   1 a -b a2 -ab b2 a3 -a2*b a*b2 -b3 -a3*b -a*b3;
   0 0 1 0 a -2*b 0 a2 -2*ab 3*b2 a3 3*a*b2;
   0 -1 0 -2*a b 0 -3*a2 2*ab -b2 0 3*a2*b b3;
   1 a b a2 ab b2 a3 a2*b a*b2 b3 a3*b a*b3;
   0 0 1 0 a 2*b 0 a2 2*ab 3*b2 a3 3*a*b2;
```
```
0 -1 0 -2*a -b 0 -3*a2 -2*ab -b2 0 -3*a2*b -b3;
   1 -a b a2 -ab b2 -a3 a2*b -a*b2 b3 -a3*b -a*b3;
   0 0 1 0 -a 2*b 0 a2 -2*ab 3*b2 -a3 -3*a*b2;
   0 -1 0 2*a -b 0 -3*a2 2*ab -b2 0 -3*a2*b -b3];
Cl=inv(C);
Ne=N*C1;Nex=Nx*C1;Ney=Ny*C1;Nexx=Nxx*C1;Neyy=Nyy*C1;Nexy=Nxy*C1;
%-----end-----
global E A rho nuy h ... % Cac ma tran cung, khoi luong
va can cua ket cau
      Surf ... % Index cua cac phan tu be mat tiep xuc
voi tai trong di dong
      1 ...
      Ex Ey ...
      k m c ...
      ер ...
      i ...
      Elem ... % Index cua Node theo Phan tu
      mP cP kP ...
      hs q Qt Pt Kt Ct Mt Jx k1 k2
∞
% Cac ket qua tinh
function []=datain(filename)
%Doc so lieu ket cau tu file vao cac bien tong the
khai bao chung;
§_____
%Doc file so lieu nut
26
%fid = fopen(cat(2,filename,'.dat'),'r');
fid = fopen(cat(2,filename,'.txt'),'r');
if fid<0
   disp('Thieu file so lieu, chuong trinh khong the tiep
tuc');
   beep;
end;
temp = fscanf(fid, '%d %d %d %f %f %f %f %f %f', 7);
nElem = temp(1);
nNode = temp(2);
nDof = temp(3);
E = temp(4);
```

```
nuy=temp(5);
rho = temp(6);
h = temp(7);
% Mang Dof : Ma bac tu do cua cac nut
for i=1:nNode
    for j=1:3
        Dof(i, j) = (i-1) * 3+j;
    end;
end;
% Ma bac tu do can ve do thi
nh = fscanf(fid, '%d', 1);
nhist = fscanf(fid, '%d', nh);
nhist = nhist';
Coords = fscanf(fid, '%f', [2, nNode]);
Coords = Coords';
Elem = fscanf(fid, '%d', [5, nElem]);
Elem = Elem';
Edof = zeros(nElem, 13);
for i=1:nElem
    Edof(i,1) = Elem(i,1);
    Edof(i,2) = Dof(Elem(i,2),1);
    Edof(i,3) = Dof(Elem(i,2),2);
    Edof(i, 4) = Dof(Elem(i, 2), 3);
    Edof(i, 5) = Dof(Elem(i, 3), 1);
    Edof(i, 6) = Dof(Elem(i, 3), 2);
    Edof(i,7) = Dof(Elem(i,3),3);
    Edof(i, 8) = Dof(Elem(i, 4), 1);
    Edof(i, 9) = Dof(Elem(i, 4), 2);
    Edof(i, 10) = Dof(Elem(i, 4), 3);
    Edof(i, 11) = Dof(Elem(i, 5), 1);
    Edof(i, 12) = Dof(Elem(i, 5), 2);
    Edof(i, 13) = Dof(Elem(i, 5), 3);
end
nb = fscanf(fid, '%d', 1);
b2 = fscanf(fid, '%d', [2, nb]);
b2 = b2';
% Doc so lieu tai trong di dong
temp = fscanf(fid, '%f', 1);
mP = temp(1);
fclose(fid);
```

```
function []=dataout(fname, dt, d0, varargin)
global nhist;
d0 = d0';
[n,m] = size(d0);
fid = fopen(fname, 'wt+');
for j=1:length(nhist)
    fprintf(fid, '%s%d\t', 'd', nhist(j));
end
fprintf(fid, '\n');
for i=1:n
    fprintf(fid, '%e\t', (i-1)*dt);
    for j=1:length(nhist)
        fprintf(fid, '%e\t', d0(i, nhist(j)));
    end
    fprintf(fid, '\n');
end
u = min(d0, [], 1);
fprintf(fid, 'max value:\n')
for i=1:length(nhist)
    fprintf(fid, 'd%d=%e\n', nhist(i), u(nhist(i)));
end
clear u;
fclose(fid);
function [K]=loxodanhoi(K)
hesolx=12500*8;
nutlx=[15 17 19 21 29 31 33 35 43 45 47 49];
s=size(nutlx);
solx=s(2);
for i=1:solx
   nut=nutlx(i);
   k = (nut - 1) * 3 + 1;
    K(k, k) = K(k, k) + hesolx;
end;
function
[t,Q,V,W]=MovMassModeFun(nDof,nMode,Omega2,Phi,Edof,Elem,Coor
ds, mP, nElem, Ex, Ey, CO)
§_____
                             ag=9.81; beta=1/4; gama=1/2; hs=1;
S=4; % Chieu ngang cua tam
v=12; %m/s
```

```
vx=v;vy=10;wx=0;wy=0;
T=S/v; % Tong thoi gian tichs phan
nt=201;
dt=T/(nt-1);
t = (0:dt:T);
f = zeros(nDof, nt);%f(13,1) = -10*sin(2*pi*1*t);
d0 = zeros(nMode,nt); %started at death status
v0 = zeros(nMode,nt);
w0 = zeros(nMode, nt);
for j1=1:nt-1 % Chu trinh theo buoc thoi gian
        K=zeros(nDof);M=zeros(nDof);
        %C=C0;
        PO = zeros(nDof, 1);
        t1 = t(j1);
        xt=v*t1;
        vt=1.75;
        % Tim phan tu chua mass
        imass=0;je=1;
        while (imass==0)
            x1=Ex(je,1); % Toa do X nut 1 cua phan tu je
            x2=Ex(je,2); % Toa do X nut 2 cua phan tu je
            y1=Ey(je,1); % Toa do Y nut 1 cua phan tu je
            y3=Ey(je,3); % Toa do Y nut 3 cua phan tu je
            if ((xt>=x1) & (xt<=x2) & (yt>=y1) & (yt<=y3) )
                 imass=je;
                 x=xt-x1;
                 y=yt-y1;
            end;
            je=je+1;
        end;
% Cac ham dang phan tu tam chiu uon
[Ne, Nex, Ney, Nexx, Neyy, Nexy] = platshape (Ex (imass, :), Ey (imass, :), x
,y);
% Tap hop cac ma tran Mt,Kt,Ct,Pt do khoi luong di dong gay ra
        Mp=hs*mP*Ne'*Ne;
        Cp=hs*2*mP*Ne'* (vx*Nex+vy*Ney);
Kp=hs*mP*Ne'* (vx^2*Nexx+vy^2*Neyy+2*vx*vy*Nexy+wx*Nex+wy*Ney);
Pp=Ne'*(-mP*ag);%function Pt=mz.g.sin(a.t)attachonthemoving load
        [Kt,Pt] = assem(Edof(imass,:),K,Kp,P0,Pp); %assemble
```

```
[Kt] & [Pt] at the same time
```

```
Mt=assem(Edof(imass,:),M,Mp);
        Ct=assem(Edof(imass,:),C0,Cp);
% Tao he phuong trinh cap nMode
        mI=eye(nMode,nMode);Om2=zeros(nMode);
        for imode=1:nMode
            Om2(imode, imode) = Omega2(imode);
        end;
        Ms=mI+Phi'*Mt*Phi;
        Cs=Phi'*Ct*Phi; % Con thieu C cuar ket cau, vao sau
        Ks=Om2+Phi'*Kt*Phi;
        Ps=Phi'*Pt;
        % Tich phan so bang Newmark
        At=Ms+gama*dt*Cs+beta*(dt^2)*Ks;
        w0(:,j1+1) = (At^-1) * (Ps-Cs*(v0(:,j1) + (1-
gama)*dt*w0(:,j1)) ...
            -Ks*(d0(:,j1)+dt*v0(:,j1)+(0.5-
beta) * (dt^2) *w0(:,j1)));
        v0(:,j1+1)=v0(:,j1)+(1-
gama) *dt*w0(:,j1) +gama*dt*w0(:,j1+1);
        d0(:,j1+1)=d0(:,j1)+dt*v0(:,j1)+dt^2*(0.5-
beta) *w0(:,j1) +dt^2*beta*w0(:,j1+1);
end %of for j1
Q=Phi*d0;V=Phi*v0;W=Phi*w0;
global K M C; %Cac ma tran cung, khoi luong va can cua ket cau
datain2('TestMovMass'); % Tham so: ten tep du lieu dau vao
K=zeros(nDof); f=zeros(nDof,1);
M=zeros(nDof);
h=0.020;
ep=[h];ep2=[h rho];qz=-rho*9.81;
D=hooke(1, E, nuy);
[Ex,Ey]=coordxtr(Edof,Coords,Dof,4);
for i=1:nElem
  [Ke, fe]=platre(Ex(i,:),Ey(i,:),ep,D,qz);
  [K,f]=assem(Edof(i,:),K,Ke,f,fe);
 Me=platrm(Ex(i,:),Ey(i,:),ep2);
 M=assem(Edof(i,:),M,Me);
end;
[K]=loxodanhoi(K); % Goi ham mo ta cac lo xo dan hoi
bc=b2; b = b2(:, 1);
%a=solveg(K,f,bc)
figure(1);clf;eldraw2(Ex,Ey,[1,4,0],Edof(:,1));
hold off; echo off;
```

```
[La, Egv] = eigen(K, M, b);
Freq=sqrt(La)/(2*pi);
nMode=10;
F0=f;
% Tim ma tran tri nMode rieng bang pp Ritz
[Omega2, Phi]=ritz(K, M, F0, nMode, b);
C = 0.05 * K + 0.0 * M;
[t,Q,V,W]=MovMassModeFun(nDof,nMode,Omega2,Phi,Edof,Elem,Coords
, mP, nElem, Ex, Ey, C);
% ----- Plot time history for displacement:s ------
if length(nhist)>=2
   figure(2),
   set(0, 'DefaultAxesColorOrder', [0 0 0],...
      'DefaultAxesLineStyleOrder', '-|--|:|-.');
   plot(t,Q(nhist(1),:),t,Q(nhist(2),:),'LineWidth',2);
   grid, xlabel('t(s)'), ylabel('Z(m)');
   title('Do vong');
   legend('Nut 32 ', 'Nut 18',2);
else
   figure(2), plot(t,Q(nhist(1),:),'LineWidth',2);
   grid, xlabel('t(s)'), ylabel('Z(m)');
   title('Do vong');
end
%----- end -----
Qmax=max(abs(Q(nhist(1),:)))
echo off
return
```

Lần 1		Lần 2		Lần 3	
t	ẅ [m/s²].10⁻ ³	t	ẅ [m/s²].10⁻ ³	t	ẅ [m/s²].10 ⁻³
23.64	0.00009	15.5	0.00008	46.2	0.00006
23.6408	0.0001	15.5008	0.0001	46.2008	0.0001
23.6416	0.0278	15.5016	0.0304	46.2016	0.029
23.6424	-0.0043	15.5024	-0.0047	46.2024	-0.0045
23.6432	0.0375	15.5032	0.041	46.2032	0.0392
23.644	0.0003	15.504	0.0003	46.204	0.0003
23.6448	0.0139	15.5048	0.0152	46.2048	0.0145
23.6456	-0.0375	15.5056	-0.041	46.2056	-0.0392
23.6464	0.0182	15.5064	0.0199	46.2064	0.019
23.6472	0.0096	15.5072	0.0105	46.2072	0.01
23.648	0.0182	15.508	0.0199	46.208	0.019
23.6488	-0.0215	15.5088	-0.0235	46.2088	-0.0224
23.6496	0.0278	15.5096	0.0304	46.2096	0.029
23.6504	-0.0153	15.5104	-0.0167	46.2104	-0.016
23.6512	0.0139	15.5112	0.0152	46.2112	0.0145
23.652	-0.0174	15.512	-0.0191	46.212	-0.0182
23.6528	0.0096	15.5128	0.0105	46.2128	0.01
23.6536	-0.0283	15.5136	-0.031	46.2136	-0.0296
23.6544	-0.0096	15.5144	-0.0105	46.2144	-0.01
23.6552	-0.0043	15.5152	-0.0047	46.2152	-0.0045
23.656	-0.0402	15.516	-0.0439	46.216	-0.0419
23.6568	-0.0096	15.5168	-0.0105	46.2168	-0.01
23.6576	-0.052	15.5176	-0.0569	46.2176	-0.0543
23.6584	-0.0278	15.5184	-0.0304	46.2184	-0.029
23.6592	-0.0681	15.5192	-0.0745	46.2192	-0.0711
23.66	-0.0375	15.52	-0.041	46.22	-0.0392
23.6608	-0.0841	15.5208	-0.0919	46.2208	-0.0877
23.6616	-0.0643	15.5216	-0.0703	46.2216	-0.0671
23.6624	-0.0793	15.5224	-0.0867	46.2224	-0.0827
23.6632	-0.1157	15.5232	-0.1266	46.2232	-0.1208
23.664	-0.075	15.524	-0.082	46.224	-0.0782
23.6648	-0.1446	15.5248	-0.1582	46.2248	-0.1509
23.6656	-0.2239	15.5256	-0.2449	46.2256	-0.2337
23.6664	-0.1736	15.5264	-0.1898	46.2264	-0.1811
23.6672	-0.2422	15.5272	-0.2648	46.2272	-0.2527
23.668	-0.1629	15.528	-0.1781	46.228	-0.17
23.6688	-0.1715	15.5288	-0.1875	46.2288	-0.179
23.6696	-0.2497	15.5296	-0.2731	46.2296	-0.2606
23.6704	-0.359	15.5304	-0.3925	46.2304	-0.3746
23.6712	-0.2958	15.5312	-0.3234	46.2312	-0.3086
23.672	-0.3183	15.532	-0.3481	46.232	-0.3322
23.6728	-0.284	15.5328	-0.3106	46.2328	-0.2964
23.6736	-0.3761	15.5336	-0.4113	46.2336	-0.3925
23.6744	-0.4019	15.5344	-0.4395	46.2344	-0.4194

PHỤ LỤC 3. Kết quả đo thí nghiệm

23.6752	-0.3537	15.5352	-0.3868	46.2352	-0.3691
23.676	-0.4673	15.536	-0.511	46.236	-0.4876
23.6768	-0.4715	15.5368	-0.5156	46.2368	-0.492
23.6776	-0.5305	15.5376	-0.5801	46.2376	-0.5535
23.6784	-0.4747	15.5384	-0.5191	46.2384	-0.4954
23.6792	-0.4072	15.5392	-0.4453	46.2392	-0.4249
23.68	-0.554	15.54	-0.6058	46.24	-0.5781
23.6808	-0.6151	15.5408	-0.6727	46.2408	-0.6419
23.6816	-0.5176	15.5416	-0.566	46.2416	-0.5402
23.6824	-0.6708	15.5424	-0.7335	46.2424	-0.7
23.6832	-0.7073	15.5432	-0.7734	46.2432	-0.738
23.684	-0.6526	15.544	-0.7136	46.244	-0.681
23.6848	-0.7223	15.5448	-0.7898	46.2448	-0.7537
23.6856	-0.7127	15.5456	-0.7793	46.2456	-0.7437
23.6864	-0.7544	15.5464	-0.8249	46.2464	-0.7872
23.6872	-0.704	15.5472	-0.7699	46.2472	-0.7347
23.688	-0.7823	15.548	-0.8555	46.248	-0.8164
23.6888	-0.7459	15.5488	-0.8156	46.2488	-0.7783
23.6896	-0.7876	15.5496	-0.8613	46.2496	-0.8219
23.6904	-0.8112	15.5504	-0.8871	46.2504	-0.8465
23.6912	-0.8252	15.5512	-0.9023	46.2512	-0.8611
23.692	-0.7405	15.552	-0.8097	46.252	-0.7727
23.6928	-0.7726	15.5528	-0.8449	46.2528	-0.8062
23.6936	-0.8252	15.5536	-0.9023	46.2536	-0.8611
23.6944	-0.8015	15.5544	-0.8765	46.2544	-0.8364
23.6952	-0.674	15.5552	-0.7371	46.2552	-0.7034
23.696	-0.689	15.556	-0.7535	46.256	-0.719
23.6968	-0.5455	15.5568	-0.5965	46.2568	-0.5692
23.6976	-0.5969	15.5576	-0.6527	46.2576	-0.6229
23.6984	-0.5326	15.5584	-0.5824	46.2584	-0.5558
23.6992	-0.5733	15.5592	-0.6269	46.2592	-0.5982
23.7	-0.4651	15.56	-0.5086	46.26	-0.4853
23.7008	-0.4844	15.5608	-0.5297	46.2608	-0.5055
23.7016	-0.6612	15.5616	-0.723	46.2616	-0.69
23.7024	-0.5498	15.5624	-0.6012	46.2624	-0.5737
23.7032	-0.4662	15.5632	-0.5098	46.2632	-0.4865
23.704	-0.3215	15.564	-0.3516	46.264	-0.3355
23.7048	-0.2936	15.5648	-0.3211	46.2648	-0.3064
23.7056	-0.4426	15.5656	-0.4839	46.2656	-0.4618
23.7064	-0.2508	15.5664	-0.2742	46.2664	-0.2617
23.7072	-0.2658	15.5672	-0.2906	46.2672	-0.2773
23.708	-0.135	15.568	-0.1477	46.268	-0.1409
23.7088	-0.1939	15.5688	-0.2121	46.2688	-0.2024
23.7096	-0.2186	15.5696	-0.2391	46.2696	-0.2281
23.7104	-0.0857	15.5704	-0.0938	46.2704	-0.0895
23.7112	-0.1436	15.5712	-0.157	46.2712	-0.1498
23.712	-0.1715	15.572	-0.1875	46.272	-0.179
23.7128	-0.0643	15.5728	-0.0703	46.2728	-0.0671
23.7136	-0.1033	15.5736	-0.1129	46.2736	-0.1078

23.7144	-0.0964	15.5744	-0.1054	46.2744	-0.1006
23.7152	-0.0321	15.5752	-0.0351	46.2752	-0.0335
23.716	-0.0764	15.576	-0.0836	46.276	-0.0798
23.7168	-0.0375	15.5768	-0.041	46.2768	-0.0392
23.7176	-0.0611	15.5776	-0.0668	46.2776	-0.0637
23.7184	-0.0527	15.5784	-0.0577	46.2784	-0.055
23.7192	-0.0932	15.5792	-0.1019	46.2792	-0.0973
23.72	-0.0406	15.58	-0.0444	46.28	-0.0423
23.7208	-0.0096	15.5808	-0.0105	46.2808	-0.01
23.7216	-0.0319	15.5816	-0.0349	46.2816	-0.0333
23.7224	-0.0043	15.5824	-0.0047	46.2824	-0.0045
23.7232	-0.0232	15.5832	-0.0254	46.2832	-0.0242
23.724	-0.0184	15.584	-0.0201	46.284	-0.0192
23.7248	0.0043	15.5848	0.0047	46.2848	0.0045
23.7256	-0.0321	15.5856	-0.0351	46.2856	-0.0335
23.7264	0.0043	15.5864	0.0047	46.2864	0.0045
23.7272	-0.0081	15.5872	-0.0089	46.2872	-0.0085
23.728	-0.0075	15.588	-0.0080	46.288	-0.0084
23.7288	-0.0067	15.5888	-0.0073	46.2888	-0.007
23.7296	0.0139	15.5896	0.0152	46.2896	0.0145
23.7304	-0.0215	15.5904	-0.0235	46.2904	-0.0224
23.7312	-0.0041	15.5912	-0.0045	46.2912	-0.0043
23.732	-0.0182	15.592	-0.0199	46.292	-0.019
23.7328	0.0007	15.5928	0.0008	46.2928	0.0007
23.7336	0.0139	15.5936	0.0152	46.2936	0.0145
23.7344	-0.0011	15.5944	-0.0012	46.2944	-0.0011
23.7352	-0.0043	15.5952	-0.0047	46.2952	-0.0045
23.736	0.0019	15.596	0.002	46.296	0.0019
	Lần 4	L	ần 5	L	ần 6
t	₩ [m/s²].10 -3	t	₩ [m/s²].10 -3	t	₩ <i>[m/s²].10⁻³</i>
23.64	0.00007	15.5	0	46.2	0.00006
23.6408	0.0001	15,5008	0.0001	46,2008	0.0001
23.6416	0.0271	15.5016	0.0288	46.2016	0.0299
23.6424	-0.0042	15.5024	-0.0045	46.2024	-0.0046
23.6432	0.0366	15.5032	0.0389	46.2032	0.0403
23.644	0.0003	15.504	0.0003	46.204	0.0003
23.6448	0.0136	15.5048	0.0144	46.2048	0.0149
23.6456	-0.0366	15.5056	-0.0389	46.2056	-0.0403
23.6464	0.0178	15.5064	0.0189	46.2064	0.0196
23.6472	0.0094	15.5072	0.01	46.2072	0.0103
23.648	0.0178	15.508	0.0189	46.208	0.0196
23.6488	-0.0209	15.5088	-0.0222	46.2088	-0.023
23.6496	0.0271	15.5096	0.0288	46.2096	0.0299
23.6504	-0.0149	15.5104	-0.0158	46.2104	-0.0164
23.6512	0.0136	15.5112	0.0144	46.2112	0.0149
23.652	-0.017	15.512	-0.0181	46.212	-0.0187
23.6528	0.0094	15.5128	0.01	46.2128	0.0103
23.6536	-0.0276	15.5136	-0.0294	46.2136	-0.0304
23.6544	-0.0094	15.5144	-0.01	46.2144	-0.0103

23 6552	_0.0042	15 5152	_0.0045	16 2152	_0.0046
23.656	-0.0392	15.516	-0.0416	46,216	-0.0431
23 6568	-0.0094	15 5168	-0.01	46 2168	-0.0103
23.6576	-0.0507	15.5176	-0.0539	46.2176	-0.0559
23.6584	-0.0271	15.5184	-0.0288	46.2184	-0.0299
23.6592	-0.0664	15.5192	-0.0706	46.2192	-0.0731
23.66	-0.0366	15.52	-0.0389	46.22	-0.0403
23.6608	-0.082	15.5208	-0.0871	46.2208	-0.0903
23.6616	-0.0627	15.5216	-0.0666	46.2216	-0.069
23.6624	-0.0773	15.5224	-0.0822	46.2224	-0.0851
23.6632	-0.1128	15.5232	-0.1199	46.2232	-0.1242
23.664	-0.0731	15.524	-0.0777	46.224	-0.0805
23.6648	-0.141	15.5248	-0.1499	46.2248	-0.1553
23.6656	-0.2183	15.5256	-0.2321	46.2256	-0.2404
23.6664	-0.1692	15.5264	-0.1799	46.2264	-0.1863
23.6672	-0.2361	15.5272	-0.251	46.2272	-0.26
23.668	-0.1588	15.528	-0.1688	46.228	-0.1748
23.6688	-0.1672	15.5288	-0.1777	46.2288	-0.1841
23.6696	-0.2435	15.5296	-0.2588	46.2296	-0.2681
23.6704	-0.35	15.5304	-0.372	46.2304	-0.3854
23.6712	-0.2884	15.5312	-0.3065	46.2312	-0.3175
23.672	-0.3103	15.532	-0.3299	46.232	-0.3417
23.6728	-0.2769	15.5328	-0.2943	46.2328	-0.3049
23.6736	-0.3667	15.5336	-0.3898	46.2336	-0.4038
23.6744	-0.3919	15.5344	-0.4165	46.2344	-0.4314
23.6752	-0.3448	15.5352	-0.3665	46.2352	-0.3797
23.676	-0.4556	15.536	-0.4842	46.236	-0.5016
23.6768	-0.4597	15.5368	-0.4886	46.2368	-0.5061
23.6776	-0.5172	15.5376	-0.5498	46.2376	-0.5695
23.6784	-0.4628	15.5384	-0.492	46.2384	-0.5096
23.6792	-0.397	15.5392	-0.422	46.2392	-0.4371
23.68	-0.5401	15.54	-0.5741	46.24	-0.5947
23.6808	-0.5998	15.5408	-0.6375	46.2408	-0.6604
23.6816	-0.5047	15.5416	-0.5365	46.2416	-0.5557
23.6824	-0.654	15.5424	-0.6952	46.2424	-0.7201
23.6832	-0.6896	15.5432	-0.733	46.2432	-0.7593
23.684	-0.6363	15.544	-0.6763	46.244	-0.7005
23.6848	-0.7042	15.5448	-0.7485	46.2448	-0.7753
23.6856	-0.6948	15.5456	-0.7386	46.2456	-0.765
23.6864	-0.7355	15.5464	-0.7818	46.2464	-0.8099
23.6872	-0.6864	15.5472	-0.7296	46.2472	-0.7558
23.688	-0.7628	15.548	-0.8108	46.248	-0.8398
23.6888	-0.7272	15.5488	-0.773	46.2488	-0.8007
23.6896	-0.7679	15.5496	-0.8163	46.2496	-0.8455
23.6904	-0.791	15.5504	-0.8407	46.2504	-0.8709
23.6912	-0.8045	15.5512	-0.8552	46.2512	-0.8858
23.692	-0.722	15.552	-0.7674	46.252	-0.7949
23.6928	-0.7533	15.5528	-0.8007	46.2528	-0.8294
23.6936	-0.8045	15.5536	-0.8552	46.2536	-0.8858

23.6944	-0.7815	15.5544	-0.8307	46.2544	-0.8605
23.6952	-0.6572	15.5552	-0.6985	46.2552	-0.7236
23.696	-0.6718	15.556	-0.7141	46.256	-0.7397
23.6968	-0.5318	15.5568	-0.5653	46.2568	-0.5856
23.6976	-0.582	15.5576	-0.6186	46.2576	-0.6408
23.6984	-0.5193	15.5584	-0.552	46.2584	-0.5718
23.6992	-0.559	15.5592	-0.5941	46.2592	-0.6154
23.7	-0.4535	15.56	-0.482	46.26	-0.4993
23.7008	-0.4723	15.5608	-0.502	46.2608	-0.52
23.7016	-0.6447	15.5616	-0.6852	46.2616	-0.7098
23.7024	-0.536	15.5624	-0.5698	46.2624	-0.5902
23.7032	-0.4545	15.5632	-0.4831	46.2632	-0.5005
23.704	-0.3135	15.564	-0.3332	46.264	-0.3452
23.7048	-0.2863	15.5648	-0.3043	46.2648	-0.3152
23.7056	-0.4315	15.5656	-0.4587	46.2656	-0.4751
23.7064	-0.2445	15.5664	-0.2599	46.2664	-0.2692
23.7072	-0.2591	15.5672	-0.2754	46.2672	-0.2853
23.708	-0.1317	15.568	-0.14	46.268	-0.145
23.7088	-0.1891	15.5688	-0.201	46.2688	-0.2082
23.7096	-0.2132	15.5696	-0.2266	46.2696	-0.2347
23.7104	-0.0836	15.5704	-0.0889	46.2704	-0.0921
23.7112	-0.14	15.5712	-0.1488	46.2712	-0.1541
23.712	-0.1672	15.572	-0.1777	46.272	-0.1841
23.7128	-0.0627	15.5728	-0.0666	46.2728	-0.069
23.7136	-0.1007	15.5736	-0.107	46.2736	-0.1109
23.7144	-0.094	15.5744	-0.0999	46.2744	-0.1035
23.7152	-0.0313	15.5752	-0.0333	46.2752	-0.0345
23.716	-0.0745	15.576	-0.0792	46.276	-0.0821
23.7168	-0.0366	15.5768	-0.0389	46.2768	-0.0403
23.7176	-0.0595	15.5776	-0.0633	46.2776	-0.0655
23.7184	-0.0514	15.5784	-0.0546	46.2784	-0.0566
23.7192	-0.0909	15.5792	-0.0966	46.2792	-0.1
23.72	-0.0396	15.58	-0.042	46.28	-0.0436
23.7208	-0.0094	15.5808	-0.01	46.2808	-0.0103
23.7216	-0.0311	15.5816	-0.0331	46.2816	-0.0343
23.7224	-0.0042	15.5824	-0.0045	46.2824	-0.0046
23.7232	-0.0226	15.5832	-0.0241	46.2832	-0.0249
23.724	-0.018	15.584	-0.0191	46.284	-0.0198
23.7248	0.0042	15.5848	0.0045	46.2848	0.0046
23.7256	-0.0313	15.5856	-0.0333	46.2856	-0.0345
23.7264	0.0042	15.5864	0.0045	46.2864	0.0046
23.7272	-0.0079	15.5872	-0.0084	46.2872	-0.0087
23.728	-0.0069	15.588	-0.0073	46.288	-0.0083
23.7288	-0.0065	15.5888	-0.0069	46.2888	-0.0072
23.7296	0.0136	15.5896	0.0144	46.2896	0.0149
23.7304	-0.0209	15.5904	-0.0222	46.2904	-0.023
23.7312	-0.004	15.5912	-0.0043	46.2912	-0.0044
23.732	-0.0178	15.592	-0.0189	46.292	-0.0196
23.7328	0.0007	15.5928	0.0007	46.2928	0.0007

23 7336	0.0136	15 5036	0 0144	46 2036	0.0149
23 7344	-0.0011	15.5944	-0 0011	46 2944	-0.0012
23 7352	-0.0042	15 5952	-0.0045	46 2952	-0.0046
23 736	0.0012	15 596	0.0019	46 296	0.002
20.100	Lần 7	L	ân 8	L	ân 9
t	₩ [m/s²].10 ⁻³	t	₩ [m/s²].10 ⁻³	t	₩ [m/s²].10 ⁻³
23.64	0.00005	15.5	0.00006	46.2	0.00008
23.6408	0.0001	15.5008	0.0001	46.2008	0.0001
23.6416	0.0293	15.5016	0.0274	46.2016	0.0275
23.6424	-0.0045	15.5024	-0.0042	46.2024	-0.0043
23.6432	0.0395	15.5032	0.0369	46.2032	0.0371
23.644	0.0003	15.504	0.0003	46.204	0.0003
23.6448	0.0147	15.5048	0.0137	46.2048	0.0137
23.6456	-0.0395	15.5056	-0.0369	46.2056	-0.0371
23.6464	0.0192	15.5064	0.0179	46.2064	0.018
23.6472	0.0101	15.5072	0.0095	46.2072	0.0095
23.648	0.0192	15.508	0.0179	46.208	0.018
23.6488	-0.0226	15.5088	-0.0211	46.2088	-0.0212
23.6496	0.0293	15.5096	0.0274	46.2096	0.0275
23.6504	-0.0161	15.5104	-0.015	46.2104	-0.0151
23.6512	0.0147	15.5112	0.0137	46.2112	0.0137
23.652	-0.0184	15.512	-0.0172	46.212	-0.0172
23.6528	0.0101	15.5128	0.0095	46.2128	0.0095
23.6536	-0.0298	15.5136	-0.0279	46.2136	-0.028
23.6544	-0.0101	15.5144	-0.0095	46.2144	-0.0095
23.6552	-0.0045	15.5152	-0.0042	46.2152	-0.0043
23.656	-0.0423	15.516	-0.0396	46.216	-0.0397
23.6568	-0.0101	15.5168	-0.0095	46.2168	-0.0095
23.6576	-0.0548	15.5176	-0.0512	46.2176	-0.0514
23.6584	-0.0293	15.5184	-0.0274	46.2184	-0.0275
23.6592	-0.0718	15.5192	-0.067	46.2192	-0.0673
23.66	-0.0395	15.52	-0.0369	46.22	-0.0371
23.6608	-0.0886	15.5208	-0.0828	46.2208	-0.083
23.6616	-0.0677	15.5216	-0.0633	46.2216	-0.0635
23.6624	-0.0835	15.5224	-0.078	46.2224	-0.0783
23.6632	-0.1219	15.5232	-0.1139	46.2232	-0.1143
23.664	-0.079	15.524	-0.0738	46.224	-0.074
23.6648	-0.1524	15.5248	-0.1424	46.2248	-0.1428
23.6656	-0.2359	15.5256	-0.2204	46.2256	-0.2211
23.6664	-0.1828	15.5264	-0.1708	46.2264	-0.1714
23.6672	-0.2551	15.5272	-0.2384	46.2272	-0.2391
23.668	-0.1/16	15.528	-0.1603	46.228	-0.1608
23.6688	-0.1807	15.5288	-0.1688	46.2288	-0.1694
23.0090	-0.2631	15.5296	-0.2458	40.2290	-0.2466
23.0/04	-0.3/82	15.5304	-0.3534	40.2304	-0.3545
23.0/12	-0.3116	15.5312	-0.2911	40.2312	-0.2921
23.672	-0.3353	15.532	-0.3133	46.232	-0.3143
23.0/28	-0.2992	10.0328	-0.2796	40.2328	-0.2805
23.0/30	-0.3962	10.0330	-0.3702	40.2330	-0.3714

23 6744	-0 4234	15 5344	-0.3956	46 2344	-0.3969
23.6752	-0.3726	15.5352	-0.3481	46.2352	-0.3493
23.676	-0.4923	15.536	-0.46	46.236	-0.4614
23.6768	-0.4967	15.5368	-0.4641	46.2368	-0.4656
23.6776	-0.5589	15.5376	-0.5222	46.2376	-0.5238
23.6784	-0.5001	15.5384	-0.4673	46.2384	-0.4688
23.6792	-0.429	15.5392	-0.4008	46.2392	-0.4021
23.68	-0.5836	15.54	-0.5453	46.24	-0.5471
23.6808	-0.6481	15.5408	-0.6055	46.2408	-0.6075
23.6816	-0.5453	15.5416	-0.5095	46.2416	-0.5112
23.6824	-0.7067	15.5424	-0.6603	46.2424	-0.6624
23.6832	-0.7451	15.5432	-0.6962	46.2432	-0.6984
23.684	-0.6875	15.544	-0.6424	46.244	-0.6444
23.6848	-0.7609	15.5448	-0.711	46.2448	-0.7132
23.6856	-0.7508	15.5456	-0.7015	46.2456	-0.7037
23.6864	-0.7948	15.5464	-0.7426	46.2464	-0.745
23.6872	-0.7417	15.5472	-0.693	46.2472	-0.6952
23.688	-0.8242	15.548	-0.7701	46.248	-0.7726
23.6888	-0.7858	15.5488	-0.7342	46.2488	-0.7366
23.6896	-0.8298	15.5496	-0.7753	46.2496	-0.7778
23.6904	-0.8546	15.5504	-0.7985	46.2504	-0.8011
23.6912	-0.8693	15.5512	-0.8122	46.2512	-0.8148
23.692	-0.7801	15.552	-0.7289	46.252	-0.7312
23.6928	-0.814	15.5528	-0.7605	46.2528	-0.763
23.6936	-0.8693	15.5536	-0.8122	46.2536	-0.8148
23.6944	-0.8444	15.5544	-0.789	46.2544	-0.7915
23.6952	-0.7101	15.5552	-0.6635	46.2552	-0.6656
23.696	-0.7259	15.556	-0.6783	46.256	-0.6804
23.6968	-0.5747	15.5568	-0.5369	46.2568	-0.5386
23.6976	-0.6289	15.5576	-0.5876	46.2576	-0.5895
23.6984	-0.5611	15.5584	-0.5243	46.2584	-0.526
23.6992	-0.604	15.5592	-0.5643	46.2592	-0.5661
23.7	-0.49	15.56	-0.4578	46.26	-0.4593
23.7008	-0.5103	15.5608	-0.4768	46.2608	-0.4784
23.7016	-0.6966	15.5616	-0.6509	46.2616	-0.6529
23.7024	-0.5792	15.5624	-0.5412	46.2624	-0.5429
23.7032	-0.4911	15.5632	-0.4589	46.2632	-0.4604
23.704	-0.3387	15.564	-0.3165	46.264	-0.3175
23.7048	-0.3093	15.5648	-0.289	46.2648	-0.2899
23.7056	-0.4662	15.5656	-0.4356	46.2656	-0.437
23.7064	-0.2642	15.5664	-0.2469	46.2664	-0.2476
23.7072	-0.28	15.5672	-0.2616	46.2672	-0.2625
23.708	-0.1423	15.568	-0.1329	46.268	-0.1334
23.7088	-0.2043	15.5688	-0.1909	46.2688	-0.1915
23.7096	-0.2303	15.5696	-0.2152	46.2696	-0.2159
23.7104	-0.0903	15.5704	-0.0844	46.2704	-0.0847
23.7112	-0.1513	15.5712	-0.1413	46.2712	-0.1418
23.712	-0.1807	15.572	-0.1688	46.272	-0.1694
23.7128	-0.0677	15.5728	-0.0633	46.2728	-0.0635

23 7136 -0 1088 15 5736 -0 1017 46 2736	
	-0.102
23.7144 -0.1016 15.5744 -0.0949 46.2744	-0.0952
23.7152 -0.0339 15.5752 -0.0316 46.2752	-0.0317
23.716 -0.0805 15.576 -0.0752 46.276	-0.0755
23.7168 -0.0395 15.5768 -0.0369 46.2768	-0.0371
23.7176 -0.0643 15.5776 -0.0601 46.2776	-0.0603
23.7184 -0.0555 15.5784 -0.0519 46.2784	-0.0521
<u>23.7192</u> -0.0982 15.5792 -0.0917 46.2792	-0.092
23.72 -0.0427 15.58 -0.0399 46.28	-0.0401
23.7208 -0.0101 15.5808 -0.0095 46.2808	-0.0095
23.7216 -0.0337 15.5816 -0.0314 46.2816	-0.0315
23.7224 -0.0045 15.5824 -0.0042 46.2824	-0.0043
23.7232 -0.0245 15.5832 -0.0229 46.2832	-0.0229
23.724 -0.0194 15.584 -0.0181 46.284	-0.0182
23.7248 0.0045 15.5848 0.0042 46.2848	0.0043
23.7256 -0.0339 15.5856 -0.0316 46.2856	-0.0317
23.7264 0.0045 15.5864 0.0042 46.2864	0.0043
23.7272 -0.0086 15.5872 -0.008 46.2872	-0.008
23.728 -0.0081 15.588 -0.0072 46.288	-0.0069
23.7288 -0.007 15.5888 -0.0066 46.2888	-0.0066
23.7296 0.0147 15.5896 0.0137 46.2896	0.0137
23.7304 -0.0226 15.5904 -0.0211 46.2904	-0.0212
23.7312 -0.0043 15.5912 -0.0041 46.2912	-0.0041
23.732 -0.0192 15.592 -0.0179 46.292	-0.018
23.7328 0.0007 15.5928 0.0007 46.2928	0.0007
23.7336 0.0147 15.5936 0.0137 46.2936	0.0137
23.7344 -0.0011 15.5944 -0.0011 46.2944	-0.0011
23.7352 -0.0045 15.5952 -0.0042 46.2952	-0.0043
23.736 0.002 15.596 0.0018 46.296	0.0018
Lần 10 Lần 11 Lầ	in 12
t \ddot{W} [m/s ²].10 ⁻³ t \ddot{W} [m/s ²].10 ⁻³ t	₩ [m/s²].10 ⁻³
23.64 0 15.5 0.00006 46.2	0.00005
23.6408 0.0001 15.5008 0.0001 46.2008	0.0001
23.6416 0.03 15.5016 0.0275 46.2016	0.0286
23.6424 -0.0046 15.5024 -0.0043 46.2024	-0.0044
23.6432 0.0404 15.5032 0.0371 46.2032	0.0386
23.644 0.0003 15.504 0.0003 46.204	0.0003
23.6448 0.015 15.5048 0.0137 46.2048	0.0143
23.64560.040415.50560.027446.2056	-0.0386
23.6464 0.0196 15.5064 0.018 46.2056	0.0188
23.6464 0.0196 15.5064 0.018 46.2056 23.6472 0.0103 15.5072 0.0095 46.2072	0.0188 0.0099
23.6464 0.0196 15.5064 0.018 46.2054 23.6472 0.0103 15.5072 0.0095 46.2072 23.648 0.0196 15.508 0.018 46.208	0.0188 0.0099 0.0188
23.6464 0.0196 15.5064 0.018 46.2056 23.6472 0.0103 15.5072 0.0095 46.2072 23.648 0.0196 15.508 0.018 46.208 23.6488 -0.0231 15.5088 -0.0212 46.2088	0.0188 0.0099 0.0188 -0.0221
23.6464 0.0196 15.5064 0.018 46.2056 23.6464 0.0196 15.5064 0.018 46.2064 23.6472 0.0103 15.5072 0.0095 46.2072 23.648 0.0196 15.508 0.018 46.208 23.6488 -0.0231 15.5088 -0.0212 46.2088 23.6496 0.03 15.5096 0.0275 46.2096	0.0188 0.0099 0.0188 -0.0221 0.0286
23.6464 0.0196 15.5064 0.018 46.2056 23.6464 0.0196 15.5064 0.018 46.2064 23.6472 0.0103 15.5072 0.0095 46.2072 23.648 0.0196 15.508 0.018 46.208 23.6488 -0.0231 15.5088 -0.0212 46.2088 23.6496 0.03 15.5096 0.0275 46.2096 23.6504 -0.0165 15.5104 -0.0151 46.2104	0.0188 0.0099 0.0188 -0.0221 0.0286 -0.0157
23.6450 -0.0404 15.5050 -0.0371 46.2050 23.6464 0.0196 15.5064 0.018 46.2064 23.6472 0.0103 15.5072 0.0095 46.2072 23.648 0.0196 15.508 0.018 46.208 23.6488 -0.0231 15.5088 -0.0212 46.2088 23.6496 0.03 15.5096 0.0275 46.2096 23.6504 -0.0165 15.5104 -0.0151 46.2104 23.6512 0.015 15.5112 0.0137 46.2112	0.0188 0.0099 0.0188 -0.0221 0.0286 -0.0157 0.0143
23.6450 -0.0404 15.5050 -0.0371 46.2050 23.6464 0.0196 15.5064 0.018 46.2064 23.6472 0.0103 15.5072 0.0095 46.2072 23.648 0.0196 15.508 0.018 46.208 23.6488 -0.0231 15.5088 -0.0212 46.2088 23.6496 0.03 15.5096 0.0275 46.2096 23.6504 -0.0165 15.5104 -0.0151 46.2104 23.6512 0.015 15.5112 0.0137 46.2112 23.652 -0.0188 15.512 -0.0172 46.212	0.0188 0.0099 0.0188 -0.0221 0.0286 -0.0157 0.0143 -0.018
23.6430 -0.0404 13.5050 -0.0371 46.2050 23.6464 0.0196 15.5064 0.018 46.2064 23.6472 0.0103 15.5072 0.0095 46.2072 23.648 0.0196 15.508 0.018 46.208 23.6488 -0.0231 15.5088 -0.0212 46.2088 23.6496 0.03 15.5096 0.0275 46.2096 23.6504 -0.0165 15.5104 -0.0151 46.2104 23.6512 0.015 15.5112 0.0137 46.2112 23.652 -0.0188 15.512 -0.0172 46.212 23.6528 0.0103 15.5128 0.0095 46.2128	0.0188 0.0099 0.0188 -0.0221 0.0286 -0.0157 0.0143 -0.018 0.0099

23.6544	-0.0103	15.5144	-0.0095	46.2144	-0.0099
23.6552	-0.0046	15.5152	-0.0043	46.2152	-0.0044
23.656	-0.0432	15.516	-0.0397	46.216	-0.0414
23.6568	-0.0103	15.5168	-0.0095	46.2168	-0.0099
23.6576	-0.056	15.5176	-0.0514	46.2176	-0.0536
23.6584	-0.03	15.5184	-0.0275	46.2184	-0.0286
23.6592	-0.0733	15.5192	-0.0672	46.2192	-0.0701
23.66	-0.0404	15.52	-0.0371	46.22	-0.0386
23.6608	-0.0905	15.5208	-0.083	46.2208	-0.0866
23.6616	-0.0692	15.5216	-0.0635	46.2216	-0.0662
23.6624	-0.0853	15.5224	-0.0783	46.2224	-0.0816
23.6632	-0.1246	15.5232	-0.1143	46.2232	-0.1191
23.664	-0.0807	15.524	-0.074	46.224	-0.0772
23.6648	-0.1557	15.5248	-0.1428	46.2248	-0.1489
23.6656	-0.241	15.5256	-0.2211	46.2256	-0.2305
23.6664	-0.1868	15.5264	-0.1714	46.2264	-0.1787
23.6672	-0.2606	15.5272	-0.2391	46.2272	-0.2493
23.668	-0.1753	15.528	-0.1608	46.228	-0.1677
23.6688	-0.1846	15.5288	-0.1693	46.2288	-0.1765
23.6696	-0.2688	15.5296	-0.2465	46.2296	-0.257
23.6704	-0.3864	15.5304	-0.3544	46.2304	-0.3695
23.6712	-0.3183	15.5312	-0.292	46.2312	-0.3044
23.672	-0.3426	15.532	-0.3143	46.232	-0.3276
23.6728	-0.3057	15.5328	-0.2804	46.2328	-0.2923
23.6736	-0.4048	15.5336	-0.3714	46.2336	-0.3872
23.6744	-0.4326	15.5344	-0.3968	46.2344	-0.4137
23.6752	-0.3807	15.5352	-0.3492	46.2352	-0.3641
23.676	-0.5029	15.536	-0.4614	46.236	-0.481
23.6768	-0.5075	15.5368	-0.4655	46.2368	-0.4853
23.6776	-0.571	15.5376	-0.5238	46.2376	-0.546
23.6784	-0.511	15.5384	-0.4687	46.2384	-0.4886
23.6792	-0.4383	15.5392	-0.402	46.2392	-0.4191
23.68	-0.5963	15.54	-0.547	46.24	-0.5703
23.6808	-0.6621	15.5408	-0.6074	46.2408	-0.6332
23.6816	-0.5572	15.5416	-0.5111	46.2416	-0.5328
23.6824	-0.722	15.5424	-0.6623	46.2424	-0.6905
23.6832	-0.7613	15.5432	-0.6983	46.2432	-0.728
23.684	-0.7024	15.544	-0.6443	46.244	-0.6717
23.6848	-0.7774	15.5448	-0.7131	46.2448	-0.7435
23.6856	-0.7671	15.5456	-0.7036	46.2456	-0.7336
23.6864	-0.812	15.5464	-0.7449	46.2464	-0.7765
23.6872	-0.7578	15.5472	-0.6951	46.2472	-0.7247
23.688	-0.8421	15.548	-0.7724	46.248	-0.8053
23.6888	-0.8028	15.5488	-0.7364	46.2488	-0.7678
23.6896	-0.8478	15.5496	-0.7777	46.2496	-0.8107
23.6904	-0.8732	15.5504	-0.801	46.2504	-0.8351
23.6912	-0.8882	15.5512	-0.8147	46.2512	-0.8494
23.692	-0.797	15.552	-0.7311	46.252	-0.7622
23.6928	-0.8316	15.5528	-0.7629	46.2528	-0.7953

23 6036	-0.8883	15 5536	_0.81/7	46 2536	-0.8404
23.6944	-0.8627	15.5544	-0.7914	46.2544	-0.8251
23 6952	-0 7255	15 5552	-0.6655	46 2552	-0 6938
23.696	-0.7416	15.556	-0.6803	46.256	-0.7093
23.6968	-0.5871	15.5568	-0.5386	46.2568	-0.5615
23.6976	-0.6425	15.5576	-0.5894	46.2576	-0.6144
23.6984	-0.5733	15.5584	-0.5259	46.2584	-0.5483
23.6992	-0.6171	15.5592	-0.566	46.2592	-0.5901
23.7	-0.5006	15.56	-0.4592	46.26	-0.4788
23.7008	-0.5214	15.5608	-0.4783	46.2608	-0.4986
23.7016	-0.7117	15.5616	-0.6528	46.2616	-0.6806
23.7024	-0.5918	15.5624	-0.5428	46.2624	-0.5659
23.7032	-0.5018	15.5632	-0.4603	46.2632	-0.4799
23.704	-0.3461	15.564	-0.3175	46.264	-0.331
23.7048	-0.316	15.5648	-0.2899	46.2648	-0.3022
23.7056	-0.4764	15.5656	-0.437	46.2656	-0.4556
23.7064	-0.2699	15.5664	-0.2476	46.2664	-0.2581
23.7072	-0.2861	15.5672	-0.2624	46.2672	-0.2736
23.708	-0.1454	15.568	-0.1333	46.268	-0.139
23.7088	-0.2087	15.5688	-0.1915	46.2688	-0.1996
23.7096	-0.2353	15.5696	-0.2159	46.2696	-0.2251
23.7104	-0.0923	15.5704	-0.0847	46.2704	-0.0883
23.7112	-0.1545	15.5712	-0.1418	46.2712	-0.1478
23.712	-0.1846	15.572	-0.1693	46.272	-0.1765
23.7128	-0.0692	15.5728	-0.0635	46.2728	-0.0662
23.7136	-0.1112	15.5736	-0.102	46.2736	-0.1063
23.7144	-0.1038	15.5744	-0.0952	46.2744	-0.0993
23.7152	-0.0346	15.5752	-0.0317	46.2752	-0.0331
23.716	-0.0823	15.576	-0.0755	46.276	-0.0787
23.7168	-0.0404	15.5768	-0.0371	46.2768	-0.0386
23.7176	-0.0657	15.5776	-0.0603	46.2776	-0.0628
23.7184	-0.0567	15.5784	-0.0521	46.2784	-0.0543
23.7192	-0.1003	15.5792	-0.092	46.2792	-0.0959
23.72	-0.0437	15.58	-0.0401	46.28	-0.0418
23.7208	-0.0103	15.5808	-0.0095	46.2808	-0.0099
23.7216	-0.0344	15.5816	-0.0315	46.2816	-0.0329
23.7224	-0.0046	15.5824	-0.0043	46.2824	-0.0044
23.7232	-0.025	15.5832	-0.0229	46.2832	-0.0239
23.724	-0.0198	15.584	-0.0182	46.284	-0.019
23.7248	0.0046	15.5848	0.0043	46.2848	0.0044
23.7256	-0.0346	15.5856	-0.0317	46.2856	-0.0331
23.7264	0.0046	15.5864	0.0043	40.2864	0.0044
23.7272	-0.0088	15.5872	-0.008	46.2872	-0.0084
23.128	-0.0081	15.588	-0.0071	40.200	-0.0070
23.1200	-0.0072	15.5888	-0.0066	40.2888	-0.0069
23.7290	0.015	15.5896	0.0137	40.2890	0.0143
23.7304	-0.0231	15.5904	-0.0212	46.2904	-0.0221
23.7312	-0.0044	15.5912	-0.0041	46.2912	-0.0042
23.732	-0.0196	15.592	-0.018	46.292	-0.0188

23.7328	0.0007	15.5928	0.0007	46.2928	0.0007
23.7336	0.015	15.5936	0.0137	46.2936	0.0143
23.7344	-0.0012	15.5944	-0.0011	46.2944	-0.0011
23.7352	-0.0046	15.5952	-0.0043	46.2952	-0.0044
23.736	0.002	15.596	0.0018	46.296	0.0019
I	lần 13		ần 14	L	ần 15
t	ẅ [m/s²].10 ⁻³	t	ẅ [m/s²].10⁻³	t	₩ [m/s²].10 ⁻³
23.64	0.00006	15.5	0.00008	46.2	0
23.6408	0.0001	15.5008	0.0001	46.2008	0.0001
23.6416	0.0296	15.5016	0.0299	46.2016	0.0297
23.6424	-0.0046	15.5024	-0.0046	46.2024	-0.0046
23.6432	0.0399	15.5032	0.0403	46.2032	0.04
23.644	0.0003	15.504	0.0003	46.204	0.0003
23.6448	0.0148	15.5048	0.015	46.2048	0.0148
23.6456	-0.0399	15.5056	-0.0403	46.2056	-0.04
23.6464	0.0194	15.5064	0.0196	46.2064	0.0194
23.6472	0.0102	15.5072	0.0103	46.2072	0.0102
23.648	0.0194	15.508	0.0196	46.208	0.0194
23.6488	-0.0228	15.5088	-0.0231	46.2088	-0.0229
23.6496	0.0296	15.5096	0.0299	46.2096	0.0297
23.6504	-0.0163	15.5104	-0.0164	46.2104	-0.0163
23.6512	0.0148	15.5112	0.015	46.2112	0.0148
23.652	-0.0186	15.512	-0.0188	46.212	-0.0186
23.6528	0.0102	15.5128	0.0103	46.2128	0.0102
23.6536	-0.0301	15.5136	-0.0304	46.2136	-0.0302
23.6544	-0.0102	15.5144	-0.0103	46.2144	-0.0102
23.6552	-0.0046	15.5152	-0.0046	46.2152	-0.0046
23.656	-0.0427	15.516	-0.0432	46.216	-0.0429
23.6568	-0.0102	15.5168	-0.0103	46.2168	-0.0102
23.6576	-0.0553	15.5176	-0.0559	46.2176	-0.0555
23.6584	-0.0296	15.5184	-0.0299	46.2184	-0.0297
23.6592	-0.0724	15.5192	-0.0732	46.2192	-0.0727
23.66	-0.0399	15.52	-0.0403	46.22	-0.04
23.6608	-0.0894	15.5208	-0.0904	46.2208	-0.0897
23.6616	-0.0684	15.5216	-0.0691	46.2216	-0.0686
23.6624	-0.0843	15.5224	-0.0852	46.2224	-0.0846
23.6632	-0.1231	15.5232	-0.1244	46.2232	-0.1235
23.664	-0.0797	15.524	-0.0806	46.224	-0.08
23.6648	-0.1538	15.5248	-0.1555	46.2248	-0.1543
23.6656	-0.2381	15.5256	-0.2407	46.2256	-0.2389
23.6664	-0.1846	15.5264	-0.1866	46.2264	-0.1852
23.6672	-0.2575	15.5272	-0.2603	46.2272	-0.2583
23.668	-0.1/32	15.528	-0.1/51	46.228	-0.1/38
23.6688	-0.1824	15.5288	-0.1844	46.2288	-0.183
23.6696	-0.2656	15.5296	-0.2684	46.2296	-0.2664
23.6704	-0.3818	15.5304	-0.3859	46.2304	-0.383
23.6/12	-0.3145	15.5312	-0.31/9	46.2312	-0.3155
23.672	-0.3385	15.532	-0.3422	46.232	-0.3396
ZJ.0/ZÖ	-0.302	10.0328	-0.3053	40.2328	-0.303

23.6736	-0.4	15.5336	-0.4043	46.2336	-0.4013
23.6744	-0.4274	15.5344	-0.432	46.2344	-0.4288
23.6752	-0.3761	15.5352	-0.3802	46.2352	-0.3773
23.676	-0.4969	15.536	-0.5023	46.236	-0.4985
23.6768	-0.5014	15.5368	-0.5068	46.2368	-0.503
23.6776	-0.5642	15.5376	-0.5703	46.2376	-0.5659
23.6784	-0.5049	15.5384	-0.5103	46.2384	-0.5064
23.6792	-0.433	15.5392	-0.4377	46.2392	-0.4344
23.68	-0.5892	15.54	-0.5955	46.24	-0.591
23.6808	-0.6542	15.5408	-0.6613	46.2408	-0.6563
23.6816	-0.5505	15.5416	-0.5565	46.2416	-0.5522
23.6824	-0.7134	15.5424	-0.7211	46.2424	-0.7157
23.6832	-0.7522	15.5432	-0.7603	46.2432	-0.7545
23.684	-0.694	15.544	-0.7015	46.244	-0.6962
23.6848	-0.7681	15.5448	-0.7764	46.2448	-0.7705
23.6856	-0.7579	15.5456	-0.7661	46.2456	-0.7603
23.6864	-0.8023	15.5464	-0.811	46.2464	-0.8048
23.6872	-0.7487	15.5472	-0.7568	46.2472	-0.7511
23.688	-0.832	15.548	-0.841	46.248	-0.8346
23.6888	-0.7932	15.5488	-0.8018	46.2488	-0.7957
23.6896	-0.8376	15.5496	-0.8467	46.2496	-0.8403
23.6904	-0.8628	15.5504	-0.8721	46.2504	-0.8655
23.6912	-0.8776	15.5512	-0.887	46.2512	-0.8803
23.692	-0.7875	15.552	-0.796	46.252	-0.79
23.6928	-0.8217	15.5528	-0.8306	46.2528	-0.8243
23.6936	-0.8776	15.5536	-0.887	46.2536	-0.8803
23.6944	-0.8524	15.5544	-0.8617	46.2544	-0.8551
23.6952	-0.7168	15.5552	-0.7246	46.2552	-0.7191
23.696	-0.7328	15.556	-0.7407	46.256	-0.7351
23.6968	-0.5801	15.5568	-0.5864	46.2568	-0.5819
23.6976	-0.6348	15.5576	-0.6417	46.2576	-0.6368
23.6984	-0.5665	15.5584	-0.5726	46.2584	-0.5682
23.6992	-0.6097	15.5592	-0.6163	46.2592	-0.6116
23.7	-0.4946	15.56	-0.5	46.26	-0.4962
23.7008	-0.5152	15.5608	-0.5207	46.2608	-0.5168
23.7016	-0.7032	15.5616	-0.7108	46.2616	-0.7054
23.7024	-0.5847	15.5624	-0.591	46.2624	-0.5865
23.7032	-0.4958	15.5632	-0.5011	46.2632	-0.4974
23.704	-0.342	15.564	-0.3457	46.264	-0.343
23.7048	-0.3123	15.5648	-0.3156	46.2648	-0.3132
23.7056	-0.4707	15.5656	-0.4758	46.2656	-0.4722
23.7064	-0.2667	15.5664	-0.2696	46.2664	-0.2675
23.7072	-0.2827	15.5672	-0.2857	46.2672	-0.2835
23.708	-0.1436	15.568	-0.1452	46.268	-0.1441
23.7088	-0.2063	15.5688	-0.2085	46.2688	-0.2069
23.7096	-0.2325	15.5696	-0.235	46.2696	-0.2333
23.7104	-0.0912	15.5704	-0.0922	46.2704	-0.0915
23.7112	-0.1527	15.5712	-0.1543	46.2712	-0.1532
23.712	-0.1824	15.572	-0.1844	46.272	-0.183

00 7400	0.0004	15 5700	0.0004	40.0700	0.0000
23.7128	-0.0684	15.5728	-0.0691	46.2728	-0.0686
23.7136	-0.1099	15.5736	-0.111	46.2736	-0.1102
23.7144	-0.1026	15.5744	-0.1037	46.2744	-0.1029
23.7152	-0.0342	15.5752	-0.0346	46.2752	-0.0343
23.716	-0.0813	15.576	-0.0822	46.276	-0.0816
23.7168	-0.0399	15.5768	-0.0403	46.2768	-0.04
23.7176	-0.0649	15.5776	-0.0656	46.2776	-0.0651
23.7184	-0.0561	15.5784	-0.0567	46.2784	-0.0562
23.7192	-0.0991	15.5792	-0.1002	46.2792	-0.0994
23.72	-0.0431	15.58	-0.0436	46.28	-0.0433
23.7208	-0.0102	15.5808	-0.0103	46.2808	-0.0102
23.7216	-0.034	15.5816	-0.0343	46.2816	-0.0341
23.7224	-0.0046	15.5824	-0.0046	46.2824	-0.0046
23.7232	-0.0247	15.5832	-0.025	46.2832	-0.0248
23.724	-0.0196	15.584	-0.0198	46.284	-0.0197
23.7248	0.0046	15.5848	0.0046	46.2848	0.0046
23.7256	-0.0342	15.5856	-0.0346	46.2856	-0.0343
23.7264	0.0046	15.5864	0.0046	46.2864	0.0046
23.7272	-0.0087	15.5872	-0.0087	46.2872	-0.0087
23.728	-0.00092	15.588	-0.0074	46.288	-0.0078
23.7288	-0.0071	15.5888	-0.0072	46.2888	-0.0071
23.7296	0.0148	15.5896	0.015	46.2896	0.0148
23.7304	-0.0228	15.5904	-0.0231	46.2904	-0.0229
23.7312	-0.0044	15.5912	-0.0044	46.2912	-0.0044
23.732	-0.0194	15.592	-0.0196	46.292	-0.0194
23.7328	0.0007	15.5928	0.0007	46.2928	0.0007
23.7336	0.0148	15.5936	0.015	46.2936	0.0148
23.7344	-0.0011	15.5944	-0.0012	46.2944	-0.0012
23.7352	-0.0046	15.5952	-0.0046	46.2952	-0.0046
23.736	0.002	15.596	0.002	46.296	0.002