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Final Conclusions and Suggested Extensions

Summary of major findings and contributions

Major contributions of the thesis are as follows.
1. Evaluating nonlinear HPA models regarding to problem of simulating in-

termodulation products (IMP). Proposing the polysine model for precise

simulation of IMPs, especially for signals with complex structures.

2. Proposing the use of predistortion schemes for MIMO-STBC systems

based on thorough analyses of the nonlinear HPA effects on these systems

with transmit/receive filters introduced in the model.

3. Proposing an automatic, efficient phase estimation and compensation di-

agram for MIMO-STBC systems using M-QAM signaling incurred with

nonlinear distortions from different HPA types of both TWTAs and SS-

PAs.

Suggested extensions

1. The simulation results have initially confirmed the advantages of the pro-

posed polysine model as well as the pre-compensation and pos-compensation

schemes for nonlinear distortions, the hardware experimental tests will

solidify the achieved results and confirm the practical applicability of

these proposals;

2. Researches on the effects of nonlinear distortions for updated MIMO

technologies and systems such as spatial modulation, multi-user MIMO,

etc. are still very limited;

3. Another research direction that has not been widely discussed for MIMO-

STBC systems is the evaluation of system performance degradation under

the simultaneous effects of nonlinear distortions and other effects such

as linear distortions, or hardware impairments like local oscillator phase

noise, sampling jitter, sampling frequency offset, carrier frequency offset,

IQ imbalance, RF coupling, cross-talk,...

4. The M-APSK modulation schemes are preferred in the new satellite com-

munication standards since they have many advantages over M-QAM

schemes. However, nonlinear distortions with the phase rotation effect

are always present. The ability to apply a phase estimation and compen-

sation solution for these M-APSK schemes is still left open.
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INTRODUCTION

1. Background of research:

A practical high power amplifier (HPA) does have a nonlinear input-output

characteristic, thus, distorting the output signal [45, 55]. Hence, modeling and

analyzing nonlinear HPA transfer functions, and specifically, investigating ef-

fects of these characteristics to modern digital communication systems are still

contemporary topics widely studied. Thoughtful understanding the causes of

errors in simulating intermodulation products for conventional models such

as Saleh, Rapp, polynomial,... and overcoming these defects by constructing a

suitable HPA model are then really strong but challenging research motivations.

For SISO systems, [1, 4, 11, 13] resolved several nonlinear HPA-related prob-

lems such as evaluating separate/concurrent effects of nonlinear/linear distor-

tions, applying optimum additional phase shifting solution. Recently, [3] ex-

tended these results to MIMO-STBC systems accenting on satellite communi-

cations. However, there are several topics which are not rigorously discussed

and also are not extended to new directions. Therefore, this work entitled �Non-

linear distortions and countermeasures for performance improvements in con-

temporary radio communication systems�, focuses on dealing to such problems.

2. Major findings and contributions:

1. Evaluating nonlinear HPA models regarding to problem of simulating in-

termodulation products (IMP). Proposing the polysine model for precise

simulation of IMPs, especially for signals with complex structures.

2. Proposing the use of predistortion schemes for MIMO-STBC systems

based on thorough analyses of the nonlinear HPA effects on these systems

with transmit/receive filters introduced in the model.

3. Approximating nonlinear phase distortion by a linear model. Based on

that, proposing an automatic, efficient phase estimation and compensa-

tion diagram for MIMO-STBC systems using M-QAM signaling.

3. Thesis outline:

This thesis includes about 120 pages and is organized in four chapters except

for the foreword, conclusion and references.
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Chapter 1

Introduction to Nonlinear Distortion and

Practical MIMO-STBC Systems

1.1 Main causes of nonlinear distortions in radio communi-

cation systems

In practice, radio transmitters often have structure consisting of several

typical stages such as baseband signal processing, digital-to-analog conver-

sion, modulation, frequency up-conversion, filtering, amplifications, antenna,...

Among these parts, radio frequency HPA is one of the most power-consuming

components and is the main cause of nonlinear distortions [9, 22, 23, 55].

1.2 Nonlinear HPA model classification

Figure 1.1 describes the HPA model classification with related features.

Here, models marked by gray will be studied in detail throughout the thesis.

Let's r(t) and φ(t) are the amplitude modulation (AM) and phase modulation

(PM) of the input x(t) = r(t)ejφ(t). The input-output nonlinear relation F (.)

could be represented by AM-AM and AM-PM functions Fa(r), Fp(r) as

y(t) = F (x(t)) = Fa(r(t))ej(φ+Fp(r(t))). (1.1)

• Ideal model is the perfectly linearized model for HPA with

y = gx, or equivalently, Fa(r) = gr, Fp(r) = 0, (1.2)

where, x = x(t), y = y(t), and g > 0 is the (real-valued) linear gain.
• Linearized model is the simplest HPA model without considering output

magnitude clipping for nonlinear characteristic

y = gx+ n, (1.3)

where, g has the same meaning as in (1.2), n is an uncorrelated nonlinear

distortion approximated by a Gaussian noise [16, 69].
• Soft limiter is the simplest HPA model considering output clipping [52].

Fa(r) =

r, |r| < Ais

Ais, |r| > Ais,
(1.4)

Fp(r) = 0, (1.5)
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conversions such as for Saleh or modified Ghorbani models.
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Figure 4.5: TD(IBO) with/without phase compensation at BER = 10−3.

4.4.4 Bit error ratio

From Figure 4.6, the savings of Eb/N0 for phase-compensated systems with

nonlinearities having small phase conversions are still significant (more than 2

dB for modified Saleh model and more than 3 dB for modified Rapp model

at BER = 10−3). The gains for phase-compensated systems with strong phase

conversions (with Saleh, or modified Ghorbani models) are really huge.
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Figure 4.6: BER(Eb/N0) with/without phase compensation.

4.5 Summary of chapter 4

In this chapter, the effects of nonlinear phase distortion incurred by HPAs

on the MIMO-STBC system are analyzed in detail. Based on that, a phase

estimation algorithm and phase compensation scheme are proposed. The effec-

tiveness of proposed scheme is examined using a series of typical HPA models.
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Table 4.1: Estimated phases and their variances for different nonlinearities.
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4.4.2 Optimum proximity of the estimated phases

The phase compensation optimity is depicted in Figure 4.4, where each curve

is noted with a solid square marker corresponding to the compensation using

estimated phase. Though being incurred by different nonlinearities depending

on the HPA models, the optimal compensating phases always approximate to

φ33 as analysed. In general, the proposed phase compensations are suboptimal

but performance gains in terms of BER improvements are promising, especially

for cases with larger phase rotations (for Saleh or modified Ghorbani models).
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Figure 4.4: BER versus compensated phase angle: a) Saleh and modified

Ghorbani models; b) Modified Saleh and modified Rapp models.

4.4.3 Total degradation

As clearly seen from Figure 4.5, huge TD gains could be achieved when ap-

plying the phase compensations especially for nonlinearities with strong phase
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where, Ais is the input saturation level (voltage) which in this case with

unity gain g = 1, is also the output saturation level, Aos = Ais.
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Figure 1.1: HPA modeling classification.

Figure 1.2 illustrates the AM-AM and AM-PM for typical input/output

powers, Pout = Fa(Pin), and phase shift ∆Φout = Fp(Pin). The quantities rep-

resented here will be widely used in quantitative analyses in later chapters.

1.3 Nonlinear HPA distortion effects in SISO systems

In fact, for single-carrier SISO systems, under the influence of HPA nonlinear

characteristics, several complex-interrelated effects will be generated with non-

constant envelope input signals. However, for simplification in analyses, it can

be isolated into separate effects as follows [2]: (a) Creating spectrum regrowth

and nonlinear noise; (b) Warping constellation; and (c) Creating nonlinear ISI.

1.4 Multiple-input multiple-output systems

The concept of multiple-input multiple-output began to appear in the mid-

1950s in circuit and signal filtering theories for describing diagrams with multiple-

input/-output ports [26]. However, in the 1990s, this concept was put on a new
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Figure 1.2: Typical amplitude and phase characteristics of an HPA.

look, for a completely different signal processing technique [25], using to index

signals from different transmit/receive antennas �entering/exiting� into/from

the radio medium. Then, three new multi-antenna techniques have been devel-

oped: spatial diversity (SD), spatial multiplexing (SM), and smart antenna (SA).

1.5 MIMO in satellite communication systems

The satellite-to-ground great distances make the radio links actually become

keyhole channels, causing significant performance reduction [93]. Therefore, re-

searches relating to MIMO satellite communications (SatCom) are currently

focused on land mobile satellite (LMSat) systems exploiting the following di-

versity configurations: (a) Site; (b) Satellite; and (c) Polarization diversity.
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Figure 1.3: Dual-polarized MIMO LMSat system model.

Moreover, the general trend of MIMO LMSat studies accents to the use of

polarization diversity [8,20,36,49,59] due to recent advances in antenna design.

Analyzing the dual-polarization MIMO LMSat system performance has thor-

oughly been studied in [20,36,48,49,75], but most do not mention the practical

nonlinear HPAs, or introduce them into the system model for simulation but

do not perform any quantitative analyses or assessments. Next, effects of non-

linear HPAs to MIMO LMSat system shown in Figure 1.3 is analyzed briefly

to get an overview of the arising problems that will be dealt with in this thesis.

4

4.3.3 Harmonic approximation

Here, only the 4-th order harmonic in (4.6) is considered (N = 1),

X1 = 4A4(r) sin(4φ), X2 = −16A4(r) cos(4φ). (4.10)

Then A4(r) could be solved using the Lagrange multiplier method [79]

A4(r) = −λD4(r)/(2N4(r)), (4.11)

where, λ is a Lagrange multiplier, having no effect to the estimation result, and

N4(r) = 16

∫ 2π

0

sin2(4φ)p(r, φ)dφ, (4.12)

D4(r) = −16

∫ 2π

0

cos(4φ)p(r, φ)dφ. (4.13)

4.3.4 Biharmonic approximation

Here, both the 4-th and 8-th order harmonics are used (N = 2),

X1 = 4A4(r) sin(4φ) + 8A8(r) sin(8φ), (4.14)

X2 = −16A4(r) cos(4φ)− 64A8(r) cos(8φ). (4.15)

4.4 Performance evaluation of the phase estimation and phase

compensation scheme

System parameters are as generating Figure 4.3(a). Signals are transmitted

in frames of size 2K = 2000 symbols, and multiframe of size 100 frames. Their

phases are then estimated by (4.8) using biharmonic approximation.

4.4.1 Performance of the phase estimator

The estimation quality, in terms of estimation variance, var(φ̂0), is reliable.

With frame and multiframe sizes as set, for all cases, the standard deviation

is always smaller than 0.6o, which is a relatively small value for the phase esti-

mation problem, even for terrestrial digital microwave or satellite applications

[22, 61]. Moreover, in small phase rotation cases (modified Saleh or modified

Rapp models at larger IBOs), the standard deviation is always about one tenth

of the estimated value. Therefore, it is not necessary to increase the frame and

multiframe sizes to improve the estimation reliability.

21



4.3.2 Optimal blind feedforward phase estimation

The maximum likelihood (ML) estimation of rotated phase φ0 in (4.1) is

determined by maximizing, regarding to φ0 the log-likelihood function (LLF)

φ̂0 = arg max
φ0

LLF (φ0|{yk}), (4.2)

here, LLF (.) is given by

LLF (φ0 |{yk} ) =

2K∑
k=1

Fφ (φ0|yk), (4.3)

where, Fφ(φ0|y) is the probability density function of sample y = rejφ

Fφ(φ0|y) = log

 1

2πσ2M2

M∑
m=1,
n=1

e

(
− |re

j(φ−φ0)−sm−sn|2

2σ2

) . (4.4)

It is possible to recast (4.4) in the form of circular harmonic expansion [50] as

LLF (φ0|rejφ) =
A0(r)

2
+

∞∑
n=1

An(r) cos(nφ− nφ0 + θn(r)). (4.5)

After truncating (4.5), the target function is of the form

φ̂0 = arg max
φ0

Re

(
N∑
n=1

F4n({yk})e−j4nφ0

)
= arg max

φ0

f(φ0), (4.6)

By approximating the target function f(φ0) in (4.6) to the second order Taylor

series in the vicinity of φ0, assumed to be zero,

f(φ0) ≈ f(0) + φ0f
′(0) + φ2

0f
′′(0)/2→ max

φ0

, (4.7)

then, the maximum of this approximation is simply determined as

φ̂0 = −f ′(0)/f ′′(0), (4.8)

where, the first and second derivatives of the target function f(φ0) are given by

f ′(0) =

2K∑
k=1

X1k, f ′′(0) =

2K∑
k=1

X2k. (4.9)
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1.6 Nonlinear HPA distortion effects in MIMO systems

In addition to incurring similar effects as for conventional SISO systems,

additional detrimental effects arise in nonlinear MIMO systems. Consider the

MIMO-STBC Alamouti coding [7] with nonlinear HPAs as in Figure 1.4.
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Figure 1.4: Simplified MIMO system with nonlinear HPA.

The MIMO encoder outputs the encoding matrix X in the form of

X =

[
x1

x2

]
=

[
x1,k x1,k+1

x2,k x2,k+1

]
=

[
sk − s∗k+1

sk+1 s∗k

]
, (1.6)

Alamouti coding is an orthogonal design, namely

x1x
H
2 = [sk − s∗k+1]

[
s∗k+1

sk

]
= 0, (1.7)

This orthogonality will be broken if passing signals through nonlinear HPAs

x1x
H
2 = [F (sk) F (−s∗k+1)]

[
F (s∗k+1)

F (sk)

]
6= 0. (1.8)

Thus, the transmit diversity gain is deteriorated under the appearance of

non-orthogonal components due to nonlinear distortions. The problem will be-

come even more complicated when further considering the transmit/receive fil-

ters. The nonlinear ISI, generated from each individual transmit branch contin-

ues to affect orthogonality in a manner similar to what useful signals influence

shown above, or the nonlinear inter-antenna interference (non-orthogonality

components) continues to deteriorate receive signals in each antenna branch

under the memory effect of the receive matched filter. Thus, the system per-

formance is poly-degraded in an involved manner.

1.7 Summary of chapter 1

The background knowledge directly related to the research objects including

the nonlinear HPA model, MIMO techniques with specific implementations to

the LMSat systems, and the effects of nonlinear HPAs in MIMO communication

systems has been discussed in this chapter. These analyses have clearly shown

urgent issues and updated research directions that the thesis can pursue.
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Chapter 2

Nonlinear HPA Modeling and Proposed Polysine

Model

2.1 Introduction

Primitively, in 1980, Cann [17] introduced an instantaneous nonlinear model

for HPAs with variable knee sharpness, relatively convenient for analytical anal-

ysis and simulation. However, it must be 16 years later, Litva [62] discovered

that this model produces erroneous results for IMPs in the two-tone test. Other

studies further showed that this problem does occur particularly for the two-

tone testing signal and does not occur with other practically-used signals. The

following sections in this chapter will in turn proceed detailed analyses of aris-

ing problems and corresponding solutions for the HPA modeling complication.

2.2 Instantaneous nonlinear models

The original Cann instantaneous nonlinear model is given by [17]

y =
Aos · sgn(x)[

1 +
(
Aos
g|x|

)s]1/s =
gx[

1 +
(
g|x|
Aos

)s]1/s , (2.1)

where, sgn(.) is the sign operator; g is the small-signal (linear) gain; Aos is the

output saturation level; and s is the curve sharpness parameter. Four years after

the finding of Litva in 1996 [62], Loyka [65] discovered that the reason is the

use of modulus (|.|) function in (2.1), some of whose derivatives at zero do not

exist, are undefined, or are infinite. In other words, the function is non-analytic,

despite the deceptively smooth appearance of the plotted curves.

Cann then suggested an improved nonlinear instantaneous model as [18]

y =
Aos

s
ln

1 + es(gx/Aos+1)

1 + es(gx/Aos−1)
−Aos, (2.2)

The derivatives of new model (2.2) exist and well behave, even with fractional

s. Then, it eliminates the shortcomings of previous one (2.1). This is the ana-

lyticity and symmetry of this transfer function to resolve the problem.
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Figure 4.3: Receive signal constellations after matched filtering: a) Fully

characterized (3.4, 3.5); b) Approximated (4.1).

Gaussian-equivalent noise. This model will be discussed in more detail in the

following section with graphical illustration depicted in Figure 4.3(b).

4.3 Phase estimation problem

4.3.1 Gaussian approximation for the nonlinear model

In this work, fading channel effects is temporarily ignored and will be con-

sidered in future studies; then the channel coefficients could all be set to unity.

Further, by the analysis discussed in previous section, it is reasonable to ap-

proximate the signal in time slot k and k + 1 as

yk = (s̄k + s̄k+1)ejφ0 + nequk ,

yk+1 = (s̄∗k − s̄∗k+1)ejφ0 + nequk+1,
(4.1)

Noting that approximation (4.1) insists on the phase rotation while neglect-

ing the amplitude compression of nonlinear effects. Figure 4.3(b) illustrates this

approximation with phase rotation φ0 = 16.2◦, which is the phase conversion

of signal point (3, 3) in the 16-QAM constellation under the same nonlinearity

generating Figure 4.3(a). Regardless of the almost indistinguishable amplitude

compression (for large magnitude combined signals) in sub-figure 4.3(a), then

there is a close similarity of models (3.4), (3.5) and (4.1). This underlines for
the efficient estimation of phase rotation caused by HPA's discussed next.
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are focused in: Saleh model (2.3), (2.4); modified Saleh model (2.9), (2.10);

modified Ghorbani model (2.11), (2.12); modified Rapp model (2.5), (2.13).
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Figure 4.2: AM-AM (a) and AM-PM (b) characteristics of considered HPAs.

Figure 4.2 illustrates the amplitude and phase characteristics of all four mod-

els above with normalized input and output magnitudes to their corresponding

saturation levels for nonlinearity comparison purpose. Obviously, these charac-

teristics are quite different in terms of amplitude and especially of phase dis-

tortions. These nonlinearity dissimilarities could affect signal passed through

in very different extents and amounts; then, is the proposed phase estimator

affected. Details are further discussed in the following sections.

4.2.2 Phase rotation effect incurred by nonlinear HPAs

Receive signals after matched filtering, as fully described by (3.4) and (3.5),

are illustrated in Figure 4.3(a), resulted from simulation by parameters: 16-

QAM; SRRC filters with roll-off factor α = 0.2, input sampling rate Fd = 1,

output sampling rate Fs = 16Fd, group delay Dl = 10; HPA follows modified

Ghorbani model (2.11) and (2.12) with characteristics plotted in Figure 4.2,

IBO = 14 dB; Eb/N0 = 20 dB, automatic gain control used at receiving part.

It is further observed that, under the HPA's phase conversion effects, receive

signal clusters tend to be almost rotated by the same angle, approximating to

the phase conversion for the largest magnitude component signal. The reason

is that for every combined signal yl,k by (3.4) and (3.5), there are always com-

ponents with largest magnitudes, the main factor causing phase rotation for

yl,k. Therefore, it is reasonable to have good approximation of this nonlinear

system to the linear one affected by a fixed phase rotation and an additive
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2.3 Envelope nonlinear models

2.3.1 Saleh model

In 1981, Saleh introduced a closed-form TWTA model [84] including

Fa(r) =
αar

1 + βar2
, (2.3)

Fp(r) =
αpr

2

1 + βpr2
, (2.4)

where, r and Fa(r): input/output amplitudes, Fp(r): phase shift, αa: linear gain.

2.3.2 Rapp model

In 1991, Rapp proposed an envelope model for SSPA as [82]

Fa(r) =
gr[

1 +
(
gr
Aos

)2s]1/2s , (2.5)

where, r and Fa(r): input/output amplitudes, g: small-signal gain, Aos: output
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Figure 2.1: AM-AM functions of the Cann, Rapp, polynomial, odd-order

polynomial and polysine models fitted to the measured data.

saturation level, and s: sharpness. Though absence of modulus operator (|.|) in
the denominator, this model still incurs the problem as of (2.1).

2.3.3 Cann envelope model

Although originally developed as an instantaneous model, (2.2) can be used

equally as an envelope model, suitable for AM-AM characteristics of most SS-

PAs [31]. The approximations of Cann new model (2.2) and Rapp model (2.5)
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Table 2.1: Coefficients of the polynomial models (2.6), (2.7).

a1

30.02

a2 a3 a4 a5 a6 a7 a8 a9Model

(2.12)

(2.13)

-8.665 33.68

28.60 0 8.310

-40.19 12.39 0

0 -15.06 0

0 0 0

6.257 0 -0.872

to the real-world data are verified by curve fitting of these functions to the mea-

sured data from the L band Quasonix 10W amplifier [86]. Results are, for Rapp

model: g = 29.4, Aos = 30 [V], s = 4.15, Squared Error Sum (SES) σ2
e = 0.963; new

Cann model: g = 29.4, Aos = 30 [V], s = 8.9 and σ2
e = 1.786. For this particular

HPA, Rapp model is little better fitted than Cann model. Figure 2.1 illustrates

these fittings with the inclusion of other approximated curves discussed below.

2.3.4 Polynomial model

A complex polynomial power series of a finite order N is given by [31]:

y = F (x) =

N∑
n=1

an|x|n−1x =

N∑
n=1

anΨP
n [x], (2.6)

where, ΨP
n [x] = |x|n−1x: basis functions, and an: complex coefficients.

Model (2.6) is not analytic at r = |x| = 0 by the existence of modulus

operators (|.|). However, if even order coefficients a2n vanish, then for real-

valued x(t), (2.6) turns into the odd-order polynomial model of the form

y =

N∑
n=1

a2n−1|x|2(n−1)x =

N∑
n=1

a2n−1x
2n−1. (2.7)

Model (2.7) is clearly analytic at r = 0 and is used as a counter example

to model (2.6), showing that though having almost similar structure, they

give quite different results. The above HPA measured data is then used to fit

models (2.6) and (2.7), all with N = 5. Figure 2.1 depicts the approximated

characteristics with their corresponding parameters shown in Table 2.1.

2.3.5 Proposed polysine model

While remaining to be analytic, the trigonometric functions are better fitted

to data than the polynomial ones. Thus, we propose a nonlinear model as

y =

N∑
n=1

an sin(bnx), (2.8)

where, an and bn are correspondingly amplitude and phase coefficients.
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Chapter 4

Automatic Phase Estimation and Compensation

for Nonlinear Distortions due to HPAs in

MIMO-STBC Systems

4.1 Overview

Driven by the effectiveness of Sergienko's method for phase estimation in

linear SISOM-QAM systems [78,79] and based on detailed analysis of the phase

rotation effects for the nonlinear MIMO-STBC signals, this chapter presents a

proposal of phase estimation and phase compensation for this nonlinear MIMO-

STBC system. Different nonlinearities are included in the analyses and simu-

lation to assess the effectiveness and reliability of the proposed schemes.

4.2 Phase rotation effect incurred by nonlinear HPAs for

the MIMO-STBC signals

4.2.1 Nonlinear MIMO-STBC system model with phase estimation

and compensation at the receiver

Figure 4.1 describes the proposed model, which is the supplementation of

Figure 3.1 with phase estimation/compensation blocks succeeding SRRC re-

ceive filters. The signal processing at the transmitter has already been analysed
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Figure 4.1: Proposed model with phase estimation and compensation.

in sub-section 3.2.1. However, since the most importance of the phase estima-

tion proposal is the Gaussian approximation for the non-Gaussian model [67],

then several typical HPA nonlinearities, including both AM-AM and especially,

AM-PM characteristics investigated in Chapter 2 will be used to generate di-

versified nonlinearities for the system in consideration. The following HPAs
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duced). Beyond this value, nonlinear distortions are too strong, and cannot be

compensated even with the ideal predistortion scheme (inverse Saleh), so the

quality of the system decreases very quickly.

3.4.2 Bit error ratio

The aggregate performance of the MIMO-STBC system with different pre-

distorters is expressed in terms of bit error rate by Eb/N0 as shown in Figure

3.6. At this IBO level, ideal Saleh predistortion is well approximated to the

perfect linear system (dashed curve with legend �Linear�).
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Figure 3.6: MISO-STBC system's BER(Eb/N0) with different predistorters.

3.5 Summary of chapter 3

This chapter aims to fully investigate the effects of nonlinear distortions on

MIMO-STBC system that have not been mentioned in previous publications.

The analyses show that the transmit/receive filtering significantly increases the

effects of nonlinear distortions in the system, the distribution of receive signals

become non-Gaussian and so it is not easy to perform the analytical analysis.

Thereby, limitations in the previous works are shown. Based on these analyses,

four predistortion schemes are proposed to apply to the system. These diagrams

are analyzed in detail and compared the performance through specific measures

including EVM, MER and BER.
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Table 2.2: Coefficients of the polysine model (2.8).

1

30.73

2 3 4 5n

an

bn

-0.6586 -0.1061

1.045 5.312 12.91

0.00955 0.1859

18.61 8.107

Table 2.3: Approximation performance of five models (SES σ2e).

Cann
(2.2)

1.786

Model

SES 0.963 0.533 0.346 0.032

Rapp
(2.11)

Polynomial
(2.12)

Polynomial
(2.13)

Polysine
(2.14)

(2.8) is fixed to the above HPA data, resulting in parameters in Table

2.2. The fitting performances of these five models are measured using the SES

listed in Table 2.3. Polysine model is almost one order of magnitude better in

SES than the rest. The fitting performance of these models will reflect in the

nonlinearity simulation results that are then discussed in section 2.4 bellow.

2.3.6 Other conventional HPA models

Beside the AM-AM, updated envelope models for SSPAs all consider the

AM-PM conversion. However, all models discussed below are not analytic at

r = 0 for most of the parameter sets and thus problem as of (2.5) still exists.
• Modified Saleh model: was proposed for LDMOS HPAs as [72]

Fa(r) =
αar√

1 + βar3
, (2.9)

Fp(r) =
αp

3
√

1 + r4
− εp, (2.10)

where, αa = 1.0536, βa = 0.086, αp = 0.161, and εp = 0.124 is a parameter set.

• Modified Ghorbani model: is suited for GaAs pHEMT HPAs [6] with

Fa(r) =
α1r

α2 + α3r
α2+1

1 + α4rα2
, (2.11)

Fp(r) =
β1r

β2 + β3r
β2+1

1 + β4rβ2
, (2.12)

where, the model parameters are given by α1 = 7.851, α2 = 1.5388, α3 = −0.4511,

α4 = 6.3531, β1 = 4.6388, β2 = 2.0949, β3 = −0.0325, β4 = 10.8217.

• Modified Rapp model: was introduced for GaAs pHEMT/CMOS HPAs at 60 GHz

band with AM-AM function of (2.5) and AM-PM described as [21]

Fp(r) =
αrq1(

1 +
(
r
β

)q2) , (2.13)

where, g = 16, Aos = 1.9, s = 1.1, α = −345, β = 0.17, q1 = q2 = 4.
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2.4 Applications in communication simulation

2.4.1 Simulation with two-tone testing signal

Two tones with f1,2 = 7, 10 [Hz] are used as inputs for 5 models. The IMP3/5

are shown in Figures 2.2(a), (b). New Cann, odd order polynomial and polysine

models result in the required slope of 3 and 5 [dB/dB] as expected [37, 64].

However, full order polynomial, Rapp models fail in simulating the IMPs.
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Figure 2.2: Third (a) and fifth (b) order IMPs of 5 models in Figure 2.1.

2.4.2 Simulation with continuous-spectrum testing signal

Consider the 1+7 APSK as input with SRRC filter. Figure 2.3(a) illustrates

Rx constellations by (2.2) and (2.7), manifesting relatively strong nonlinearity.

Figure 2.3(b) depicts spectral regrowths of all 5 models. Then, either non-

analyticity or larger approximation error could result in less accurate IMPs.
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Figure 2.3: Results created from 1+7-APSK: a) constellations; b) spectra.

2.5 Summary of chapter 2

It is now clear that nonlinear HPA models satisfying analyticity and well-

matching to measurements can ensure reliable simulation results.
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3.4 Performance evaluation for predistored MIMO-STBC

systems

Basic parameters of predistortion algorithms: Ideal inverse Saleh using 10-

bit LUT; adaptive secant method initialized by PD0 = 0, PD1 = 1, abso-

lute recursive error |PDm − PDm+1| < 10−6; adaptive Newton method initial-

ized by (Pa, Pp)0 = (0, 0), (Pa, Pp)1 = (1, 1), absolute recursive error |(Pa, Pp)m −
(Pa, Pp)m+1| 6 10−2; LMS polynomial approximation method using amplitude

polynomial of order 5, phase polynomial of order 4, amplitude error εa 6 10−5,

phase error εp 6 10−6, adaptive step sizes determined by their corresponding

errors, µa(m) = |ea(m)|/2, µp(m) = |ep(m)|/2. All adaptive algorithms have same

maximum iterations Nite 6 50, avoiding the case of unsatisfying error conditions.
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Figure 3.5: MIMO-STBC system's EVM(IBO) with different predistorters.

3.4.1 Error vector module

Figure 3.5 depicts EVMs versus IBO of systems: ideal inverse Saleh (LUT),

soft envelope (SEL), adaptive secant method (Secant), adaptive Newton method

(Newton), adaptive LMS polynomial approximation (Polynomial), and none

predistortion (HPA only). The ability to improve the signal quality of the pre-

distortion algorithms also decreases in this order. When using predistortion, at

least the HPA operating point can reliably be pushed to a certain threshold of

IBO (around 6 ∼ 7 dB, for the simulation parameter set and HPA model intro-
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3.3.1 Ideal inverse Saleh predistortion

Predistortion functions (equations (28) and (30)) calculated by Chen in [87]

are revised as

Pa(r) =


αa −

√
α2
a − 4βar2

2βar
, r 6 Aos,

1/
√
βa, r > Aos,

(3.8)

Pp(r) =


−αp

(
αa −

√
α2
a − 4βar2

)2
βp
(
αa −

√
α2
a − 4βar2

)2
+ 4β2

ar2
, r 6 Aos,

−αp
βa + βp

, r > Aos.

(3.9)

3.3.2 Adaptive secant predistortion

The concept of predistortion by secant method was proposed by Cavers J.K.

[19] when he found an adaptive solution for PD by referring to the problem of

solving algebraic equations. This is given by the recurrence relation [96,99]

PDm+1(x̃) =
PDm−1(x̃) · e(PDm(x̃))− PDm(x̃) · e(PDm−1(x̃))

e(PDm(x̃))− e(PDm−1(x̃))
, (3.10)

starting with initial values PD0(x̃k) and PD1(x̃k).

3.3.3 Adaptive Newton predistortion

To reduce computational complexity, [102] proposed the root finding PDm(x̃)

in (3.10) by adaptive Newton method for the amplitude and phase predistor-

tion functions, Pma and Pmp where the true derivatives of Jacobian matrix are

approximated by differential entropy:

J =

 h1(P
m
a ,Pmp )−h1(Pm−1

a ,Pmp )

Pma −P
m−1
a

h1(P
m
a ,Pmp )−h1(P

m
a ,Pm−1

p )

Pmp −P
m−1
p

h2(P
m
a ,Pmp )−h2(P

m−1
a ,Pmp )

Pma −P
m−1
a

h2(P
m
a ,Pmp )−h2(P

m
a ,Pm−1

p )

Pmp −P
m−1
p

 . (3.11)

3.3.4 Adaptive LMS polynomial-approximated predistortion

Pa(r) and Pp(r), could be approximated by the following polynomials [94]

Pa(r) = a1r + a2r
2 + a3r

3 + ...+ alr
l = aT ra, (3.12)

Pp(r) = p0 + p1r + p2r
2 + ...+ amr

m = pT rp. (3.13)

The least mean square (LMS) algorithm [44] is then employed for calculating

amplitude and phase coefficients a(m), p(m).
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Chapter 3

Predistortion Methods for Nonlinear Distortions

due to HPAs in MIMO-STBC Systems

3.1 Overview

Researches and developments of predistortion techniques for MIMO-STBC

systems have been discussed in [73,74,81,94], however for simplification, all

do not include transmit/receive filters in the system model, and thus only

memoryless nonlinear effects are considered and resolved. Then, this chapter

carries out a thorough analyses for the nonlinear MIMO-STBC with the filters

introduced into the system model. Four predistortion schemes will be analyzed

and applied to the system. Then, the performance of predistored system is

measured by EVM, MER, and BER, showing their efficiency and effectiveness.

3.2 Nonlinear distortion effects in MIMO-STBC systems

3.2.1 MIMO-STBC 2× nR system model

Signals output STBC encoder are of the form (1.6). Then, they are input

to the SRRC shaping filters with continuous response

h(t) =
1√
T

sin
[
π t
T

(1− α)
]

+ 4α t
T

cos
[
π t
T

(1 + α)
]

π t
T

[
1−

(
4α t

T

)2] . (3.1)

Its causal discrete-time response is given by

h[n] = h(t)|t=n T
M
, −N − 1

2
≤ n ≤ N − 1

2
. (3.2)

At the k-th time slot, the output of the i-th filter, i = 1, 2, thus is of the form

x̃i,k = xi,kh[0] +
∑

l6=k,−N−1
2

6l6N−1
2

xi,lh[k − l] = xi,kh[0] + nISIi,k . (3.3)

Therefore, signals input to the HPA also contain the ISI term nISIi,k , which then

yields nonlinear ISI at the HPA output. For the purposed of comparison with

previous publications, without considering the spectral regrowth effect as anal-

ysed in Chapter 2, here we use conventional HPA models including TWTA by

Saleh model (2.3), (2.4) and SSPA by Rapp model (2.5).
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Figure 3.1: MIMO-STBC model with Tx-Rx filters and nonlinear HPAs.

3.2.2 Nonlinear distortion effects incurred by HPAs

Receive signals on the l-th branch, 1 6 l 6 nR, in time slots k and (k+ 1) are

yl,k = hl,1ŝk + hl,2ŝk+1 + nl,k, (3.4)

yl,k+1 = −hl,1ŝ∗k+1 + hl,2ŝ
∗
k + nl,k+1. (3.5)

Applying maximum ratio combining [7], these receive signals are processed as

s̄l,k = h∗l,1yl,k + hl,2y
∗
l,k+1, (3.6)

s̄l,k+1 = h∗l,2yl,k − hl,1y∗l,k+1. (3.7)

Using linearized model (1.3) for the HPA input/output signals sk and ŝk, then
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Figure 3.2: Receive signals after MRC: a) with filters; b) without filters.

signals after MRC are affected by nonlinear noise, nonlinear ISI and nonlinear

ICI. These effects are illustrated in Figure 3.2(a), simulated by: 16-QAM; filters'

rolloff factor α = 0.2, input/output sampling rates Fd = 1, Fs = 16Fd, group delay

Dl = 10; HPA Saleh model αa = 2, βa = 1, αp = π/3, βp = 1, IBO = 10 dB.

Figure 3.2(b) is yielded from the same model but without filtering. Thus,

such models, also as in [73,74,81,94], do not fully represent HPA's nonlinear
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effects and give (much) more optimistic results. Further, the change of receive

signal statistics, that actually reflect the nonlinear ISI and ICI effects, is not

observed in Figure 3.2(b), making deceptive assumption for analytical analyses.
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Figure 3.3: For HPA model utilized in [81]: a) with filters; b) without filters.

Moreover, by Figure 3.2(b), even without filtering ICI still exists under non-

linear HPA effects. Therefore, using orthogonality of STBC code to decompose

the MIMO system into SISO equivalent ones as equation (8) in [81] is an over

simplification, only reasonable when the nonlinearity is weak, and without AM-

PM distortion. Then, the ICI will be negligible, the cluster points shrink into a

single point with only amplitude compression effect exists. This fact is demon-

strated by Figure 3.3(b) with the HPA parameters used in [81]. Moreover, if

the system model having Tx-Rx filters as it practically is, the signal quality is

also significantly degraded as illustrated in Figure 3.3(a). Obviously, the receive

signals are non-Gaussian, making analytical analyses impossible.

3.3 Predistortion schemes

The proposed system model is illustrated in Figure 3.4.
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Figure 3.4: MIMO-STBC system model with predistorters.
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